

DLC TOOL AND DIE COATINGS

Drilling of Aluminum Alloys: Adhesion Problem

Elimination of metalworking fluids is desired due to environmental regulations and costs

In the absence of metalworking fluid aluminum chips stick to the tool surface (steel/carbide), causing failure

Ranking of Coatings

Diamond Like Carbon Coatings

Coating	H (GPa)	E (GPa)	Thickness (µm)	Ra (nm)	Deposition Method	H Content (at. %)
Non-hydrogenated DLC	16	148	2	18	Magnetron Sputtering	<2
Hydrogenated DLC	10	114	1	11	Sputtering & CVD	40

Focused Ion Beam (FIB) – Transmission Electron Microscope (TEM) Studies

Steps of the procedure used in making cross-sectional TEM samples using the FIB lift-out method

TEM micrograph

DLC coating with aluminum adhered

on its surface.

showing a section of

Experimental Drilling Tests

Tapping set-up

Lower and stable torque response during MQL drilling of of 319 Al (non-hydrogenated DLC coated drill).

Numerical Modeling of Machining

Optical cross-sectional microstructure workpiece 1100 Al ahead of the tool tip

Strain distribution (kPa) in the workpiece of 1100 Al ahead of tool tip