

Left Half
TOP $\quad{ }^{\text {ST }} \Rightarrow C, H, H \Rightarrow H, H, H$
BOT. $C \Rightarrow C, H, H \Rightarrow B_{r}, H, H$
Right Half
TOP $\underset{\text { as. }}{C} \Rightarrow C, C, H \Rightarrow C, H, H \Rightarrow C 1, H, H$
BOT $C \Rightarrow C, C, H \Rightarrow C, H, H \Rightarrow C_{1}, H, H$
\therefore THis is (E)-

Alicyclic Compounds.

- Mani examples of Hydrocarbons Which are Cyclic
- $s p^{3}$, sp p^{2} Very Common
- sp Not So MuCh- 180° Angle
is TouGH in SMaLL RINGS.
impossible for triple bonds to exist (and be stable) for anything smaller than a cyclooctyne
Consider Smallest one:

$$
\underset{\substack{\text { CHCLOPROPANE } \\ \text { CH }} \underset{C_{2}}{\mathrm{CH}_{2}} \equiv \Delta}{ }
$$

Crelobutane

Cyclopentane

Grecohexane

CYICLOPROPANE - KNOWN But Strained - Since sp c's are forced to Have c-c-c Angles of 60°

- All C atoms are in a Plane

- if one Substituent. Just one Cpd.

- But if 2-Chloro Groups. 3- Possibilities

(a) is A STRUCTURAL IsOMER OF THE OTHER TWO (POSITIONAL)
(b). (c) Are Stereoisomers of Each OTHER

Naming. THE GLD cIS- and trans. NAMES ARE USUALLY USED FOR THESE
(b). Two Cl's are Both above the Plane of the Ring \therefore cis-
c- One Cl above, one Cl Below Plane \therefore trans.

CIClobutane, cyclopentane

- Not Quite Planar, But Conforma-
ton Changes are Esoteric

Strand gut Less so.

$$
\text { trans -1,2- cis- } 1,3-
$$

Almost Unstrained.
C-C-C bond angles at ca. 104°, only 5.5° off perfection.

CyCloulexanes

- Conformation Well Understood Reliable

$$
\text { - IF FLAT, } 120^{\circ} \text { Bond Angles }
$$ For'sp3 Carbons.

- Molecule Can do Better

At Close to 109.5° (~111 for Real)

- Two Limiting Possibilities
so no angle strain to speak of in simple cyclohexanes
 CHAIR

BOAT

