Disubstituteo Crclohexnes

1,3-
1,4-
2-

2 stereoisomers each
ISO MERS.
1,2-Disubstituted

cis 1,2-
trans 1,2-
trans.

Preferred Conformation - Botar Groups Get to be Equatorial.

CIs-

Preferred if

$$
x<\left(r_{3} \text { in } S_{\text {IE E }}\right.
$$

Preferred if

$$
X>\mathrm{CH}_{3} \text { IN SIZE }
$$

trans- isomer is More Thermod ranamically Simple, Since Both CH_{3} and X GeT TO BE EQUATORIAL.

1,3-
trans.

Preferred
PREFERRED
IF $X>\mathrm{CH}_{3}$
If $X<\mathrm{CH}_{3}$
in size - has nothing to do with 'priority'

1,3- cis.

Molecule

SPENAS "All"
is Time Here

$$
(>99.9 \cdot 1 .)
$$

Actually More Stable than Trans. Isomer.
1,4- AnAlogous to 1,2-
So what's Big? What's not?

$$
\begin{aligned}
& -H<-\ddot{x}:<-\ddot{O}-H<-\ddot{N}_{-H}^{\prime H}<-C_{H}^{c}{\underset{H}{-H}}_{-H}^{H}
\end{aligned}
$$

- axial, equatorial - different Conformations - a Interchange These CAN
- cis-, frons- different Configurations - do not interchange

END OF TEST ${ }^{*} 1$ 。

Chapter 4- Some Fundamentals.
Acidity
Bronsted

$$
\begin{aligned}
& \mathrm{H}-x+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons x^{-}+\mathrm{H}_{1}^{-} \mathrm{O}_{0}^{\mathrm{O}} \mathrm{H}^{\mathrm{H}} \\
& \text { Acis Base } \underset{\substack{\text { Conj } \\
\text { Base }}}{\substack{\text { cHonju } \\
\text { Acid }}}
\end{aligned}
$$

Rules:

1. The Stronger the Acid the Weaker the conj. Bases

- Converse is true, Too

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HO}^{-} \quad \mathrm{Kqqun}=10^{-14} p \mathrm{k}_{\mathrm{a}}=15.7 \\
\left(\mathrm{H}_{3} \mathrm{C}\right)_{3} \mathrm{C}-\mathrm{OH} \rightleftharpoons \mathrm{H}^{+}+\left(\mathrm{H}_{3} \mathrm{C}\right)_{3} \mathrm{C}-0^{-} \quad \begin{array}{c}
k_{\text {eq }}=11^{-15.5} \\
\mathrm{pkG}_{\mathrm{G}} \approx 17
\end{array}
\end{gathered}
$$

Acidify $\mathrm{H}_{2} \mathrm{O}>\left(\mathrm{H}_{3} \mathrm{C}\right) \mathrm{C}-\mathrm{OH}$
Basicity $\left(\mathrm{H}_{3} \mathrm{C}\right)_{3} \mathrm{C}-\mathrm{O}^{-\theta}>\mathrm{HO}^{-}$
2. Acidity and the Periodic Table.

