

NO AMOUNT OF IT IN SOLUTION 1-1 - VERY GOOD - BOTH REASONABLE CONCENTRATION, AND REACTIVE ENOUGH TO DO JOMETHING Brz AND CIZ REAL ANSWER FOR HOW THESE ARE E+ C=C + Br-Br = "C-C" + Br OK TO WRITE Br-Br Br Br (? TWO STEPS - WHICH IS RATE DETERMINING 1 ST - STEP - DOING THE TOUGH THING -MAKING A PRETTY HIGH ENERGY CARBOCATION - SLOW STEP 2" STEP - - C+ X -> -C-X - OPPOSITELY CHARGED SPECIES

COMBINING TO GET A NEUTRAL -SHOULD BE REALLY FAST

$$\begin{array}{c}
H \\
C = C \\
H
\end{array}$$

$$\begin{array}{c}
H \\
Br
\end{array}$$

$$\begin{array}{c}
C - C \\
H
\end{array}$$

$$\begin{array}{c}
C + Br
\end{array}$$

$$\begin{array}{c}
C + C \\
H
\end{array}$$

$$\begin{array}{c}
C + C \\
C - C \\
H
\end{array}$$

$$\begin{array}{c}
C + C \\
C - C \\
H
\end{array}$$

$$\begin{array}{c}
H \\
C + C \\
H
\end{array}$$

$$\begin{array}{c}
H \\
C + C \\
H
\end{array}$$

$$\begin{array}{c}
H \\
C + C \\
H
\end{array}$$

$$\begin{array}{c}
H \\
C + C \\
H
\end{array}$$

$$\begin{array}{c}
H \\
C + C \\
H
\end{array}$$

$$\begin{array}{c}
H \\
C + C \\
H
\end{array}$$

$$\begin{array}{c}
H \\
C + C \\
H
\end{array}$$

$$\begin{array}{c}
H \\
C + C \\
H
\end{array}$$

$$\begin{array}{c}
H \\
C + C \\
H
\end{array}$$

$$\begin{array}{c}
H \\
C + C \\
H
\end{array}$$

$$\begin{array}{c}
H \\
C + C \\
H
\end{array}$$

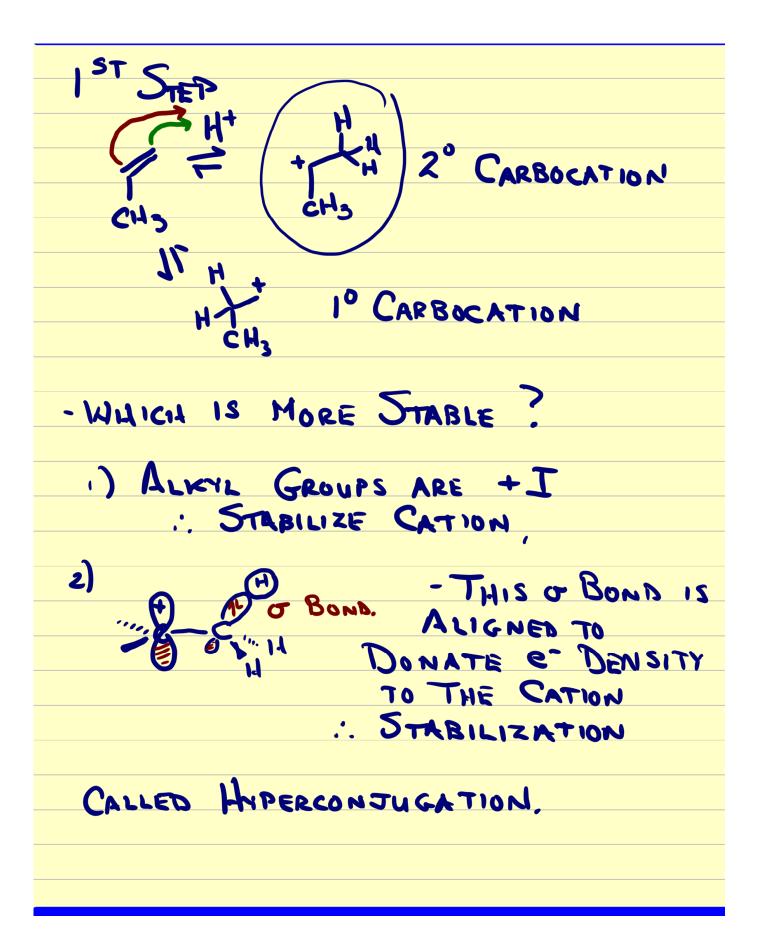
$$\begin{array}{c}
H \\
C + C \\
H
\end{array}$$

$$\begin{array}{c}
H \\
C + C \\
H
\end{array}$$

$$\begin{array}{c}
H \\
C + C \\
H
\end{array}$$

$$\begin{array}{c}
H \\
C + C \\
H
\end{array}$$

$$\begin{array}{c}
H \\
C + C \\
H
\end{array}$$


$$\begin{array}{c}
H \\
C + C \\
H
\end{array}$$

$$\begin{array}{c}
H \\
C + C \\
H
\end{array}$$

$$\begin{array}{c}
H \\
C + C \\
H
\end{array}$$

$$\begin{array}{c}
H \\
C + C \\
H
\end{array}$$

$$\begin{array}{c}
H \\
C + C \\
H
\end{array}$$

+ 10 20 50
CH_3 $\angle H_3C-CH_2 \angle H_3C-CH_3 \angle H_3C-CH_3$
1° 2° 3° CH3 ~ H3C-CH2 ~ H3C-C-CH3 ~ H3C-C-CH3 HAS NONE ONE Two " THREE"
WE MUST ADD THIS TO HAMMOND
POSTULATE
1 OSTULATE
- TRANSITION STATE MOST CLOSELY
RESEMBLES THE SPECIES IT'S
CLOSEST TO IN ENERGY
: RATE OF FORMATION 3°>2° >1°
alla H
/C113
$=\langle 1 + HCI \rightarrow 1 \rangle$
$= \langle \begin{array}{c} cH_3 \\ -CH_3 \\ \end{array} \rangle + HCI \longrightarrow \begin{array}{c} H \\ H \\ -CH_3 \\ \end{array} \rangle CH_3$
MARKOVNIKOVS RULĒ
•