Department of Chemistry and Biochemistry
 Chemistry 59-230/232
 Midterm \#1
 Time: 50 min.
 Oct. 13, 2006

NAME \qquad ID\# \qquad

LAB SECTION - enter day/time/TA

Note: Please answer on the test paper. There is an extra sheet for rough work at the back, but it will not be marked. Tests written in pencil will be marked, but cannot be returned for remarking. For the 'promised' size ranking, see the intro to 5a.

1. Give correct IUPAC names for the following compounds. Include stereochemical descriptors where relevant. (4 marks each, total 24 marks)
a

b.

C.

d.

e. Indicate for the structure in la which carbon atoms are primary, secondary, tertiary and quaternary.
2. Draw structures which correspond to the following given names. Drawings showing only carbons and other non-hydrogen atoms are acceptable. Please include the appropriate stereochemical aspects of the structure where it is needed. One of these names is actually significantly wrong: indicate which one it is and write the correct name for the structure (we'll call that "d"). (4 marks each, total 16)
a. (2E,5Z)-2-bromo-5-iodo-6-methyl-2,5-octadiene
b. 4-(4-bromobutyl)nonane
C. trans I-chloromethyl-3-ethylcyclopentane
d.
3. (Total II marks)
a. What is the index of hydrogen deficiency of $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{Br}_{2}$. Draw one reasonable structure for such a compound.(4 marks)
b. What is the index of hydrogen deficiency of the following compound? (2 marks)

HO

C. Indicate the hybridization of each carbon atom in the above structure (in 3 b). (5 marks)
4. (Total 10 marks) For each of the (a-c) below, assign the appropriate terminology (structural isomers, geometric isomers, different conformations of the same molecule, identical) to the following.
a (2)

b. (2)

and

C. (2)
 and

d. Assign the Z- or E- stereochemical descriptor to the following systematically. Show your work. Do not give the complete name of the compound (4 marks).

5. Draw the possible Newman projections of all the possible staggered and eclipsed conformations of the following compound, viewed down the $\mathrm{C} 3-\mathrm{C} 4$ bond. Rank them in terms highest to lowest stability. (In terms of size, $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}>\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}>\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} \approx \mathrm{CH}_{2} \mathrm{CH}_{3}>\mathrm{CH}_{3}>\mathrm{NH}_{2}>\mathrm{OH}$ $>\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}>\mathrm{H}$) (I2 marks)

6a. Draw the Newman projection of structure of the most stable of the possible edipsed conformations of I-bromo-2-methylpropane as viewed down the $\mathrm{CI}-\mathrm{C} 2$ bond. Give your reasoning why you consider this to be most stable possibility. (4 marks)
b. In 6a, what is the relationship in orientation between the bromine function and each of the methyl groups.(2 marks) Note: I am looking for terminology more detailed than staggered/eclipsed.

7a Draw the chair structure of I-chloro-3-methylcyclohexane in its most stable conformation of its least stable configuration (one structure)(5 marks).
b. Which is the more stable, cis- decalin or trans- decalin? Give reasoning, including structural drawings, to support your choice (6 marks).

cis decalin

trans decalin

Bonus. (Up to 4 additional marks) As we've mentioned before, allenes are unusual in terms of their bonding at the central carbon. Their stereochemistry is also unusual to a first glance. Can you suggest the stereochemical relationship between the following two allenes (I need more detail than something like 'stereoisomers'), and assign an appropriate stereochemical descriptor to the left one?

IA		Periodic Table of the Elements														VIIA	0
$\begin{gathered} \mathbf{1} \\ \mathbf{H} \\ 1.0079 \end{gathered}$	IIA											IIIA	IVA	VA	VIA	$\begin{gathered} 1 \\ \mathbf{H} \\ 1.0079 \end{gathered}$	$\begin{gathered} 2 \\ \mathrm{He} \\ 4.0026 \end{gathered}$
$\begin{gathered} \hline 3 \\ \text { LI } \\ \hline 0.84 \end{gathered}$	$\begin{gathered} 4 \\ \mathrm{Be} \\ 0.0122 \end{gathered}$											$\begin{gathered} 5 \\ B \\ 10.811 \end{gathered}$	$\underset{12.011}{\mathbf{C}}$	$\begin{array}{\|c\|} \hline \mathbf{N} \\ \mathbf{N} \\ 14.0087 \end{array}$	$\begin{gathered} 8 \\ \mathbf{0} \\ 18.9994 \end{gathered}$	$\begin{gathered} \mathbf{9} \\ \mathbf{F} .9984 \end{gathered}$	$\begin{gathered} 10 \\ \mathrm{Ne} \\ \mathbf{2 0 . 1 7 9 7} \end{gathered}$
$\begin{gathered} 11 \\ \mathrm{Na} \\ \mathrm{Na} .000 \end{gathered}$		IIIB	IVB	VB	VIB	VIIB		VIII		IB	IIB	$\begin{gathered} 13 \\ \text { AI } \\ \text { Al.9815 } \end{gathered}$	$\begin{gathered} 14 \\ \text { Si } \\ 20.0555 \end{gathered}$	$\begin{array}{c\|} \hline 15 \\ \mathbf{P} \\ \mathbf{3 0 . 0 7 3} \end{array}$	$\underset{32.068}{\mathbf{S}}$	$\begin{gathered} 17 \\ \text { Cl } \\ \hline 5.4527 \end{gathered}$	$\begin{gathered} 18 \\ \mathbf{A r} \\ 39.948 \end{gathered}$
$\begin{gathered} 19 \\ \mathbf{K} \\ \mathbf{3} .0093 \end{gathered}$	$\begin{gathered} 20 \\ \mathrm{Ca} \\ 40.078 \end{gathered}$	$\begin{gathered} 21 \\ \text { Sc } \\ 44.0559 \end{gathered}$	$\begin{gathered} 22 \\ \mathrm{TI} \\ 47.68 \end{gathered}$	$\stackrel{23}{\mathbf{V}}_{\text {S0.0415 }}$	$\begin{gathered} 24 \\ \mathrm{Cr} \\ \hline 1.0901 \end{gathered}$	$\begin{gathered} 25 \\ \mathrm{Mn} \\ \text { sh. } 9350 \end{gathered}$	$\begin{gathered} 26 \\ \text { Fe } \\ 58.847 \end{gathered}$	$\begin{gathered} 27 \\ \text { Co } \\ \text { Be.9332 } \end{gathered}$	$\begin{aligned} & 28 \\ & \mathrm{Ni} \\ & \mathbf{s e . 0 9} \end{aligned}$	$\begin{gathered} 29 \\ \mathrm{Cu} \\ \hline 0.546 \end{gathered}$	$\begin{aligned} & \mathbf{3 0} \\ & \mathbf{Z n} \\ & \hline 65.39 \end{aligned}$	$\begin{gathered} 31 \\ \mathbf{G a} \\ 69.723 \end{gathered}$	$\begin{aligned} & 32 \\ & \text { Ge } \\ & 72.61 \end{aligned}$	$\begin{gathered} 33 \\ \text { As } \\ 74.9216 \end{gathered}$	$\begin{aligned} & 34 \\ & \mathrm{Se} \\ & 78.98 \end{aligned}$	$\begin{gathered} 35 \\ \mathbf{B r} \\ 79.904 \end{gathered}$	$\begin{aligned} & 36 \\ & \mathbf{K r} \\ & 83.80 \end{aligned}$
$\begin{gathered} \mathbf{3 7} \\ \mathbf{R b} \\ \boldsymbol{R} .4670 \end{gathered}$	$\begin{aligned} & 38 \\ & \mathbf{S r} \\ & 87.02 \end{aligned}$	$\begin{gathered} 39 \\ \mathbf{Y} \\ \mathbf{e x . c o s e} \end{gathered}$	$\begin{gathered} 40 \\ \mathbf{Z r} \\ 81.224 \end{gathered}$	$\begin{gathered} \mathbf{A 1}_{\mathbf{4 1}}^{\mathrm{Nb}} \\ 82.9064 \end{gathered}$	$\begin{aligned} & 42 \\ & \text { Mo } \\ & 95.94 \end{aligned}$	$\begin{aligned} & 43 \\ & \mathrm{TC} \\ & \text { (B) } \end{aligned}$	$\begin{gathered} \hline \mathbf{4 4} \\ \text { Ru } \\ 101.07 \end{gathered}$	$\begin{gathered} 45 \\ \mathbf{R h} \\ 102.9055 \end{gathered}$	$\begin{gathered} 46 \\ \text { Pd } \\ 100.42 \end{gathered}$	$\begin{gathered} \mathbf{4 7} \\ { }_{107}^{\mathbf{A g}}{ }^{28682} \end{gathered}$	$\begin{gathered} \mathbf{4 8}^{\mathbf{C d}} \\ 112.411 \end{gathered}$	$\begin{gathered} 49 \\ \text { In } \\ 114.02 \end{gathered}$	$\begin{gathered} 50 \\ \text { Sn } \\ 116.710 \end{gathered}$	$\begin{gathered} 51 \\ \mathbf{S b} \\ 121.75 \end{gathered}$	$\begin{gathered} \hline 52 \\ \mathrm{Te} \\ 127.60 \end{gathered}$	$\begin{array}{c\|} 53 \\ 1 \\ 126.9045 \end{array}$	$\begin{gathered} 54 \\ \mathrm{Xe} \\ 131.29 \end{gathered}$
$\begin{gathered} 55 \\ \text { Cs } \\ 132.0054 \end{gathered}$	$\begin{gathered} 56 \\ \text { Ba } \\ 137.377 \end{gathered}$		$\begin{gathered} \hline 72 \\ \mathbf{H f}_{170.49} \end{gathered}$	$\begin{gathered} 73 \\ \mathbf{T a} \\ 100.9479 \end{gathered}$	$\begin{gathered} \hline 74 \\ \text { W } \\ \text { 183.05 } \end{gathered}$	$\begin{gathered} 75 \\ \mathbf{R e} \\ 106.207 \end{gathered}$	$\begin{aligned} & 76 \\ & \text { Os } \\ & 180.2 \end{aligned}$	$\begin{gathered} 77 \\ 19 \\ 192.22 \end{gathered}$	$\begin{gathered} 78 \\ \text { Pt } \\ 195.08 \end{gathered}$	$\begin{gathered} 79 \\ \text { Au } \\ \text { Aus.96es } \end{gathered}$	$\begin{gathered} 80 \\ \mathbf{H g} \\ 200.59 \end{gathered}$	$\begin{array}{c\|} \hline 81 \\ \text { TI } \\ 200.3933 \end{array}$	$\begin{aligned} & \hline 82 \\ & \mathbf{P b} \\ & 207.2 \end{aligned}$	$\begin{array}{\|c\|} \hline 83 \\ \text { BI } \\ 200.9804 \end{array}$	$\begin{aligned} & 84 \\ & \text { Po } \\ & \text { (209) } \end{aligned}$	$\begin{gathered} 85 \\ \text { At } \\ \text { (210) } \end{gathered}$	$\begin{aligned} & 86 \\ & \text { Rn } \\ & \text { (222) } \end{aligned}$
$\begin{aligned} & 87 \\ & \text { Fr } \\ & \text { (223) } \end{aligned}$	$\begin{aligned} & 88 \\ & \text { Ra } \\ & \text { (220) } \end{aligned}$		$\begin{aligned} & 104 \\ & \text { Unq } \\ & (2011) \end{aligned}$	$\begin{aligned} & 105 \\ & \text { Unp } \\ & \text { Un22) } \end{aligned}$	$\begin{aligned} & 106 \\ & \text { Unh } \\ & \text { (203) } \end{aligned}$	$\begin{aligned} & \hline 107 \\ & \text { Uns } \end{aligned}$	108	109									

Atomic masse日B are 1989 IUPAC values up to four declmal places.	**	$\begin{gathered} 58 \\ \text { Ce } \\ 140.114 \end{gathered}$	59 $\mathbf{P r}$ 140.9078	$\begin{gathered} 60 \\ \mathrm{Nd} \\ 144.24 \end{gathered}$	$\begin{aligned} & \hline 61 \\ & \text { Pm } \\ & \text { (145) } \end{aligned}$	$\begin{gathered} \hline 62 \\ \mathbf{S m} \\ 150.36 \end{gathered}$	$\begin{gathered} \hline 63 \\ \text { Eu } \\ 151.985 \end{gathered}$	$\begin{gathered} \mathbf{6 4} \\ \text { Gd } \\ \mathbf{1 5 7 . 2 5} \end{gathered}$	$\begin{gathered} \mathbf{6 5} \\ \mathbf{T b} \\ 150.9253 \end{gathered}$	$\begin{gathered} 66 \\ \text { Dy } \\ 162.50 \end{gathered}$	$\begin{gathered} 67 \\ \text { Ho } \\ 164.9303 \end{gathered}$	$\begin{gathered} \hline 68 \\ \text { Er } \\ 107.28 \end{gathered}$	$\begin{gathered} 69 \\ \operatorname{Tm}_{168.9342} \end{gathered}$	$\underset{\substack{70 \\ \mathbf{Y b} \\ 173.04}}{ }$	$\begin{gathered} 71 \\ \text { Lu } \\ 174.987 \end{gathered}$
		80	91	92	93	94	85	\%	97	98	99	100	101	102	103
		Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
		232.0381	231.0350	238.0289	(23)	(24)	(243)	(24)	(247)	(251)	(252)	(25)	(258)	(259)	(280)

