	Department of Chemistry and Biochemistry
Chemistry 59-230/232	Midterm \#I
Time: 50 min.	Oct. I2, 2007

NAME \qquad ID\# \qquad

LAB SECTION - enter day/time/TA

Note: Please answer on the test paper. There is an extra sheet for rough work at the back, but it will not be marked. Tests written in pencil will be marked, but cannot be returned for remarking. For the 'promised' size ranking, see the intro to 4a.
I. Give correct IUPAC names for the following compounds. Include stereochemical descriptors where relevant. (4 marks each, total 20 marks)
a

b.

c.

d.

e. Indicate for the structure in Ia which carbon atoms are primary, secondary, tertiary and quaternary.
2. Draw structures which correspond to the following given names. Drawings showing only carbons and other non-hydrogen atoms are acceptable. Please include the appropriate stereochemical aspects of the structure where it is needed. (4 marks each, total I2)
a. (5E)-5-chloro-4-ethyl-I,5-heptadiene
b. 2-iodo-3,3-dimethyldecane
c. cis I-pentyl-3-phenylcyclobutane
3. (Total 17 marks) For each of the (a-d) below, assign the appropriate terminology (structural isomers, geometric (cis/trans) isomers, different conformations of the same molecule, identical) to the following.
a. (2 marks)

b. (2 marks)

c. (2 marks)

d. (2 marks)

e. Assign the Z- or E- stereochemical descriptor to the following systematically. Show your work. Do not give the complete name of the compound (5 marks).

f. Indicate the hybridization of each carbon atom in the above structure (in e). (4 marks)

4 (Total 12 marks)
a. Draw the possible Newman projections of all the possible staggered conformations of the following compound, viewed down the $\mathrm{C} 2-\mathrm{C} 3$ bond. Rank them in terms highest to lowest stability. (In terms of size, $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}>\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}>\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} \approx \mathrm{CH}_{2} \mathrm{CH}_{3}>\mathrm{CH}_{3}>\mathrm{NH}_{2}>\mathrm{OH}$ $>\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}>\mathrm{H}$) (9 marks)

b. In each of the projections in 4a, what is the relationship in orientation between the bromine function and the methyl group on the neighbouring carbon atom?(3 marks) Note: I am looking for terminology more detailed than staggered/eclipsed.
a. Draw the two possible chair structures of trans I-bromo-4-(I,I-dimethylethyl)cyclohexane> Indicate which is the most stable conformation and label the (non-hydrogen) substituents as axial or equatorial. (9 marks). (For size rankings, see 4a)
b. Draw a reaction profile (energy versus reaction coordinate) for the following situation. The one step reaction of A and B can give either compound C or compound D. When the reaction is conducted at $-78{ }^{\circ} \mathrm{C}$ for I minute (lets consider these minimum conditions), there is $90 \% \mathrm{C}$ and $10 \% \mathrm{D}$ produced. When the reaction is reaction is conducted at $57^{\circ} \mathrm{C}$ for I day (let's call these forcing conditions), there is $92 \% \mathrm{C}$ and $8 \% \mathrm{D}$ produced. Label A, B, C, and D, and the transition states in the reaction to C and D, respectively (use C^{*} and D^{*}). (6 marks)

Energy

Reaction coordinate

c. Rank the following from strongest to weakest conjugate base (4 marks).

-				
NH_{2}	${ }^{-} \mathrm{Cl}$	HO^{-}	-Br	HS^{-}

Bonus. (Up to 4 additional marks) Propose a reasonable candidate for a substituted cyclohexane where the largest substituent(s) prefer(s) to be axial.

