	Department of Chemistry and Biochemistry
Chemistry 59-230/232	Midterm \#1
Time: 50 min.	Oct. 22, 2008

NAME \qquad ID\# \qquad

LAB SECTION - enter day/time/TA

Note: Please answer on the test paper. There is an extra sheet for rough work at the back, but it will not be marked unless you specifically ask me to. Tests written in pencil will be marked, but cannot be returned for remarking. For the 'promised' size ranking, see the intro to 4a. There are 80 marks on this exam.
I. Give correct IUPAC names for the following compounds. Include stereochemical descriptors where relevant. (4 marks each, total 16 marks)
a

b.

c.

d. Indicate for the structure in Ia which carbon atoms are primary, secondary, tertiary and quaternary. You may redraw the structure or indicate with arrows (4 marks).
2. Draw structures which correspond to the following given names. Drawings showing only carbons and other non-hydrogen atoms are acceptable. Please include the appropriate stereochemical aspects of the structure where it is needed. (4 marks each, total I2)
a. 3,3-dimethyl-I,4-pentadiyne
b. trans-I-bromomethyl-4-iodocycloheptane
c. (Z)- I-chloro-3-methyl-3-phenyl-I-butene
3. (Total 21 marks) For each of the (a-d) below, assign the appropriate terminology (structural isomers, geometric (cis/trans) isomers, different conformations of the same molecule, identical, not isomers at all) to the following.
a. (2 marks)

b. (2 marks)

c. (2 marks)

d. (2 marks)

e. Assign the Z- or E- stereochemical descriptor to the following systematically. Show your work. Do not give the complete name of the compound (6 marks).

f. Indicate the hybridization of each carbon atom in the following structure . (5 marks)

g. What is the index of hydrogen deficiency of the structure in \mathbf{f} (2 marks)?

4 (Total 20 marks)
a. Draw the possible Newman projections of all the possible staggered and eclipsed conformations of the following compound, viewed down the $\mathrm{C} 2-\mathrm{C} 3$ bond. Rank them in terms highest to lowest stability. (In terms of size, $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}>\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}>\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} \approx \mathrm{CH}_{2} \mathrm{CH}_{3}>\mathrm{CH}_{3} \approx \mathrm{CH}_{2} \mathrm{Cl}>$ $\left.\mathrm{NH}_{2}>\mathrm{OH}>\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}>\mathrm{H}\right) \quad(16$ marks $)$

b. In the lowest energy conformation in 4a, what is the relationship in orientation between the chloromethyl group and the methyl group(s) on the neighbouring carbon atom? (2 marks) Note: I am looking for terminology more detailed than staggered/eclipsed.
c. In the highest energy conformation $\mathbf{4 a}$, what is the relationship in orientation between the chloromethyl function and the methyl group(s) on the neighbouring carbon atom? (2 marks)

5 (total I I marks)

a. Draw I,2-dibromoethane in the sawhorse projection of its most stable conformation (5 marks). (For size rankings, see 4a)
b. Rank the following compounds in terms of stability of the compound. Give your reasoning for your ranking. (6 marks)

Bonus. (Up to 5 additional marks) Only one possible alkene analogue of the following alkane (norbornane or bicyclo[2.2.1]heptane) is a known compound (i.e., a double bond can only be 'put' in one type of place). Which one is it (I mark) and what is wrong with the other possibilities (the other 4 marks)?

