Department of Chemistry and Biochemistry

Chemistry 59-230/232

Time: 50 min.

Midterm #1 Oct. 10, 2002

NAME	SUGGESTED	SOLUTIONS	ID#	

LAB SECTION (enter 'no lab' if in 232 or not taking one)

Note: **Please answer on the test paper.** There is an extra sheet for rough work at the back, but it will <u>not</u> be marked. Tests written in pencil will be marked, but cannot be returned for remarking. For the 'promised' size ranking, see the intro to **5a**.

1. Give correct IUPAC names for the following compounds. Include stereochemical descriptors where relevant. (5 marks each, total 20 marks)

a

b.
$$CI$$
 H_2C
 C
 C
 C
 CH_3

c. H₃C ...

- 2. Draw structures which correspond to the following given names. Drawings showing only carbons and other non-hydrogen atoms are acceptable. Please include the appropriate stereochemical aspects of the structure where it is needed. (5 marks each, total 15)
- **a.** I-isopropyl-3,3-dimethylcyclopentane

entane
$$CH_3$$

$$CH_3$$

$$CH_2$$

$$CH_2$$

$$CH_2$$

$$CH_2$$

$$CH_2$$

$$CH_2$$

$$CH_2$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

b. cyclobutylcyclohexane

$$CH_{2} - CH_{2}$$

C. trans 2-methyl-3-iodo-3-decen-5-yne

3. a. Draw all the possible structural isomers of C_6H_{14} . Identify the tertiary carbon atoms in any drawings where they appear. (8 marks)

b. What is the index of hydrogen deficiency of the following compound? (2 marks)

- C. Apply the Z or E stereochemical descriptor where relevant in the above molecule.

 Show how you arrived at the distinction. (5 marks)

 ON CARBON I'VE LABELLED 'A' ATOMS H VS. C. WINS

 ON CARBON I'VE LABELLED 'B' IST ATOMS C VS. C

 ON CARBON I'VE LABELLED 'B' IST ATOMS C VS. C

 ON CARBON I'VE LABELLED 'B' IST ATOMS C VS. C

 ON CARBON I'VE LABELLED 'B' IST ATOMS C VS. C

 ON CARBON I'VE LABELLED 'B' IST ATOMS C VS. C

 ON CARBON I'VE LABELLED 'B' IST ATOMS C VS. C

 ON CARBON I'VE LABELLED 'B' IST ATOMS C VS. C

 ON CARBON I'VE LABELLED 'B' IST ATOMS C VS. C

 ON CARBON I'VE LABELLED 'B' IST ATOMS C VS. C

 ON CARBON I'VE LABELLED 'B' IST ATOMS C VS. C

 ON CARBON I'VE LABELLED 'B' IST ATOMS C VS. C

 ON CARBON I'VE LABELLED 'B' IST ATOMS C VS. C

 ON CARBON I'VE LABELLED 'B' IST ATOMS C VS. C

 ON CARBON I'VE LABELLED 'B' IST ATOMS C VS. C

 ON CARBON I'VE LABELLED 'B' IST ATOMS C VS. C

 ON CARBON I'VE LABELLED 'B' IST ATOMS C VS. C

 ON CARBON I'VE LABELLED 'B' IST ATOMS C VS. C

 ON CARBON I'VE LABELLED 'B' IST ATOMS C VS. C

 ON CARBON I'VE LABELLED 'B' IST ATOMS C VS. C

 ON CARBON I'VE LABELLED 'B' IST ATOMS C VS. C

 ON CARBON I'VE LABELLED 'B' IST ATOMS C VS. C

 ON CARBON I'VE LABELLED 'B' IST ATOMS C VS. C

 ON CARBON I'VE LABELLED 'B' IST ATOMS C VS. C

 ON CARBON I'VE LABELLED 'B' IST ATOMS C VS. C

 ON CARBON I'VE LABELLED 'B' IST ATOMS C VS. C

 ON CARBON I'VE LABELLED 'B' IST ATOMS C VS. C

 ON CARBON I'VE LABELLED 'B' IST ATOMS C VS. C

 ON CARBON I'VE LABELLED 'B' IST ATOMS C VS. C

 ON CARBON I'VE LABELLED 'B' IST ATOMS C VS. C

 ON CARBON I'VE LABELLED 'B' IST ATOMS C VS. C

 ON CARBON I'VE LABELLED 'B' IST ATOMS C VS. C

 ON CARBON I'VE LABELLED 'B' IST ATOMS C VS. C

 ON CARBON I'VE LABELLED 'B' IST ATOMS C VS. C

 ON CARBON I'VE LABELLED 'B' IST ATOMS C VS. C

 ON CARBON I'VE LABELLED 'B' IST ATOMS C VS. C

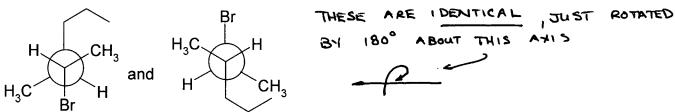
 ON CARBON I'VE LABELLED 'B' IST ATOMS C VS. C

 ON CARBON I'VE LABELLED 'B' IST ATOMS C VS. C

 ON CARBON I'VE LABELLED 'B' IST ATOMS C VS. C

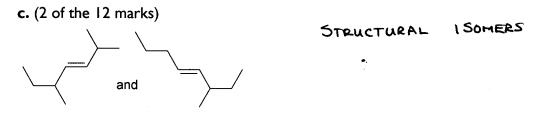
 ON CARBON I'VE LABELLED 'B' IST ATOMS C VS. C

 ON CARBON I'VE LABELLED 'B'
 - 4. Assign the appropriate terminology (structural isomers, geometric isomers, configurational isomers, different conformations of the same molecule, identical) to the following. (Total 12 marks)


 a. (6 of those 12 marks)
 - In addition for 'a', label for each of the non-hydrogen substituents axial/equatorial.

In (again) addition for 'a', which is the most stable structure? Why is this the case?

- HO CH'S TABLE AS THE LARGEST GROUP PREFERS


 ORIENTATION, AND

 CH'S > OH > H
- **b.** (4 of the 12 marks)

For 'b' what term describes the relationship between the bromine atoms and the propyl group?

ANTI PERIPLANAR

5. a. Draw the possible Newman projections of the possible staggered conformations of the following compound, viewed down the C1-C2 bond. Rank them in terms highest to lowest stability. (In terms of size, $C(CH_3)_3 > CH_1(CH_3)_2 > CH_2(CH_3)_3 > CH_3 > CH_$

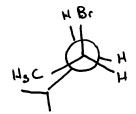
SINCE IN SIZE - CH(CH3)2 > - CH3 > - Br

STACLINAL -CH (CH3)2 W - CH3 IS

WORSE THAN - CH (CH3)2 W-Br

ONE SYNCLINAL (GAUCHE) INTERACTION -CH(CH) = Br

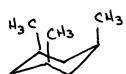
.: HIGEST STABILITY


TWO STACLINAL INTERACTION S. - CH(CH)2 & Br

- CH (CH3) 2 - CH3

ONE STACLIMAL INTERACTION - CH(CH3)2 W - CH3 - WORSE THAM -CH(CH3) 2 - Br . MIDDLE CASE

. LOWEST STABILITY


b. Draw the Newman projection of the worst possible conformation (from an energetic standpoint) of the above compound. (3 marks)

ECLIPSED, AND TWO BIGGEST GROUPS ARE SYMPERIPLANAR

. VERY BAD

c. Draw cis, cis-1,3,5-trimethylcyclohexane in its least stable possible chair form. (5 marks)

CIS, CIS, THEREFORE ALL 3 METHYLS ARE ON THE SAME SIDE (UP OR DOWN, YOUR CHOICE)

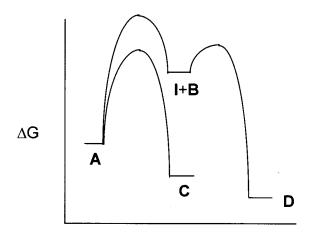
- CAM MAKE THEM ALL AVIAL, SINCE EACH METHYL HAS A 1,3-RELATION SHIP TO THE NEXT METHYL . OF COURSE THE MOLECULE DOESN'T LIKE IT

6. Consider the following reaction energy diagram, where A reacts to give C and can react with another species (B), to give D. The letter I stands for intermediate. (8 marks)

a) Which is the kinetic product of the reaction?

C AS THE BARRIER (TRANSITION STATE) TO 175 FORMATION IS LOWEST

b) Which is the thermodynamic product?

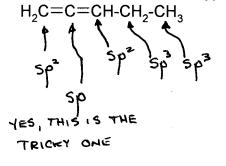

D AS IT IS LOWEST ENERGY

c) What is the rate expression for the formation of C?

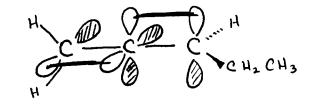
d) What is the rate expression for the formation of **D**?

RATE (V) ~ [A] OR = k[A]

B DOESN'T COME IN UNTIL AFTER THE SLOW STEP.


Reaction coordinate

THIS IS PROPER


7. Which of the following are proper uses of the curved arrow, and which are not? (5 marks). For any incorrect ones, show what the arrows would indicate the product to be (no matter how unstable it looks).

THE APPLICATION OF THOSE ARROWS WOULD GIVE !

8. What is the hybridization of each of the carbon atoms in the following structure? (Yes, there is one tricky one, and no, it isn't a typo). (5 marks)

THAT IS AN ALLENE, AND FOR THE CENTRAL ALLENE CARBON TO DOUBLE BOND TWICE, IT MUST ...

