UNIVERSITY OF WINDSOR Chemistry and Biochemistry

Chemistry 59-235
Final Exam

Apr. 18, 2013
Time: 3 hours

Answer all questions in the exam booklet(s). Note: there is an option in question 4. Once again, if 'complex' functional groups such as nitro, sulfonic acid, diazonium ions, or azides, a proper valence structure once (anywhere) is required for full marks. Use the following values for molecular weights: $\mathrm{C}, 12.011 ; \mathrm{H}, 1.008 ; \mathrm{Br}, 79.904$; Cl, 35.453 ; O, 15.999; N, 14.007

1. Give a complete mechanism for the following halogenation reaction. Your answer should include an initiation step, the propagation steps, and any one plausible termination step. Show the product, and all small molecules given off. (10 marks)

2. The following two reactions may or may not give different products, and one of them proceeds more slowly than the other. Indicate which product(s) are obtained, which reaction is faster (or slower), and for both clearly explain the reasons why with any convincing set of 3-dimensional structures. Note: In terms of size, tert-butyl >> bromide > H. (10 marks).

3. Predict the major products of the following transformations. Mechanisms are not necessary, but showing your work may be useful. In any ortho/para forming reaction, show both and take the major on to any next step. (5 marks each, 50 total).
a)

Note: a reaction does go
b)

c)

d)

e)

4. Show by equation (normally several steps) how you could prepare the products illustrated below from the given starting materials. You may use any other reagents you deem fit. Show all reagents, conditions, and isolable intermediates. Mechanisms are not necessary, but showing your work may be a help. Do any four (40 marks).
a)

b)

c)

d)

e)

5. Rank all four of the following reactions in their relative ability to undergo E2 elimination as opposed to an E1. Include the reasons for your ordering and the product structures. It
is possible that there might be small amounts of substitution products in some cases; you may ignore the substitution products. Dielectric constants, $\mathrm{THF}=7.6, \mathrm{MeOH}=33.1$, $\mathrm{H}_{2} \mathrm{O}=78.3$ (15 marks).

Et_{3}

MeOH (solvent)

6a. Rank the following in terms of their relative rate in an $\mathrm{E1} 1_{\mathrm{cb}}$ elimination. I am not asking for products or rationale. Consider the conditions for each to be $K \mathrm{KO}^{\dagger} \mathrm{Bu} /^{\mathrm{t}} \mathrm{BuOH}$. For reference, some pK_{a} 's..... $\mathrm{O}_{2} \mathrm{~N}-\mathrm{CH}_{3}, 10 ; \mathrm{R}-\mathrm{C}(=\mathrm{O})-\mathrm{CH}_{3}, 20 ; \mathrm{R}-\mathrm{CH}_{2}-\mathrm{CH}_{3}, 50$. (5 marks)

b. Rank the following in terms of their tendency to undergo elimination relative to substitution. Again, I am not asking for rationale or products (4 marks).

c. This refers to question 7, but will added to the marks for 6. For your assigned compound in 7 , what is its index of hydrogen deficiency (IHD)? (1 mark)
7. The following compound has been analyzed, revealing a composition $\mathrm{C}, 66.63 \%$; H , 11.18%; $0,22.19 \%$. The mass spectrum gives a highest m / e of 144 . The IR (infrared) and ${ }^{1}$ H NMR spectra are also included below. Which of the following structures is the most reasonable candidate for the compound in question, and why? Assign the NMR spectrum, showing the comparison of your calculated chemical shifts with the observed ones. Your answer should include the assignment of the most important features (i.e., the starred ones) of the IR spectrum. (15 marks)

Bonus: The following ring expansion ($\mathbf{1} \boldsymbol{\rightarrow} \mathbf{2}$) is one of a class of reactions called Grob fragmentations, which gives a cyclodecenone as product. Curiously, the other diastereomer 3, really doesn't do anything very well. Can you propose a mechanism....and if possible indicate why $\mathbf{1}$ reacts but $\mathbf{3}$ doesn't?

H Nuclear Magnetic Resonance Chemical Shifts

Chemical Shifts in ppm downfield from tetramethylsilane (defined as $\delta=0.000 \mathrm{ppm}$). Values are approx. $\pm 0.2 \mathrm{ppm}$).

Protons on a Carbon Adjacent to a Functional Group

Functional Group	CH_{3}	CH_{2}				
	δ	$(\Delta \delta)$	δ	$(\Delta \delta)$	δ	$(\Delta \delta)$
saturated system	0.8		1.2		1.6	
M-C=C	1.6	(0.8)	2.0	(0.8)	2.4	(0.8)
M-C $=\mathrm{C}$	1.7	(0.9)	2.2	(1.0)	2.8	(1.2)
M-Phenyl	2.2	(1.4)	2.6	(1.4)	2.8	(1.2)
M-Cl	3.0	(2.2)	3.4	(2.2)	4.0	(2.4)
M-Br	2.7	(1.9)	3.4	(2.2)	4.1	(2.5)
M-I	2.2	(1.4)	3.1	(1.9)	4.2	(2.6)
M-OH	3.2	(2.4)	3.4	(2.2)	3.8	(2.2)
M-OR	3.2	(2.4)	3.4	(2.2)	3.6	(2.0)
M-O-Phenyl	3.9	(3.1)	4.1	(2.9)	4.5	(2.9)
M-OC(=O)R	3.6	(2.8)	4.1	(2.9)	4.5	(2.9)
M-OC(=O)Ph	3.8	(3.0)	4.2	(3.0)	5.0	(3.4)
M-CH=O	(aldehyde)	2.2	(1.4)	2.4	(1.2)	2.5
M-C(R)=O	(ketone)	2.1	(1.3)	2.3	(1.1)	2.6
M-COOH	(acid)	2.1	(1.3)	2.3	(1.1)	2.5
M-COOR	(ester)	2.0	(1.2)	2.2	(1.0)	2.5
M-NR	2.4	(1.6)	2.6	(1.4)	2.9	(0.9)
M-NHC(=O)R	2.9	(2.1)	3.3	(2.1)	3.9	(2.3)

Protons on a Carbon Once Removed from a Functional Group

Functional Group	CH_{3}		CH_{2}		CH	
	δ	($\Delta \delta$)	δ	($\Delta \delta$)	δ	($\Delta \delta$)
$\mathrm{M}-\mathrm{C}-\mathrm{CH}_{2}$	0.8		1.2		1.6	
$\mathrm{M}-\mathrm{C}-\mathrm{C}=\mathrm{C}$	1.0	(0.2)	1.55	(0.35)	1.8	(0.2)
M-C-C $=\mathrm{C}$	1.2	(0.4)	1.5	(0.3)	1.8	(0.2)
$\mathrm{M}-\mathrm{C}-\mathrm{Ph}$	1.2	(0.4)	1.6	(0.4)	1.8	(0.2)
$\mathrm{M}-\mathrm{C}-\mathrm{Cl}$	1.5	(0.7)	1.8	(0.6)	2.0	(0.4)
$\mathrm{M}-\mathrm{C}-\mathrm{Br}$	1.8	(1.0)	1.9	(0.7)	1.9	(0.3)
M-C-I	1.8	(1.0)	1.8	(0.6)	2.1	(0.5)
$\mathrm{M}-\mathrm{C}-\mathrm{OH}$ (or OR)	1.2	(0.4)	1.5	(0.3)	1.8	(0.2)
M-C-OPh	1.3	(0.5)	1.6	(0.4)	2.0	(0.4)
$\mathrm{M}-\mathrm{C}-\mathrm{OC}(=\mathrm{O}) \mathrm{R}$	1.3	(0.5)	1.6	(0.4)	1.8	(0.2)
$\mathrm{M}-\mathrm{C}-\mathrm{CH}=\mathrm{O}$	1.1	(0.3)	1.6	(0.4)	2.0	(0.4)
$\mathrm{M}-\mathrm{C}-\mathrm{C}(\mathrm{R})=\mathrm{O}$	1.1	(0.3)	1.6	(0.4)	2.0	(0.4)

$\mathrm{M}-\mathrm{C}-\mathrm{CO}_{2} \mathrm{R}$	1.1	(0.3)	1.7	(0.5)	1.9	(0.3)
$\mathrm{M}-\mathrm{C}-\mathrm{NR}_{2}$	1.0	(0.2)	1.5	(0.3)	1.7	(0.1)
$\mathrm{M}-\mathrm{C}-\mathrm{NH}-\mathrm{C}(=\mathrm{O}) \mathrm{R}$	1.1	(0.3)	1.5	(0.3)	1.9	(0.3)

Protons on sp 2 and sp Hybridized Carbons

$\mathrm{R}_{2} \mathrm{C}=\mathrm{CH}_{2}$	4.7-5.3	$\mathrm{C}=\mathrm{CH}-\mathrm{C}=\mathrm{O}$	6.0
$\mathrm{R}_{2} \mathrm{C}=\mathrm{CHR}$	5.1	$\mathrm{C}=\mathrm{CH}-\mathrm{Cl}$	6.5
$\mathrm{RCH}=\mathrm{CHR}$	5.3	$\mathrm{C}=\mathrm{CHBr}$	6.5
cyclohexene	5.6	$\mathrm{CH}=\mathrm{CH}-\mathrm{C}=\mathrm{O}$	6.9
$\mathrm{ArCH}=\mathrm{C}-\mathrm{C}=\mathrm{O}$	7.7	$\mathrm{RC} \underline{\mathrm{H}}=\mathrm{O}$	9.1
$\mathrm{R}-\mathrm{C} \equiv \mathrm{C}-\underline{\mathrm{H}}$	2.3-3.3	R-OH (alcohol)	0.5-5.5
Aromatic hydrogens	6.0-9.0 (mostly 6.7-8.2)	R-NHR (amine)	0.5-5.0
$\mathrm{R}-\mathrm{C}(=\mathrm{O}) \mathrm{O} \underline{\mathrm{H}}$	12-14	$\mathrm{R}-\mathrm{N} \underline{\mathrm{H}}-\mathrm{C}(=\mathrm{O}) \mathrm{R}$ (amide)	5-8

Nuclear Magnetic Resonance Chemical Shifts

Chemical Shifts in ppm downfield from tetramethylsilane (TMS) (defined as $\delta=0.000 \mathrm{ppm}$). General Regions:

0-1 $\delta \quad$ cylopropyl hydrogen s and methyl groups not shifted by electronegative atoms
1-2 $\delta \quad$ methyl groups β - to O or N atoms, attached to $\mathrm{C}=\mathrm{C}$ or attached to aromatic rings; methylene groups

2-3 $\delta \quad$ methyl and methylene groups next to carbonyls or attached directly to nitrogen of amines

3-4 $\delta \quad$ methyl and methylene groups attached to oxygen or halogens $(\mathrm{Br}, \mathrm{Cl}) . \mathrm{C}=\mathrm{CH}_{2}$ groups
4.5-6.5 $\delta \quad$ hydrogens on sp^{2} hybridized carbons of alkenes (not aromatics)
6.8-8.5 $\delta \quad$ aromatic protons

9-10 $\delta \quad$ aldehyde protons

ㅃ․ WebElements: the periodic table on the world-wide web http://www.webelements.com/

1	2		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
				Key:														
${ }^{\text {lithium }}$	${ }^{\text {beryllium }}$			a	element name	ber	[$\begin{gathered} \hline \text { baron } \\ 5 \end{gathered}$	$\begin{gathered} \text { carbon } \\ 6 \end{gathered}$	nitrogen 7	$\begin{gathered} \text { oxygen } \\ 8 \end{gathered}$	Puorine 9	$\begin{gathered} \text { neon } \\ 10 \end{gathered}$
$\underbrace{}_{6.941(2)}$	Be				/In 0								8			0		Ne
sodium 11	$\begin{aligned} & \text { magnesium } \\ & 12 \end{aligned}$												aluminium 13	silicon 14	phosphorus 15	sulfur 16	chlorine 17	$\begin{gathered} \hline \text { argon } \\ 18 \end{gathered}$
Na	19												A\|				C1 35.453(2)	Ar $39.948(1)$
$\begin{aligned} & 19 \\ & \hline \text { potassium } \\ & \hline \end{aligned}$	$\begin{gathered} \text { calcium } \\ 20 \end{gathered}$		scandium	$\begin{aligned} & \hline \text { titanium } \\ & 22 \end{aligned}$	vanadium 23	$\begin{aligned} & \hline \text { chromium } \\ & 24 \end{aligned}$	$\begin{gathered} \text { manganese } \\ 25 \end{gathered}$	$\begin{aligned} & \text { iron } \\ & 26 \end{aligned}$	$\begin{gathered} \hline \text { cobalf } \\ 27 \end{gathered}$	$\begin{gathered} \text { nickel } \\ 28 \end{gathered}$	$\begin{aligned} & \text { Copper } \\ & .29 \end{aligned}$	$\begin{gathered} \operatorname{zin} c \\ 30 \end{gathered}$	gallium 31	$\begin{aligned} & \text { germanium } \\ & 32 \end{aligned}$	$\begin{gathered} \text { arsenic } \\ 33 \end{gathered}$	$\begin{array}{c\|} \hline \text { seienium } \\ \mathbf{3 4} \\ \hline \end{array}$	bromine 35	krypton 36
39.0983(1)	Ca 40.078(4)		$\operatorname{SC}_{44.955910(\theta)}$	Ti	$\mathbf{V}_{50.9415(1)}$	Cr $51.9961(6)$	M17	$F e$	Co $58.933200(9)$		Cu 63.546(3)	Zn 65.409(4)	Ga $69.723(1)$	Se 72.64(1)	As $4.92160(2)$	Se	Br $79.904(1$	Kr $33.798(2)$
rubidium 37	stronlium 38		yttrium 39	zirconium 40	$\begin{gathered} \text { niobium } \\ 41 \end{gathered}$	molybdenum 42	technetium 43 43	iuthenium 44	o.93odiums 45	palladium 46	silver 47	cadmium 48	indium 49	$\begin{aligned} & \frac{2.644}{\operatorname{tin}} \\ & 50 \\ & 50 \end{aligned}$	cin	tellurium	iodine 53	xenon 54
Rb	Sr		Y	74	Nb	$M O$	Tc	$R u$	Rh	$P d$	$A g$	$C d$	In	\sin	86	Te	1	Me
85.4678(3)	87.62(1)		88.90585(2).	91.224(2)	92.90638(2)	95.94(1)	[98]	101.07(2)	102.90550(2)	106.42(1)	107.8682(2)	112.411(8)	$114.818(3)$	$118.710(7)$	$121.760(1)$	127.60(3)	126.90447 (3)	131.293(6)
$\begin{gathered} \text { caesium } \\ 55 \end{gathered}$	$\begin{gathered} \text { barium } \\ 56 \end{gathered}$	57.70	lutetium 71	hafnium 72	$\begin{gathered} \text { tantalum } \\ 73 \end{gathered}$	tungsten 74	$\begin{gathered} \text { rhenium } \\ 75 \end{gathered}$	osmiurn 76	$\begin{aligned} & \text { iridium } \\ & 77 \end{aligned}$	platinum 78	$\begin{aligned} & \text { gold } \\ & 79 \end{aligned}$	$\begin{gathered} \text { mercury } \\ \mathbf{8 0} \end{gathered}$	thalium 81	$\begin{gathered} \text { leac } \\ \mathbf{8 2} \end{gathered}$	$\begin{aligned} & \text { bismuth } \\ & \mathbf{8 3} \end{aligned}$	$\begin{array}{c\|} \hline \text { polonium } \\ \mathbf{8 4} \end{array}$	$\begin{gathered} \text { astatine } \\ 85 \end{gathered}$	$\begin{gathered} \text { radon } \\ 86 \end{gathered}$
Cs		*	$L \mathbf{U}$	HF	$T a$	M	$R e$	$0 S$	Ir		$A \mathbf{U}$	$M g$		$P b$	$B i$	P_{0}	$A t$	Rn
132.90545(2)	137.327(7)		174.967(1)	178.49(2)	180.9479(1)	183.84(1)	$186.207(1)$	190.23(3)	192.217(3)	195.078(2)	196.96655(2)	200.59(2)	204.3833(2)	$207.211)$	208.98038(2)	[209]	[210]	[222]
$\begin{aligned} & \text { francium } \\ & 87 \end{aligned}$	$\begin{gathered} \text { radium } \\ 88 \end{gathered}$	89-102	$\begin{aligned} & \text { lawrencium } \\ & 103 \end{aligned}$	$\begin{array}{\|c\|} \hline \text { rutherfordium } \\ 104 \\ \hline \end{array}$	$\begin{gathered} \text { dubnium } \\ 105 \end{gathered}$	$\begin{gathered} \text { seaborgium } \\ 106 \end{gathered}$	$\begin{aligned} & \text { bohrium } \\ & 107 \end{aligned}$	$\begin{aligned} & \text { hassium } \\ & 108 \end{aligned}$	$\begin{gathered} \text { meitnerium } \\ 109 \end{gathered}$	$\begin{gathered} \text { ununnifium } \\ 110 \end{gathered}$	$\begin{array}{ll} \\ \hline \text { unununium } \\ \hline \end{array}$	ununbium 112		$\begin{gathered} \hline \text { ununquadium } \\ 114 \end{gathered}$				
Fr [223]	Ra [226]	**	$\operatorname{Le}_{[262 \mid}$	\qquad [261]	Db [262]	80 [266]	Bh [264]	HS [269]	Mt (268)	Uun [271]	Uuu [272]	Uub [285]		Uuq [289]			*	\cdots

	$\begin{array}{\|c\|} \hline \text { lanthanum } \\ 57 \end{array}$	$\begin{aligned} & \text { cerium } \\ & 58 \end{aligned}$	$\text { \|craseodymium } \mid$	$\begin{gathered} \hline \text { neodymium } \\ 60 \end{gathered}$	$\begin{gathered} \hline \text { promethium } \\ 61 \end{gathered}$	$\begin{gathered} \text { samarium } \\ 62 \end{gathered}$	$\begin{array}{c\|} \hline \text { europium } \\ 63 \end{array}$	gadalinium 64	$\begin{gathered} \text { Terbium } \\ 65 \end{gathered}$	$\begin{array}{c\|} \hline \text { dysprosium } \\ 66 \end{array}$	hoimium 67	$\begin{gathered} \text { erbium } \\ 68 \end{gathered}$	$\begin{gathered} \hline \text { thulium } \\ 69 \end{gathered}$	$\begin{array}{c\|} \hline \text { ytterbium } \\ 70 \end{array}$
*lanthanoids	$\underset{138.9055(2)}{1 a}$	Ce	Pr	$\underset{144.24(3)}{\mathbf{N d}}$		Sm 150.36(3)	튼u	$G d$	Tb	DY	$\mathrm{HO}_{164.93032(2)}$	Er	$\mathrm{Tm}_{168.93421(2)}$	Yb 173.04(3)
	$\begin{aligned} & \text { actinium } \\ & 89 \end{aligned}$	$\begin{aligned} & \text { thorium } \\ & 90 \end{aligned}$	$\begin{gathered} \text { protactinium } \\ 91 \end{gathered}$	$\begin{array}{c\|} \hline \text { uranium } \\ 92 \end{array}$	$\begin{aligned} & \text { neptunium } \\ & 93 \end{aligned}$	$\begin{aligned} & \text { plutonium } \\ & 94 \end{aligned}$	$\begin{aligned} & \text { americium } \\ & 95 \end{aligned}$	$\begin{gathered} \text { curium } \\ 96 \end{gathered}$	berkelium 97	$\begin{aligned} & \text { californium } \\ & 98 \end{aligned}$	$\begin{aligned} & \text { einsteinium } \\ & 99 \end{aligned}$	$\begin{aligned} & \text { fermium } \\ & 100 \end{aligned}$	$\begin{array}{\|c\|} \hline \text { mendelevium } \\ 104 \\ \hline \end{array}$	$\begin{gathered} \text { nobelium } \\ 102 \end{gathered}$
**actinoids	AC [227]				Np [237]	$P_{[}$	AM [243]	Cm [247]	Bk [247]		Es [252]	Fm [257]	Md [258]	No [259]

