University of Windsor Chemistry and Biochemistry

Chemistry 59-235
Mar. 19, 2013
Midterm \#2

Answer all questions in the test booklets. Exams in pen are greatly preferred; ones written in pencil will be marked, but cannot be returned for remarking. As in previous midterms, if there is a functional with 'complex' bonding (i.e., nitro, sulfonic acid, or azide), a proper valence bond structure once (anywhere) is required for full marks.

1a. Give the complete mechanism of the following reaction. The complete answer will include all steps of the reaction (and intermediates), the product formed, and any small molecules given off. The reasoning behind the regiochemistry that you show in the product should be apparent. (10 marks).

1) $-\mathrm{NH}_{2}, \mathrm{NH}_{3(\mathrm{I})}$
2) $\mathrm{H}_{2} \mathrm{O}$
?

1b. Show the product for the following transformation, and rationalize the product that is formed in terms of the minimum energy conformation of the starting material, the reactive conformation of the starting material, and what groups are oriented properly for reaction. Also, what is the name for the type of mechanism of the reaction. Aside: In terms of size, $i-\mathrm{Pr}>\mathrm{CH}_{3}>\mathrm{Br}>\mathrm{H}$ (10 marks)

2. Predict the major product(s) of the following reactions. Mechanisms are not necessary, but showing your work is likely to be a help (5 each, 40 marks total).
a.

b.

c.

d.

Note: In terms of size, the new functional group in $\mathbf{G}>\mathrm{CH}_{3}>\mathrm{I}$
3. Show by equations how you would prepare each of the shown products from the indicated starting materials. You may use any other reagents you deem fit, as long as they are stable and make chemical sense. Show all intermediates that could be isolated. Mechanisms are not necessary (10 each, $\mathbf{2 0}$ marks total).
a.

b.

Note: In terms of size, a pyrrole ring $>\mathrm{CH}_{3}$

ㅃ․ WebElements: the periodic table on the world-wide web http://www.webelements.com/

1	2		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
				Key:														
${ }^{\text {lithium }}$	${ }^{\text {beryllium }}$			a	element name	ber	[$\begin{gathered} \hline \text { baron } \\ 5 \end{gathered}$	$\begin{gathered} \text { carbon } \\ 6 \end{gathered}$	nitrogen 7	$\begin{gathered} \text { oxygen } \\ 8 \end{gathered}$	Puorine 9	$\begin{gathered} \text { neon } \\ 10 \end{gathered}$
$\underbrace{}_{6.941(2)}$	Be				/In 0								8			0		Ne
sodium 11	$\begin{aligned} & \text { magnesium } \\ & 12 \end{aligned}$												aluminium 13	silicon 14	phosphorus 15	sulfur 16	chlorine 17	$\begin{gathered} \hline \text { argon } \\ 18 \end{gathered}$
Na	19												A\|				C1 35.453(2)	Ar $39.948(1)$
$\begin{aligned} & 19 \\ & \hline \text { potassium } \\ & \hline \end{aligned}$	$\begin{gathered} \text { calcium } \\ 20 \end{gathered}$		scandium	$\begin{aligned} & \hline \text { titanium } \\ & 22 \end{aligned}$	vanadium 23	$\begin{aligned} & \hline \text { chromium } \\ & 24 \end{aligned}$	$\begin{gathered} \text { manganese } \\ 25 \end{gathered}$	$\begin{aligned} & \text { iron } \\ & 26 \end{aligned}$	$\begin{gathered} \hline \text { cobalf } \\ 27 \end{gathered}$	$\begin{gathered} \text { nickel } \\ 28 \end{gathered}$	$\begin{aligned} & \text { Copper } \\ & .29 \end{aligned}$	$\begin{gathered} \operatorname{zin} c \\ 30 \end{gathered}$	gallium 31	$\begin{aligned} & \text { germanium } \\ & 32 \end{aligned}$	$\begin{gathered} \text { arsenic } \\ 33 \end{gathered}$	$\begin{array}{c\|} \hline \text { seienium } \\ \mathbf{3 4} \\ \hline \end{array}$	bromine 35	krypton 36
39.0983(1)	Ca 40.078(4)		$\operatorname{SC}_{44.955910(\theta)}$	Ti	$\mathbf{V}_{50.9415(1)}$	Cr $51.9961(6)$	M17	$F e$	Co $58.933200(9)$		Cu 63.546(3)	Zn 65.409(4)	Ga $69.723(1)$	Se 72.64(1)	As $4.92160(2)$	Se	Br $79.904(1$	Kr $33.798(2)$
rubidium 37	stronlium 38		yttrium 39	zirconium 40	$\begin{gathered} \text { niobium } \\ 41 \end{gathered}$	molybdenum 42	technetium 43 43	iuthenium 44	o.93odiums 45	palladium 46	silver 47	cadmium 48	indium 49	$\begin{aligned} & \frac{2.644}{\operatorname{tin}} \\ & 50 \\ & 50 \end{aligned}$	cin	tellurium	iodine 53	xenon 54
Rb	Sr		Y	74	Nb	$M O$	Tc	$R u$	Rh	$P d$	$A g$	$C d$	In	\sin	86	Te	1	Me
85.4678(3)	87.62(1)		88.90585(2).	91.224(2)	92.90638(2)	95.94(1)	[98]	101.07(2)	102.90550(2)	106.42(1)	107.8682(2)	112.411(8)	$114.818(3)$	$118.710(7)$	$121.760(1)$	127.60(3)	126.90447 (3)	131.293(6)
$\begin{gathered} \text { caesium } \\ 55 \end{gathered}$	$\begin{gathered} \text { barium } \\ 56 \end{gathered}$	57.70	lutetium 71	hafnium 72	$\begin{gathered} \text { tantalum } \\ 73 \end{gathered}$	tungsten 74	$\begin{gathered} \text { rhenium } \\ 75 \end{gathered}$	osmiurn 76	$\begin{aligned} & \text { iridium } \\ & 77 \end{aligned}$	platinum 78	$\begin{aligned} & \text { gold } \\ & 79 \end{aligned}$	$\begin{gathered} \text { mercury } \\ \mathbf{8 0} \end{gathered}$	thalium 81	$\begin{gathered} \text { leac } \\ \mathbf{8 2} \end{gathered}$	$\begin{aligned} & \text { bismuth } \\ & \mathbf{8 3} \end{aligned}$	$\begin{array}{c\|} \hline \text { polonium } \\ \mathbf{8 4} \end{array}$	$\begin{gathered} \text { astatine } \\ 85 \end{gathered}$	$\begin{gathered} \text { radon } \\ 86 \end{gathered}$
Cs		*	$L \mathbf{U}$	HF	$T a$	M	$R e$	$0 S$	Ir		$A \mathbf{U}$	$M g$		$P b$	$B i$	P_{0}	$A t$	Rn
132.90545(2)	137.327(7)		174.967(1)	178.49(2)	180.9479(1)	183.84(1)	$186.207(1)$	190.23(3)	192.217(3)	195.078(2)	196.96655(2)	200.59(2)	204.3833(2)	$207.211)$	208.98038(2)	[209]	[210]	[222]
$\begin{aligned} & \text { francium } \\ & 87 \end{aligned}$	$\begin{gathered} \text { radium } \\ 88 \end{gathered}$	89-102	$\begin{aligned} & \text { lawrencium } \\ & 103 \end{aligned}$	$\begin{array}{\|c\|} \hline \text { rutherfordium } \\ 104 \\ \hline \end{array}$	$\begin{gathered} \text { dubnium } \\ 105 \end{gathered}$	$\begin{gathered} \text { seaborgium } \\ 106 \end{gathered}$	$\begin{aligned} & \text { bohrium } \\ & 107 \end{aligned}$	$\begin{aligned} & \text { hassium } \\ & 108 \end{aligned}$	$\begin{gathered} \text { meitnerium } \\ 109 \end{gathered}$	$\begin{gathered} \text { ununnifium } \\ 110 \end{gathered}$	$\begin{array}{ll} \\ \hline \text { unununium } \\ \hline \end{array}$	ununbium 112		$\begin{gathered} \hline \text { ununquadium } \\ 114 \end{gathered}$				
Fr [223]	Ra [226]	**	$\operatorname{Le}_{[262 \mid}$	\qquad [261]	Db [262]	80 [266]	Bh [264]	HS [269]	Mt (268)	Uun [271]	Uuu [272]	Uub [285]		Uuq [289]			*	\cdots

	$\begin{array}{\|c\|} \hline \text { lanthanum } \\ 57 \end{array}$	$\begin{aligned} & \text { cerium } \\ & 58 \end{aligned}$	$\text { \|craseodymium } \mid$	$\begin{gathered} \hline \text { neodymium } \\ 60 \end{gathered}$	$\begin{gathered} \hline \text { promethium } \\ 61 \end{gathered}$	$\begin{gathered} \text { samarium } \\ 62 \end{gathered}$	$\begin{array}{c\|} \hline \text { europium } \\ 63 \end{array}$	gadalinium 64	$\begin{gathered} \text { Terbium } \\ 65 \end{gathered}$	$\begin{array}{c\|} \hline \text { dysprosium } \\ 66 \end{array}$	hoimium 67	$\begin{gathered} \text { erbium } \\ 68 \end{gathered}$	$\begin{gathered} \hline \text { thulium } \\ 69 \end{gathered}$	$\begin{array}{c\|} \hline \text { ytterbium } \\ 70 \end{array}$
*lanthanoids	$\underset{138.9055(2)}{1 a}$	Ce	Pr	$\underset{144.24(3)}{\mathbf{N d}}$		Sm 150.36(3)	튼u	$G d$	Tb	DY	$\mathrm{HO}_{164.93032(2)}$	Er	$\mathrm{Tm}_{168.93421(2)}$	Yb 173.04(3)
	$\begin{aligned} & \text { actinium } \\ & 89 \end{aligned}$	$\begin{aligned} & \text { thorium } \\ & 90 \end{aligned}$	$\begin{gathered} \text { protactinium } \\ 91 \end{gathered}$	$\begin{array}{c\|} \hline \text { uranium } \\ 92 \end{array}$	$\begin{aligned} & \text { neptunium } \\ & 93 \end{aligned}$	$\begin{aligned} & \text { plutonium } \\ & 94 \end{aligned}$	$\begin{aligned} & \text { americium } \\ & 95 \end{aligned}$	$\begin{gathered} \text { curium } \\ 96 \end{gathered}$	berkelium 97	$\begin{aligned} & \text { californium } \\ & 98 \end{aligned}$	$\begin{aligned} & \text { einsteinium } \\ & 99 \end{aligned}$	$\begin{aligned} & \text { fermium } \\ & 100 \end{aligned}$	$\begin{array}{\|c\|} \hline \text { mendelevium } \\ 104 \\ \hline \end{array}$	$\begin{gathered} \text { nobelium } \\ 102 \end{gathered}$
**actinoids	AC [227]				Np [237]	$P_{[}$	AM [243]	Cm [247]	Bk [247]		Es [252]	Fm [257]	Md [258]	No [259]

