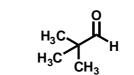
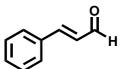

Crossed Aldols

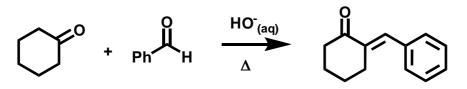
So far we have done the aldol reaction between two of the same molecules, but it doesn't absolutely have to be this way. It *is* possible to do base catalyzed aldols between two different molecules, but there are a couple of requirements that must be met in order for the reaction to work well:


- 1) Only one of the carbonyls can be enolizable
- 2) The non-enolizable one must be more electrophilic

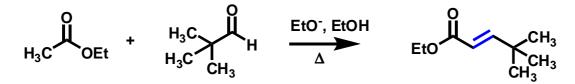
The order of reactivity of carbonyls to nucleophiles is as follows:



So, excellent choices for carbonyls that will react as the electrophilic part only in a base catalyzed aldol include:


benzaldehyde

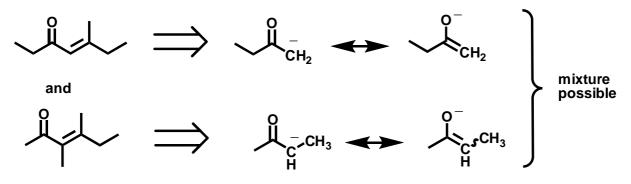
trimethylacetaldehyde (pivaldehyde)


trifluoromethylacetaldehyde

cinnamaldehyde

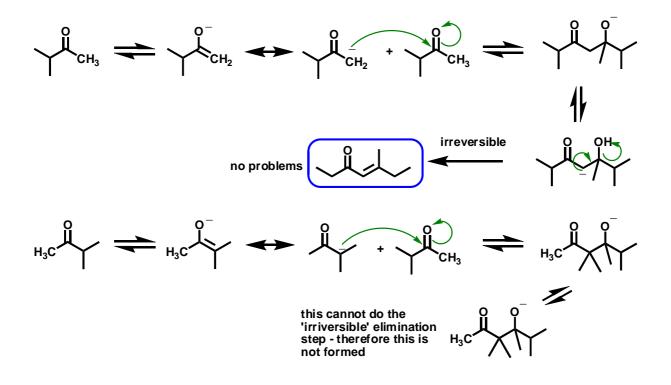
An example of a well-working crossed aldol would then be:

Under such circumstances, the fact that an ester isn't quite as acidic really doesn't matter any more; it can be used as the enolate source, provided that you're wise with the choice of base for the aldol.



Aldols in Unsymmetrical Ketones

So far, we have been doing pretty simple aldol, where there is only one potential acidic C-H. Consider, for example, the following case.....what if an aldol was attempted on this compound?



Neglecting alkene stereochemistry, there are two possible products...

Answer?- There must be a better way of doing this.

It does turn out, though, that it isn't always absolutely impossible. Consider something like 3-methyl-2butanone.

