1.

(a)

(b)

(c)

(d)

(e)
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)_{2} \quad\left(\mathrm{H}^{+}\right.$cat $)$
(f)

(h)

(j)

(g)

(k)

2.
(a) (i) enantiomers(ii) identical (iii) diastereomers (iv) diastereomers
(b) The chiral center is $\underline{\mathrm{S}}$ and the double bond is $\underline{\mathrm{Z}}$. The priorities around the chiral center are: $\mathrm{OH}>\mathrm{C}=\mathrm{C}>\mathrm{CH}_{2} \mathrm{CH}_{3}>\mathrm{CH}_{3}$
The complete name is (3S,5Z) 3-methyl-5-chloro-4-hexen-3-ol
(c) One possible answer is

(d) (i) conformations (both are $\underline{S}, \underline{S}$) (ii) configurations (left one is $\underline{S}, \underline{R}$ and right one is S,S)
(e)

(e)
(f) both in part (i)
both n part (ii) [They are the same!!]
neither of part (iii) [Both are meso forms]
only left one of part (iv). Right one is a meso form.
3. (a) Both are Sn 2 and therefore the second one will be faster with a better nucleophile
(b) Second one. Intermediate would not be resonance stabilized [look at the position of the double bond!]
(c) First one. It would give a resonance stabilized intermediate and react like a tertiary alcohol.
(d) Left one. It is a hemi-acetal and the other is an alcohol.
(e) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHF}_{2}$. The electron withdrawing effect of the two fluorine atoms weakens the $\mathrm{C}-\mathrm{H}$ bond and stabilizes the anion.
4.

5. The product will not be optically active. It will be a racemic mixture. An acceptable IUPAC name would be methyl 3-methyl-2-butyl ether. The mechanism is:

6. The two products are $\mathrm{CH}_{3} \mathrm{OH}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{OH})\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}$. The $\mathrm{CH}_{3} \mathrm{OH}$ contains the ${ }^{18} \mathrm{O}$
7. The product is formed by a trans addition with the I atom as the more positive species. The product is

