FINAL EXAMINATION, 59-135, 1991

1.

- 2. (a) (i) enantiomers(ii) identical (iii) diastereomers (iv) diastereomers
 - (b) The chiral center is \underline{S} and the double bond is \underline{Z} . The priorities around the chiral center are: OH > C=C > CH₂CH₃ > CH₃
 The complete name is (3S,5Z) 3-methyl-5-chloro-4-hexen-3-ol
 - (c) One possible answer is

(d) (i) conformations (both are $\underline{S},\underline{S}$) (ii) configurations (left one is $\underline{S},\underline{R}$ and right one is $\underline{S},\underline{S}$)

(e)

- (f) both in part (i)
 both n part (ii) [They are the same!!]
 neither of part (iii) [Both are meso forms]
 only left one of part (iv). Right one is a meso form.
- 3. (a) Both are Sn2 and therefore the second one will be faster with a better nucleophile
 - (b) Second one. Intermediate would not be resonance stabilized [look at the position of the double bond!]
 - (c) First one. It would give a resonance stabilized intermediate and react like a tertiary alcohol.
 - (d) Left one. It is a hemi-acetal and the other is an alcohol.
 - (e) CH₃CH₂CHF₂. The electron withdrawing effect of the two fluorine atoms weakens the C-H bond and stabilizes the anion.

4. O
$$CH_3CCH_3 + (CH_3)_2CHMgBr$$
 H^+ $CH_3CCH(CH_3)_2 + CH_3MgBr$ H^+ $CH_3CCH(CH_3)_2 + H_2O$ H^+ CH_3 CCH_3 CCH

5. The product will not be optically active. It will be a racemic mixture. An acceptable IUPAC name would be methyl 3-methyl-2-butyl ether. The mechanism is:

- 6. The two products are CH₃OH and CH₃CH₂CHC(OH)(CH₂CH₃)₂. The CH₃OH contains the ¹⁸O
- 7. The product is formed by a <u>trans</u> addition with the I atom as the more positive species. The product is