
FINAL EXAMINATION, 59-135, 1994

1.

2. (a)

(b) (i) enantiomer; (ii) diastereomers; (iii) enantiomers, (iv) diastereomers

(c)

- (d) A compound whose mirror image IS superimposable on the original EVEN THOUGH IT CONTAINS CHIRAL CARBONS.
- (iii) product is a meso form (e) (i) yes; (ii) No;
- (f) (i) No; (ii) yes (will be a mixture of diastereomers, each of which is optically active. Diastereomers do not cancel each other out)
- (g) Top Carbon: Priorities Br > Cl > chain > CH₃; Config = \underline{S} Bottom Carbon NOT CHIRAL [has two CH₃ groups!]

3.

$$CH_{3}CH_{2}CHC-OCH_{2}CH_{3} + OH \longrightarrow CH_{3}CH_{2}CHC-OCH_{2}CH_{3} \longrightarrow CH_{3}CH_{2}CHC-OCH_{2}CH_{3} \longrightarrow CH_{3}CH_{2}CHC-OCH_{2}CH_{3} \longrightarrow CH_{3}CH_{2}CHC-O + HOCH_{2}CH_{3}$$

$$\begin{array}{c} O \\ \bigcirc \\ CH_3CH_2CHC-OH \\ \bigcirc \\ CH_3 \end{array} \\ \begin{array}{c} \ominus \\ CH_3CH_2CHC-O \\ \bigcirc \\ CH_3 \end{array} \\ \begin{array}{c} CH_3CH_2CHC-O \\ \bigcirc \\ CH_3 \end{array} \\ \begin{array}{c} + \\ CH_3CH_2CHC-O \\ \bigcirc \\ CH_3 \end{array}$$

overall: O
$$CH_3CH_2CHC - OCH_2CH_3 + OH$$
 \longrightarrow $CH_3CH_2CHC - O + HOCH_2CH_3$ CH_3

- Second reaction is fastest. Carbon is more electrophilic 4. (a)
 - See answer to this question on 1993 final (b)
 - Second one is Sn2. First one has resonance stabilized intermediate (c)
- 5. 1-butene + BH_3 (then H_2O_2)
 - 1-butene + H_2O (with H^+ cat)
 - 1-butene + CH₃OH (with H⁺ cat)
 - 1-butene + H_2 (Ni cat)
- Compounds must be ketone 6. (a)

and alcohols. One possible structure

(b) They must be enantiomers - Mirror image at the CH(OH) centre

7.

(a)
$$CH_3$$
 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_4 CH_5 $CH_$

(b)
$$CH_3CHCH_2CH=CH_2 + O_3 \xrightarrow{then Zn} (CH_3)_2CHCH_2CH=O \xrightarrow{H_2/Ni} (CH_3)_2CHCH_2CH_2OH$$

$$CH_3 \xrightarrow{SOCl_2} (CH_3)_2CHCH_2CH_2CI$$

(c) OH CH₃)₂CHCH₂CH₂CH₂OH
$$\xrightarrow{75\%}$$
 (CH₃)₂CHCH₂CH₂=CH₂ $\xrightarrow{H_2O}$ (CH₃)₂CHCH₂CHCH₃

8.