Organometallics in Organic Synthesis

1. So who cares (i.e., why?)

-Pattern of reactivity of organic compounds is imposed on molecule by existing functional groups

- By default, this limits what you can do with the compound
- Coordination of a metal fragment can change this completely
- i.e., can render an electrophilic species nucleophilic
 - a nucleophilic species electrophilic
 - can make a normally unstable molecule stable
 - can make a stable molecule reactive
 - can make impossible reactions possible

The (Very) Basics of Organometallics

-The 18 Electron Rule

Most (middle) transition metal complexes prefer having 18 valence electrons (2s + 6p + 10d)

For transition metal complexes in the 0 oxidation state

4e	5e	6e	7e	8e	9e	10e
Ti	V	Cr	Mn	Fe	Со	Ni
Zr	Nb	Мо	Rc	Ru	Rh	Pd
Hf	Ta	W	Re	Os	lr	Pt

- -The 18 e rule is followed most closely in complexes of middle transition metals (Cr to Co)
- -As for early transition metal complexes, it's usually too difficult to get enough ligands around the metal to get it to 18 e (i.e., Ti)

- As for late transition metal complexes (Ni, Pd, Pt), particularly the square planar M^{II}L₄ complexes
 - tend to be very stable as 16 e- complexes
 - energy gap to 9th orbital is quite big; molecule is quite willing <u>not</u> to fill that orbital

To count to 18 (or 16), need e-'s from ligands - I'll adopt a 'radical approach' – not only valid one

A) Inorganic Ligands

2e⁻
$$R_3P$$
: $(RO)_3P$: $R-C\equiv N$: $R-N\equiv C$:

$$R_3N$$
: R_2S : R_2O :

3e- NO (usually) nitrosyl complexes

Organic Ligands - Part 1

η¹ (3e⁻)

$$\eta^{1} \text{ (1e)} \qquad -\text{R (alkyls)} \qquad -\text{Ph (aryls)} \qquad \text{M} \qquad \text{(s -allyls)}$$

$$\eta^{2} \text{ (2e-)} \qquad \text{M} \qquad C \qquad \text{(alkynes)}$$

$$\eta^{1} \text{ (2e-)} \qquad \overset{-}{\text{M}} - \text{C} = 0 \qquad \text{M} = C = 0$$

$$\text{(carbonyl ligands)} \qquad \text{(carbenes, alkylidenes)}$$

$$\eta^{3} \text{ (3e-)} \qquad \text{M} \longrightarrow \text{(π -allyls)}$$

(carbynes)

M≡C-R

Organic Ligands, Cont'd.

So.....

The number of electrons on the free metal

+ sum of the h number of the hydrocarbon ligands

+ sum of the electrons donated by other ligands

+ any negative charge on the complex

- positive charge on the complex

Should = 18 normally

Many exceptions with early or late transition metals; works best with middle transition metals

$$8 (Fe) + (2x5) = 18e^{-}$$

$$6 (Cr) + 6 (Ph) + (3x2) = 18 e^{-}$$

$$6 \text{ (Mo)} + 5 \text{ (Cp)} + 2 + 3 + 3 - 1 = 18 e^{-1}$$

10 (Pd) + (2x2) + (2x1) =
$$16 e^{-}$$

Bonding of Hydrocarbon Ligands

- In its simplist form, bonding of the π - system to a transition metal fragment is based on the

Dewar-Chatt-Duncanson Model

Consider

- There are two contributions to bonding

1) Ligand to Metal Donation

Note: this is <u>not</u> a π - bond, but rather a σ - bond

2) Metal to Ligand Back Donation

Note: this is a π -bond

Dewar, M. J. S. Bull. Chim. Soc. Fr. 1951, C71.

Chatt, J.; Duncanson, L. A. J. Chem. Soc. 1953, 2939.

For higher level descriptions:

Consequences of Bonding of Hydrocarbon Ligands

- 1) In the alkene, the C=C bond is made weaker by complexation
- 2) The ligand may be made more *or* less electron rich by complexation -depends on case
- 3) The organic fragment often loses its only plane of symmetry -for example

and are the same compound

But.....

These are not the same compound - the plane of symmetry is destroyed

No non-superimposable mirror images <u>Enantiomers</u>

Other examples

Same situation: Each pair is enantiomeric