3. Interrupting the $\mathbf{2 + 2 + 2}$
-there are a number of reactions that start to follow this 2+2+2 pathway, getting to the metallacyclopentdiene or metallacyclopentene, and then go differently
-only a time to look at a couple, but there are many more in synthesis
see: Topics in Organometallic Chemistry 2006, 19 entire issue

The Pauson-Khand Reaction

-two of the side products from the $\mathbf{2 + 2 + 2}$ are:

(Fe : Knolker, H.J.)
-cyclopentadienones are not very stable compounds, but if one of the $\mathrm{C}=\mathrm{C}$'s is reduced, you have very useful cyclopentenones
-this type of material is often obtained by using and alkyne, and alkene, and $\mathrm{Co}_{2}(\mathrm{CO})_{6}$ (or an alkyne- $-\mathrm{Co}_{2}(\mathrm{CO})_{6}$ complex)

Intermolecular Cases
-no particular constraints on the alkyne
-if you have an unsymmetrical alkyne, larger groups end up next to $\mathrm{C}=0$, as in

Alkene Partner

-simple alkenes don't work especially well, unless present in huge excess (Note: this is making progress)
-strained alkenes, "non β-hydride" alkenes (bridged bicyclic akenes), and alkenes with ligands attached ($\mathrm{X}=\mathrm{NR}_{2}, \mathrm{SR}, \mathrm{O}$?) give better yield, high regioselectivity

high \%

$\&^{n} \quad \begin{aligned} & \text { even } n=\text { normal } \\ & \text { with mild conditions }\end{aligned}$
especially n = small

"no $\beta-\mathrm{H}^{\prime}$

Cazes (no $\beta-H$)
Reviews focussing on intermolecular reactions

R Gibson, S.E. et al Angew. Chem. Int. Ed. 2005, 44, 3022. R Laschat, S. Synlett 2005, 2547.
-except for sulphoxides, alkenes with EWG's rarely work

Intramolecular Cases

-reaction works much better when alkene and alkyne are in the same molecule

-often particularly good for all carbon bridges when there is a gem dialkyl in the bridge

TBDMSO

gem dimethyl or Thorpe-Ingold effect
-there are subtle stereochemical matters which are beyond this course's scope -many recent advances have increased yields and allowed reactions under milder conditions
i.e., polar aprotic solvents $\left(\mathrm{CH}_{3} \mathrm{CN}, \mathrm{DME} \mathrm{MeO}{ }^{\square} \mathrm{OMe}\right)$
-use of 1° amines $\left(\mathrm{CyNH}_{2}\right)$ and mercaptans (${ }^{\mathrm{n} B u S M e)}$
-photolysis
-3° amine oxides ($\mathrm{Me}_{3} \mathrm{~N}^{+}-\mathrm{O}^{-}$, TMANO), (NMO)

R Sugihara Chem, Eur. J. $\underline{\mathbf{2 0 0 1}, ~ 7, ~} 1589$
and room temp

Catalysis
-the new holy Grail - to use catalytic amounts of metal and CO gas (under as low a pressure as possible), or a CO substitute (some aldehydes)

$\xrightarrow[\mathrm{CO}(1 \mathrm{~atm}), \mathrm{DME}\left(60^{\circ}\right)]{\mathrm{CO}_{2}(\mathrm{CO})_{8}(5 \mathrm{~mol} \%)} \quad \mathrm{MeO}_{2} \mathrm{C}$ 83\%
-other metals (other than Co) now are common, especially for catalytic chemistry; I think that $\mathbf{R h}^{1}$ is gradually replacing Co

Rh'	25	$\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}$	ZrII 4
Mo ${ }^{\circ}$	12	$\mathrm{Mo}(\mathrm{CO})_{6}$-allenes(Brummond)	Fe^{0}, hv 4
Ruo	8	$\mathrm{Ru}_{3}(\mathrm{CO})_{12}$	Co nanoparticles
\|r ${ }^{1}$	4		Col 1
Till	7		W 1

Most recent reviews:

Mechanism of Pauson-Khand

-unnaturally complex looking, because presence of second metal, which is just 'along for the ride'

same as $\mathrm{L}_{2} \mathrm{Co}(\mathrm{CO})$

Reviews

R Chung, Y.K. et al Synlett 2005, 545 (Co nanoparticles)
R Krafft, M.E. Tetrahedron 2004, 66, 9795. (Interrupted P.-K.)
\underline{R} Alcaide, J.C.; Almendros, P. Eur. J. Org. Chem. 2004, 3377 (allenes)
R Perez-Castells, J. Chem. Soc. Rev. 2004, 33, 32.
R Gibson, S.E. Angew. Chem. Int. Ed. Engl. 2003, 42, 1800 (catalytic)
R Carretero, J.C. Eur. J. Org. Chem. 2002, 288
R Carretero, J.C. Synlett 2001, 26.

R Brummond, K. Tetrahedron 2000, 56, 3262 (allenes)
R Geis, G.; Schmalz, H.-G. Angew. Chem. Int. Ed. Engl. 1998, 37, 911
R Schore, N.E. Comprehensive Organometal. Chem. II
1992, Vol 12, Ch 7.2
R Schore, N.E. Org. React. 1991, 40, 1.
트 Schore, N.E. Chem. Rev. 1988, 88, 1081.

Buaniz, A. J.; Evans, p.A. Top. ORGAnomet. ChEM, 2008, 61 167.

Rh(al is Quite Goud at Catalvzing the Pauson- Kiando

- MUST BE in CO ATMOSPHERE, BUT PRESSURES DO NOT NEED TO BE High (1 Atm. NORmar).
- EARLY ETPORTS ARE AT HIGHT T (10°), BUT NOIN ORETEN DONE AT RT

Ring ceEATED in OxidATIVE COUPLING STEP is AhMOST ALWATS 5-MEMBERED

$$
x=c^{\mathrm{CO}_{2} \mathrm{CO}}, N T_{s} \quad R=P h, M e, H^{k}
$$

Mecm. at Low do Pressure / Hialt Pressarae

Hichise de at Higher P.

THE USE OF RH ALSO ALLOWS THE ADDITION OF CNVAL LIGANDS, AND ULTOMRTELY
ENAANTIOSLKECTIVE PAUSON - KIAANDS
$\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2} \quad(5 \mathrm{md} \%)$

$\xrightarrow{(S) \text {-DiFrucieptus (} 10 \text { mel! }) ~}$

$$
\text { Agotf (12mel } \% \text {) }
$$

Ar/co 10:. (latm).

$T H F, R T \rightarrow 50^{\circ}$

Alcape, B.: Amendoros. P.

- Allenic pauson-khand Rxns.

Eur. J. ORG. Chem. 200N, 3377.

- The pauson-khand RXN BETMEEN ALKYMES \& AMENES is ALSO V. RELIABLE. WITH Rh (I) CATALYSIS, IT IS THE 'OUTSIDE' ALKENE THAT E PARTICIDATES, EXCLUSIVELK
- the Allene mar be terminamly unsubstituted, or monosubstituten.
- BY COMTRAST, IE ONE WANT THE 'INSIDE' ALKENE TO PARTICIPATE 1 ONE USES Mo(cO)6, But it is STOICHIO RETRIC - CO2 (CO)8 (OR THE AMENGE -COz (CO)s COMPLEX) IS NOT COMPLETELY SELECTINH

- UNLIKE THE RXN OF SImPLE ALLENES, THE Rh cATALYZED ALLENIC PIK'S WILL NOW ALLOW (READILY) MEDIUM RING FORMATION, IA ADON TO THE CICLOPENITENONE

elther
$\left[\operatorname{Rh}(\mathrm{CO})_{2} \mathrm{C}_{1}\right]_{2}(5 \mathrm{~mol} \%)$ $\xrightarrow[R R]{\text { Co (1ata), toluenp }}$
$[R h(c o)(d p p p) c l]=(5 m o l \%)$
 $70-84!$ co (latm), toluene, \&

$$
\underbrace{\left[R h(c o)(d p p p) C_{2}\right]_{2}\left(s_{m o l}!\right)}_{c_{0}\left(1 a t-1, \text { toluenr, } 80^{\circ}\right.}
$$

Yhi Jovi, K.E.O. ", Strevver, J.m Crim. REV. $2013,113,2244$.
KlHEN $2+2+2 \cdot 5$ Go wRONC II. $5+2$ CrCmoADDITIONS.

- WIHEN THE ENYNK HAS AN APPENDAD CXCLOPROPANE, ANIS XS CO IS LETT OUT, THE RAN TAKES A RELATED, BUT DISTINCT COURSE
- WARNING - I wILL START WITA A WHITE LIE, ANT EVENTUALLY CORREG

$R^{\prime}=H_{1}^{*} \mathrm{Me}, \mathrm{CO}_{2} \mathrm{Me}$, TMS, Ph
- $R^{\prime}=14$ neers $\quad \mathrm{ClRh}$ (PPhs $)_{3}$

MECHACISTIC LIE

$\downarrow \begin{aligned} & \text { REDUCTHE } \\ & \text { ELMINATION }\end{aligned}$

- Mosthr 5-membined RImg cases, ALONG witi a FRVM 6-mamberedod. onfs
- THE CYCNOPROPANE CAN BF SUBSTITUTED - WHETHER THE MORE OR LESS SUBSTITUTED BOND OF THE CVCLOPROPANE DEPENDS ON THE SUBSTITURNT AND THE CATARYST, BUT with Rh(PPM $)_{3}$ OTf, it is mostry THE LESS SUBST. BUAI)
 $\begin{aligned} & R^{\prime}=\mathrm{CO}_{2}-M_{e} \text { or } H \\ & R^{2}=H \text { or } \mathrm{CO}_{2} M E\end{aligned}$

IMTERMDLECULAR CASES DON'T WORK IN SIMPLE CASES, BUT HETERDATOM VCP'S DO GO WITH $\left[\mathrm{R}_{\mathrm{h}}(\mathrm{CO})_{2} \mathrm{Cl}_{2}\right]_{2}$ MORE REACTIVE VCP AMID CATALYST
CHzOW, TMS PU, AWLTL craourxenie, ipr. $\operatorname{CH}, H \quad R^{2}=N, M e$

Alternative - $R_{u}^{I I}$ usually $\left[C_{p} R_{u}(\text { mech })_{3}\right]^{+}$pF DoEs V. CLosely analogous Chemistry, But is hess funky Explored.

NOW FOR THE LIE- FOR RU, THE MECHANISM GIVEN ON THE PREVIOUS PAGE is LIVELY CORRECT.

FUR RH ${ }^{T}$, THE CYCLOPROPANE RING OPENING IS WAY EARLIER, BEFORE THE OXIDATIVE CURING STEP.

$+\mathrm{Rh}_{\mathrm{h}} \mathrm{COl}_{2} \mathrm{Cl}$
ties, Allenes will participate, but since c-c Bond formation is an insertion AND NOT AN OXIDATIVE COUPLING, THE 'OUTSIDE'/DISTRL ALKENE RULE OF THE PAUSON-KHAMD'S DOES NOT ALWAYS HOND.

