3. Interrupting the 2+2+2

-there are a number of reactions that start to follow this 2+2+2 pathway, getting to the metallacyclopentdiene or metallacyclopentene, and then go differently

-only a time to look at a couple, but there are many more in synthesis

see: Topics in Organometallic Chemistry 2006, 19 entire issue

The Pauson-Khand Reaction

-two of the side products from the 2+2+2 are:

(Fe: Knolker, H.J.)

- -cyclopentadienones are not very stable compounds, but if one of the C=C's is reduced, you have very useful cyclopentenones
- -this type of material is often obtained by using and alkyne, and alkene, and Co₂(CO)₆ (or an alkyne-Co₂(CO)₆ complex)

i.e.,
$$R \mapsto R' + Co_2(CO)_8 \xrightarrow{\Delta} R'$$

Intermolecular Cases

- -no particular constraints on the alkyne
- -if you have an unsymmetrical alkyne, larger groups end up next to C=O, as in

Alkene Partner

- -simple alkenes don't work especially well, unless present in huge excess (Note: this is making progress)
- -strained alkenes, "non β -hydride" alkenes (bridged bicyclic akenes), and alkenes with ligands attached (X = NR₂, SR, O?) give better yield, high regioselectivity

Reviews focussing on intermolecular reactions

R Gibson, S.E. et al Angew. Chem. Int. Ed. 2005, 44, 3022.
R Laschat, S. Synlett 2005, 2547.

-except for sulphoxides, alkenes with EWG's rarely work

Intramolecular Cases

-reaction works much better when alkene and alkyne are in the same molecule

$$\frac{\text{Co}_2(\text{CO})_6}{\text{CH}_2\text{CI}_2, \text{RT}} = \frac{\text{Co}_2(\text{CO})_8}{95\%}$$

-often particularly good for all carbon bridges when there is a gem dialkyl in the bridge

$$= SiMe_3 \xrightarrow{Co_2(CO)_8} \xrightarrow{H} O$$
TBDMSO SiMe₃

gem dimethyl or Thorpe-Ingold effect

- -there are subtle stereochemical matters which are beyond this course's scope
- -many recent advances have increased yields and allowed reactions under milder conditions

i.e., polar aprotic solvents (CH₃CN, DME MeO OMe -use of 1° amines (CyNH₂) and mercaptans (ⁿBuSMe) R Sugihara Chem, Eur. J. 2001, 7, 1589

-photolysis

-3° amine oxides (Me₃N+-O-, TMANO), (NMO) O +N and room temp

Catalysis

-the new holy Grail - to use catalytic amounts of metal and CO gas (under as low a pressure as possible), or a CO substitute (some aldehydes)

$$\frac{\text{MeO}_2\text{C}}{\text{MeO}_2\text{C}} = \frac{\text{Co}_2(\text{CO})_8 \text{ (5 mol\%)}}{\text{CO (1 atm), DME (60°)}} = \frac{\text{MeO}_2\text{C}}{\text{MeO}_2\text{C}} = 0$$

-other metals (other than Co) now are common, especially for catalytic chemistry; I think that Rh^I is gradually replacing Co

Rh ^l	25	[RhCl(CO) ₂] ₂	Zr ^{II}	4	
Mo°	12	Mo(CO) ₆ -allenes(Brummond)	Fe°, hv	4	
Ruº	8	Ru ₃ (CO) ₁₂	Co nanoparticles		2
lr ⁱ	4	113(00) ₁₂	Col	1	
Ti ^{II}	7		W	1	

Most recent reviews: R Shibata, T. Adv. Synth. Catal. 2006, 348, 2328.

R Pérez-Castells, J. Top Organomet Chem 2006, 19, 207

R Strübing, D.; Beller, M. Top Organomet Chem 2006, 18, 165

Mechanism of Pauson-Khand

-unnaturally complex looking, because presence of second metal, which is just 'along for the ride'

- R Chung, Y.K. et al Synlett 2005, 545 (Co nanoparticles)
- R Krafft, M.E. Tetrahedron 2004, 66, 9795. (Interrupted P.-K.)
- R Alcaide, J.C.; Almendros, P. Eur. J. Org. Chem. 2004, 3377 (allenes)
- R Perez-Castells, J. Chem. Soc. Rev. 2004, 33, 32.
- R Gibson, S.E. Angew. Chem. Int. Ed. Engl. 2003, 42, 1800 (catalytic)
- R Carretero, J.C. Eur. J. Org. Chem. 2002, 288
- R Carretero, J.C. Synlett 2001, 26.

- R Brummond, K. Tetrahedron 2000, 56, 3262 (allenes)
- R Geis, G.; Schmalz, H.-G. Angew. Chem. Int. Ed. Engl.
 - <u>1998,</u> *37*, 911
 - R Schore, N.E. Comprehensive Organometal. Chem. II 1992, Vol 12, Ch 7.2
 - <u>R</u> Schore, N.E. *Org. React.* <u>1991</u>, *40*, 1.
 - R Schore, N.E. Chem. Rev. 1988, 88, 1081.

Rh (1) IS QUITE GOOD AT CATALYZING THE PAUSON- KHAND

- MUST BE IN CO ATMOSPHERE, BUT PRESSURES DO NOT NEED TO BE
 HIGH (I ATM. MORMAL).
- EARLY EFFORTS ARE AT HIGH T (1100), BUT NOW OFTEN DONE

$$R^{2} = 0$$

$$R^{2$$

RING CREATED IN OXIDATIVE COUPLING STEP IS ALMOST ALWAYS

MECH. AT LOW CO PRESSURE / HIGH PRESSURE

$$\frac{\operatorname{gh}(co) \, \operatorname{cl}}{\operatorname{o}_{R}} = \frac{\operatorname{co}}{\operatorname{co}_{R}} = \frac{\operatorname{co}_{R}}{\operatorname{co}_{R}} = \frac{\operatorname{co}_{R}}{$$

LIGHER de a+ HIGHER P.

THE USE OF Rh ALSO ALLOWS THE ADDITION OF CHRAL LIGAMOS, AND ULTIMATELY ENANTIO SELECTIVE PAUSON - KHANDS

- ALLENIC PAUSON - KHAND RKNS. EUR. J. ORG. CHEM. 2004, 3377.

- THE PAUSON - KHAND RIN BETWEEN ALKINES & ALLENES IS ALSO V. RELIABLE.

WITH Rh (1) CATALYSIS, IT IS THE OUTSIDE ALKENE THAT & PARTICIPATES, EXCLUSIVELY.

THE ALLENE MAY BE TERMINALLY UNSUBSTITUTED, OR MONOSUBSTITUTED.

- BY CONTRAST, IF ONE WANT THE 'INSIDE' ALKENE TO PARTICIPATE, ONE USES

MO (CO) 6, BUT IT IS STOICHIO METRIC - CO2 (CO) 8 (OR THE ALMINE -CO2 (CO) 6

COMPLEX) 18 NOT COMPLETELY SELECTIVE

- UNLIKE THE RYN OF SIMPLE ALKENES, THE PH CATALYZED ALLENIC PIK'S WILL NOW ALLOW (READILY) MEDIUM RING FORMATION, IN ADDA TO THE CYCLOPENITEMONE

KIHEN 2+2+2'S GO WRONG II. 5+2 CYCLOADDITIONS.

- WHEN THE ENVIR HAS AN APPENDED CYCLOPADPANE, AND YS CO IS LEFT OUT, THE RUN TAKES A RELATED, BUT DISTINCT COURSE

- WARNING - I WILL START WITH A WHITE LIR, AND EVENTUALLY CORRECT

R'= H, Me, CO2Me, TMS, Ph

+ R'=14 MEEDS CIRK (PPhs) 3

*) (P)

- MOSTLY 5- MEMBERED RING CASES, ALONG WITH A FEW 6- MEMBEREDED ONES
THE CYCLOPROPAGE CAN BE SUBSTITUTED - WHETHER THE MORE OR LESS SUBSTITUTED
BOND OF THE CYCLOPROPAGE DEPENDS ON THE SUBSTITUENT AND THE CATALYST, BUT
WITH RI(PPL3)3 OTF, IT IS MOSTLY THE LESS SUBST. BUYO

GO WITH [Rh (col 2 CI) 2 MORE REACTIVE YOP AND CATALYST

ALTERNATIVE . RUT USUALLY [Cp Ru(Mecn),] PFG POES V. CLOSELY ANALOGOUS CHEMISTRY BUT IS LESS FULLY EXPORED.

Now FOR THE LIE - FOR QU , THE MECHANISM GIVEN ON THE PREVIOUS PAGE IS LIKELY CORRECT.

FUR PLE THE CYCLOPROPANE RING OPENING IS WAY EARLIER, BEFURE THE OYIDATIVE COURLING STEP.

YES, ALLENES WILL PARTICIPATE, BUT SINCE C-C BOND FORMATION IS AN INSERTION

AND NOT AN ONIDATINE COUPLING, THE 'OUTSIDE' / DISTAL ALMENE RULE OF THE

PAUSON-KHAND'S DOES NOT ALWAYS HOW.