Why care?

-allyl cations are very highly reactive; either too unstable to prepare or too reactive to be isolated or control their reactivity
-site γ-to carbonyl is normally nucleophilic; therefore this is umpolung reactivity -iron allyls are geometrically stable

R de Koning, H.; Hiemstra, H.; Moolenar, M. J.; Speckamp, W. N. Eur. J. Org. Chem. 1998, 1729.
R Enders, D.; Jandeleit, B.; von Berg, S. Synlett 1997, 421.
b) Allylpalladium" Complexes

Hegedus, p. 245 start
Tsuji, p. 116-168
-by FAR, the most widely used η^{3}-allylmetals
-like the Pd alkene complexes, the chloro- bridged dimers usually aren't reactive enough
-reactivity is enhanced in one of two ways

-can also be activated by other ligands (esp. phosphines), dimethyl sulphoxide (DMSO), hexamethylphosphoric triamide (HMPA)

- once 'activated', these can undergo nucleophilic attack by several reagents
$\mathrm{AcO}^{-}, \mathbf{R}_{\mathbf{2}} \mathbf{N H}$,

less reliable
-attack superficially similar to allylirons
-i.e., normally at the less substituted allyl terminus
-this can, however, be affected by choice of phosphine ligand
-rationale - more electron rich C-Pd bond should be the stronger one - this is the more substituted one
- therefore the less substituted one is more weakly held, so Nu^{-}attacks there
-BUT, with a bigger ligand (i.e., $(0 \text {-tol })_{3} \mathrm{P}$), there is a steric repulsion between PdL_{2} and the more substituted C - makes that bond weaker, more easily attacked

L

$$
\mathrm{PPh}_{3}
$$

$$
n-\mathrm{Bu}_{3} \mathrm{P}
$$

62
38

100

18

0

82

Trost, B. M. et al J. Am. Chem. Soc. 1978, 100, 3416.
-electron withdrawing groups direct attack to the end site remote to the group
-electron donating groups direct attack to the end near the EDG

-there are rare cases of attack at the central carbon of the allyl unit - C-2 attack
-usually observed for Nu^{-}with high pKa's (20-30), or where the central carbon has
a leaving group
-C-2 attack has very limited use in synthetic organic chemistry so far

-for a good discussion and lead refs, see...

```
Aranyos, A., et al (Backvall, J. R.) Organometallics 1997, 16, 1058. Organ, M. et al J. Am. Chem. Soc. 1998, 120, 9283.
```

Stereochemistry of Attack
-recall - oxidative addition to for π - allyl is on a alkyl centre, and therefore goes with inversion of configuration

-now, nucleophilic attack on the allylpalladium normally occurs away from the palladium (it could be called backside attack, too), so overall there is a retention of configuration at carbon

Note: This is the normal (and ideal) situation non-stabilized carbanions are not usually good for attack on these species; when the do work, the mechanism is different....

- then, the initial attack step is on the metal, which is followed by reductive elimination to give retention for this step

$\mathrm{Nu}^{-}=\mathrm{MeMg} X$,

Tetrahedron Lett. 1979, 3221
J. Chem. Soc., Chem. Commun. 1984, 107
b) Organometallics, 1985, 4, 417

PhMgBr
J. Organomet. Chem. 1975, 102, 359
a) J. Am. Chem. Soc. 1984, 106, 5028.
c) J. Am. Chem. Soc. 1982, 104, 1310 and 5028.
-Acetate/carboxylate will attack with retention under special conditions, or if forced by the constraints of the molecule

Larock, R.C. J. Org. Chem. 1984, 49, 3662.

The best news is that many, many, many of these reactions can be done as catalytic reactions
for example, allylic oxidation McMurry, J. R.; Kocovsky, P. Tetrahedron Lett. 1984, 25, 4187.

or most commonly.....

SO......

Backvall, J. R. J. Org. Chem. 1981, 46, 3479.

Trost, B.M.; Cossy, J. J. Am. Chem. Soc. 1982, 104, 6881.

Notes on that last one: 1) Allylic substituent, CHR-OH is electron withdrawing and sterically blocking 'proximal' attack - therefore, attack is on remote (distal) end of allyl unit
2) Oxidative addition goes with inversion

Nucleophilic attack is from backside of Pd allyl = inversion so overall retention

Question: How about the other possible regiochemical outcome, i.e., attack at more substituted end?

If you instead use Co group catalysts, particularly $\mathbf{R h}^{1}$ and lr, and use less donating ligands (phosphites, esp. $\mathrm{P}(\mathrm{OPh})_{3}$), it is clear that allyl more 'electrophilic', so location of '+' resonance for more critical - attack on more substituted end.

-Other metal systems such as Ir'II, Mol can do similar substitutions

Enantioselectivity

-most of the work has been done on allyls with symmetrical substitution patterns, using a chiral ligand

Most recent reviews

$$
\mathrm{Nu}^{-}=-\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2} \text { especially }
$$

R Trost, B. M. J. Org. Chem. 2004, 69, 5813.
R Trost, B. M. Chem. Rev. 2003, 103, 2921.
R Graening, T.; Schmalz, H.-G. Angew. Chem. Int. Ed. 2003, 42, 2580.
This still can be a very tricky process, as there are many isomerization processes possible

1) Under normal reaction conditions (high phosphine to Pd ratios), nucleophilic displacement is slow relative to π-allyl interconversion
-therefore, the product can depend of stabilities of \underline{A} and \underline{B}
2) Acyclic systems can racemize by an $\eta^{3}-\eta^{1}-\eta^{3}$ mechanism

-same process can also result in anti / syn- isomerization of allyl Pd's

Nevertheless, there has been considerable success in this enantioselective transformation, especially using

where

most common

DPPBA ligands

Other successful ligands

MOP (Monophosphine ligands)

R Hayashi, T. J. Organomet. Chem. 1999, 576, 195.

BOX (Bis-oxazoline ligands)
R Pfaltz, A. Acc. Chem. Res. 1993, 26, 339.

up to 96% ee with (R)- or (S)- BPPFX Hayashi, T. et al Tetrahedron Lett. 1986, 27, 191.

$\mathrm{E}=\mathrm{CO}_{2} \mathrm{Me}$

$\mathrm{H}_{3} \mathrm{C}$
6,7-dihydrotropone
HO

many other natural product syntheses
for reviews, see

```
R Noyori, R. Acc. Chem. Res. 1979, 12, }61
R Noyori, R. Org. React. 1983, 29, }162
R Mann, J. Tetrahedron 1986, 42, }4611
part of RR Rigby, J. H. Pigge, F. C. Org. React. 1997, 51, }35
                        R Harmata, M. Tetrahedron 1997, 53, }623
```

η^{4} - Complexes
η^{4}-Trimethylenemethane Complexes
-predominantly used with palladium, due to use of metal in catalytic amounts -iron also known and used some, but it is stoichiometric
-consider the following substrate that looks like a precursor to an η^{3}-allylpalladium

- in these cases, the Pd is coordinated to all 4 carbon atoms
- this is a trimethylenemethane complex
-excellent reagent for $3+2$ cycloaddition reactions

-mechanism
-stereochemical considerations
-about alkene - get mostly retention of configuration, but not perfectly so

-intramolecular reactions also work well

-other aspects of the stereochemistry (i.e., diastereoselectivity) have been well established, but are beyond the course's scope
Regiochemistry

or

or

R = alkyl electron withdrawing electron donating
-regardless, it doesn't matter (much),
-the produc is as if......

-no real mechanistic explanation for this result
-example of use in synthesis - loganin

-there is some work on reacting TMM-Pd complexes with $\mathrm{C}=\mathrm{O}$ and $\mathrm{C}=\mathrm{N}-\mathrm{EWG}$ in the presence of $\mathrm{R}_{3} \mathrm{Sn}$-X co-catalysts
-see Trost, B. M. et al J. Am. Chem. Soc. 1990, 112, 408.
Trost, B. M. et al J. Am. Chem. Soc. 1993, 115, 6636.
For reviews in the area see:

```
Trost R Angew. Chem. Int. Ed. Engl. 1986, 25, 1.
    R Pure Appl. Chem. 1988, 60, }1615
    R 'Comprehensive Organic Synthesis' V. 5, p. }271\mathrm{ (1991)
    R Org. React. 2002, 61, 1.
```

Iron tricarbonyl - trimethylenemethane complexes also known

