Organometallics in Organic Synthesis

1. So who cares (i.e., why?)

-Pattern of reactivity of organic compounds is imposed on
molecule by existing functional groups
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- By default, this limits what you can do with the compound

- Coordination of a metal fragment can change this completely

i.e., can render — an electrophilic species nucleophilic
- a nucleophilic species electrophilic
- can make a normally unstable molecule stable
- can make a stable molecule reactive

- can make impossible reactions possible



The (Very) Basics of Organometallics

-The 18 Electron Rule

Most (middle) transition metal complexes prefer having

18 valence electrons (2s + 6p + 10d)

For transition metal complexes in the 0 oxidation state
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-The 18 e rule is followed most closely in complexes of middle

transition metals (Cr to Co)

-As for early transition metal complexes, it’s usually too difficult

to get enough ligands around the metal to get it to 18 e (i.e., Ti)
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- As for late transition metal complexes (Ni, Pd, Pt), particularly
the square planar M''L, complexes

- tend to be very stable as 16 e- complexes

- energy gap to 9t orbital is quite big; molecule is
quite willing not to fill that orbital



To count to 18 (or 16), need e-’s from ligands
- ’'ll adopt a ‘radical approach’ — not only valid one

A) Inorganic Ligands
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Organic Ligands - Part 1
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Organic Ligands, Cont'd.
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The number of electrons on the free metal

+ sum of the n number of the hydrocarbon ligands + sum of the electrons donated by other ligands
+ any negative charge on the complex - positive charge on the complex
Should = 18 normally

Many exceptions with early or late transition metals ; works best with middle transition metals
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Bonding of Hydrocarbon Ligands

- In its simplist form, bonding of the n- system to a transition metal fragment is based on the

Dewar-Chatt-Duncanson Model

Consider M - There are two contributions to bonding

1) Ligand to Metal Donation Q@Q Note: this is not a - bond, but
rather a 5- bond
2) Metal to Ligand Back Donation
%_’Cﬁo Note: this is a - bond

Dewar, M. J. S. Bull. Chim. Soc. Fr. 1951, C71. Chatt, J.; Duncanson, L. A. J. Chem. Soc. 1953, 2939.

L.

For higher level descriptions:

8
13, n*, n° - see Yamamoto, A., p. 58-72 n% - see Collman, Hegedus, Norton, Finke p. 43-47



Consequences of Bonding of Hydrocarbon Ligands

1) - In the alkene, the C=C bond is made weaker by complexation

2) - The ligand may be made more or less electron rich by complexation
-depends on case

3) - The organic fragment often loses its only plane of symmetry
-for example

\\_< and >_// are the same compound

But.......
These are not the same compound
V >_|_/ - the plane of symmetry is destroyed
wFe Fe.., No non-superimposable mirror images
ww "1/, P P g
ocC Qb &;/ \Q/C:O Enantiomers
o ~b

mirror image



Other examples
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Same situation: Each pair is enantiomeric
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Basic Organometallic Reactions

There are several additional fundamental types of reactions in organometallic chemistry

The more complex reactions are normally some combination of these fundamental ones

1) Lewis Acid Dissociation

- many transition metal compounds, especially hydrides, can lose as Lewis acid
(i.e., deprotonate)

H—Co(CO), = = H* + ‘Co(CO),
change in number of metal valence e”'s 0
change in formal metal oxidation state -2
change in coordination number at the metal -1

This may be a surprise, but many transition metal hydrides are quite acidic
-notice that making the metal more electron rich decreases acidity

HCo(CO), (pK, =8.3, CH,CN) H,Fe(CO), (11.4) HCo(CO),PPh, (15.4)

Winkler, J. R. et al (Gray, H. B.) J. Am. Chem Soc. 1986, 108, 2263.

SH OH
(PK, = 10.3, j\
: H,0 (32.0 (24.4) 11
Cr CH,S(O)CH,) ©/ (18.0) 0 3200y e en,



2) Lewis Base Dissociation

Very, very, very.......... common process
18e 16e
Fe(CO);, —— Fe(CO), + (00
16e 14e
Pd(PPh,), == Pd(PPh,), + PPh,

change in number of metal valence e-'s
change in formal metal oxidation state

change in coordination number at the metal

-Reverse reaction: Lewis base Association

Obvious application are in ligand substitution processes,
which may be dissociative ('S\1 like")

slow L

Ni(CO), —— Ni(CO), + CO

Y

fast

v= k[ Ni(CO),] 1st order

Most common for 18 e- systems

LNi(CO),
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- Alternatively, this can be associative, i.e., "S,2 like"
-more common fo 16 e, d® square planar complexes (i.e., Ni'l, Pd, Pt/

Rh!, Ir)
Y
L, X I Lc
' t i Y ) — ‘.\\\X
Lt/ \LC —— Lo Pt{u X — Lt""""‘Pt\
Lt Lc | >y
Lc
idal trig. bipy
rate v = 2nd order square pyramida “
LC/,,' “‘\\Y Lc” \Y
X + Pt —— PR
Lt~ Lc ~—pi—
square pyramidal )‘( trig. bipy
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3) Oxidative Addition

- represented by

L.MM + AB = = Ln—M
B
change in number of metal valence e's +2 (14 - 16 )
change in formal metal oxidation state -+2 (0 - +2)
change in coordination number at the metal +2

for more details, see: R Yamamoto pp. 222-239
R Collman & Hegedus pp. 279-321

-Overall reaction is cleavage of the A-B bond with bonding to the metal

- Most common A-B is R,C-X X = halogen or pseudohalogen —o—:s:,—c|=3 triflate
(o)

-Classic 'organic’ example is Grignard reagent formation

Br
SARI

MgBr
C( 14

Y



- Most common example in this course will be of the following type:

Pd(PPh _— Pc(I) PPh o @ Il wBr
(PPh;);, —— 2PPh, + (PPh;), + — "B

7
Ph,P” ppp,
- the 2nd step is the oxidative addition

Therefore, system needs: a) 2 available oxidation states i.e., Pde/Pd", Fe°/Fe!, Irl/Irt
b) open coordination site

- Reverse reaction: Reductive Elimination

Mechanism

- Most is known about late transition metals (such as Ir, Ni groups)

A) If the R of R-X is alkyl (especially 1° or 2°), the reaction is believed to (usually) occur
via an S,2 substitution

- _+
THs CH,
CI"IM, "‘TPNS\rdS |r fast Clll“ | W PPh3
:,Ir\ — “““" ,,““ '“”"Ir‘““
7 —| ClI PPh, I~
PhP” Nco Hy-l I ph P/ N\ Ph,P™ | G
3 CO I
- Inversion at alkyl carbon has been observed
- Kinetics are overall 2"d order v =k [Ir'] [CH,]
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B) Vinyl (and perhaps aryl) halides go via ©n - complex formation,
with ultimate direct insertion

slow Ph,P.__ .PPh, Ph_P
3T\

3
A Pt(PPhiz /{/x RN

-

- Goes with retention of configuration of C=C configuration
- Also believed to be mechanism for addition of H,

B') Aryl halides go via direct insertion into C-X bond (clearly related to B)

i.e., P P
- / Could result in retention of

M.

I > - - -
?\O ' ,CT configuration in some cases
X" X

C) - Now defrocked - Nucleophilic Aromatic Substiution - was an old proposal for aryl cases,
to rationalized that cases with electron withdrawing groups "always" go faster

X rds Pd L2X
. e — o
EWG EWG 16




C)' - much more likely and often detected in calculations is initial formation of an n2-benzene complex

-

R R
N Ru, \
Cl
[ >—Pa—di Ty — - o PN
N R = Pa< |
R h
R

R Pd

\

N

Cl
R Pd \
+ N_'< k/N

transition state

Green, J. C. J. Organomet. Chem. 2005, 690, 6054.

D) - Electron transfer, radical mechanisms do exist (Ni, Mg)

i.e. L + Rx _'95_ [LM* RX-]
+ - —_— /X
[LM* RX-] Lo
R
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‘Rh LT
Me,P” )
H

Bi, S. Chem. Phys. Lett. 2006, 431, 385.

Aside: One electron oxidative additions also exist
I

|
2LM° + AB — LMA + LMB

Conventional organic example - Lithium-Halogen exchange

Br Li
@ + 2L — LiBr *+ ©/

Many new opinions on these matters:

R Hartwig, J. F. Synlett 2006, 1283.

R Espinet, P.; Echavarren, A. M. Angew. Chem. Int. Ed. Engl. 2004, 43, 4704.

R Jutand, A. Eur. J. Inorg. Chem. 2003, 2017.

Alcazar-Roman, L. M.; Luis, M.; Hartwig, J.F.; Rheingold, A. L.; Liable-Sands, L. M.; Guzei, I. A.
J. Am. Chem. Soc. 2000, 122, 4618. (chelate PR,)

Hartwig, J. F.; Paul, P. J. Am. Chem. Soc. 1995, 117, 5373 (monodentate PR)

R Amatore, C.; Jutand, A. Acc. Chem. Res. 2000, 33, 314.
Lersh,M.; Tilset, M. J. Am. Chem. Soc. 2005, 127, 2471 (C-H activation).
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4) Reductive Elimination - reverse of oxidative addition

A
LnM - L.Me ¢ A-B
B
change in number of metal valence e-'s -2
change in formal metal oxidation state -2
-2

change in coordination number at the metal

BN
e

transition state
-not an intermediate

In ‘'normal’ cases, the reaction goes by a concerted mechanism

e, I o
Pt —— |Php__

(16e - 14e)

(+2-0)

+ "Pt(PPh,),"
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Ph ?H3 Ph retention of configuration
H“Y IIDd-PPh3 H CH3 at carbon
PPh,

Milstein, D.; Stille, J. K. J. Am. Chem. Soc. 1979, 101, 4981

Note: Whether the precursor is square planar or trigonal bipyramidal,

it's the cis groups which reductively eliminate
- Again, need two accessible oxidation states
- Non 18 e situations must be accessible

Other notes on reductive elimination:
- Ni group (Ni, Pd, Pt) are the usual synthetic choices

Since metal becomes more electron rich during the reaction,
the reaction is sometimes accelerated by addition of a ligand
which is electron withdrawing

= R — R R
A Roé&o
\ AN R - R R

Yamamoto, pp. 240-5 20
Collman, Hegedus pp 322-33

More details in general:



5) Insertion (Migration)
-There is more than one type possible

A=sB —= M—A M-R is a
‘ B—R Metal-C or
M—R Metal-H bond
or
_R*
- M—AI\—R*
AI\ B
B

=B is R,C=CR, R,C=0 R,C=NR

:A—B is :C=0 :C=NR' :CR’,

Most common :A-B is CO

21



-The reaction is a concerted migration of R*, with retention of

configuration at R* and the metal, if they are chiral

CH,
oc,, | .co
Mn
oc” | Yco
co

Change in # of valence electron at the metal

rds
—
-

H,C
\
oc,, .C=—oO
~Mn
oc” | Yco
co

Change in metal oxidation state

Change in coordination number

. CH

oc,, | =0
‘Mn

oc” | Yco

co
-2 (18 to 16e)
0 (+1 to +1)
-1 (6 to 5)

22



Note: Reverse reaction is deinsertion

Most common A=B in this case are alkenes or alkynes
-for example, the intermediate step in hydrogenation

(@)
T 0 insertion
= '/0
H—/N'—O _ _ H /N'\
Ph,P PPh, deinsertion Ph,P rth

- The reverse reaction in this case (-elimination) is one of the most common reactions
of alkylmetals - main mode of decomposition

-again, if inserting group is alkyl, generally there is retention of configuration at R*

see R Cross, R. J., in "Chemistry of the Metal-Carbon Bond", Hartley and Patai, 1982, V.2

R Yamamoto, p. 246-272 ’3



6) Oxidative Coupling

Oxidative coupling occurs when two 't-bound' ligands on the metal react with each other
to form (usually) a C-C ¢ bond

I

=
X ¥

v

n

One of the best known examples is....

R\
\ .
QC '>\ > clg e empty coordination site ultimately
°>, = filled by a ligand
7
R

-This has become increasingly important with a variety of metals and transformations

Change in number of valence electrons at metal -2 (18 to 16e)
Change in metal oxidation state +2 (+1 to +3)
Change in metal coordination number 0 ('3'to'3")

24
Note: There are several other fundamental mechanisms, but they have a close 'organic’' analogy



