
25

CO2Et CO2Et

Fe(CO)4

CO2Et
CO2Et

Fe(CO)4

Fe
OC

OC R

R

Fe
OC

OC
R

R

η2-Olefin/Acetylene Complexes

a) Preparation
       i) -most common method - ligand exchange (with CO, CH3CN, alkenes)

i.e., with Feo it is almost always as follows

+ Fe(CO)5

hν

+ Fe2(CO)9

ether solvents

+ CO

+ Fe(CO)5

Weiss et al Helv. Chim. Acta. 1963, 46, 288

Note: The departing ligand doesn't need to be CO - some other examples

+ +
or

60oC +
+

-sterically hindered alkene Cutler, M. et al (M. Rosenblum) J. Am. Chem. Soc. 1976, 98, 3495
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R
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Ti
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Pd
Cl
Cl

Pt
Cl

PPh3 R
Pt

PPh3

R

-volatile alkenes

+   2 + C2H4

Jonas, K. et al Angew. Chem. Int. Ed. Engl. 1983, 22, 716.

+

R Sato, F.; Okamoto, S. Adv. Synth. Catal. 2001, 343, 759.

ii) Synthesis by Displacement of Halide

Cl- may be displaced by an alkene, either on its own or with an assisting Lewis acid
(SN1 like reactivity)

+ PdCl42- 2 Cl- +

+
Ag+

AgCl(s) +

Schultz, R. G. J. Organomet. Chem. 1966, 8, 435
Davies, S. G. et al J. Organomet. Chem. 1986, 188, C41.



27

Zr
CH3

Cp
Cp

H

Zr
Cp

Cp
Zr

Cp

Cp
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Ti
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Ti
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iPrO CH3 H
H

Ti
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iPrO CH3

iii) -by hydride abstraction (also called σ-bond metathesis)

- this type is common for the preparation of alkene and alkyne early
      transition metal complexes

accessible from the organolithium

-CH4(g)

benzyne complex

Ti(OiPr)4 + 2
β-elimination

+
Lewis base
dissociation

+
reductive elimination

Lewis base association

Buchwald, S.L.; Nielsen, R. B. Chem. Rev. 1988, 88, 1047.
see also Sato review

iv) - By intramolecular nucleophilic substitution
-often for alkyne complexes, with a wider variey of metals than hydride abstraction
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(CO)4Fe L(CO)4Fe
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N
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I
Fe

Cp
CO

Cp

Na/Hg

b) Getting Rid of Them (Decomplexation)

R Bennett, M. A. Chem. Ber./Receuil 1997, 130, 1029.
R   Bennett, M. A. Pure Appl. Chem. 1989, 61, 1695.
R Bennett, M. A. Angew. Chem. Int. Ed. Engl. 1989, 28, 1296.

-most organic chemists want the metal removed from the organic 'ligand' at the
              end of the process

i) Competitive ligand association

+ L: +

most common L include another alkene or alkyne, R3P, CO, 

+

I-
+
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O

CO2Et
Fe(CO)4

O

CO2Et

O

SiMe3

Co2(CO)6
O

SiMe3

ii) oxidation of the metal

-very often, if one oxidizes the metal, it no longer bond very well to the organic
        ligand, and it simply falls off
-several very common oxidants include.....
                     FeCl3, Ce+4 ((H4N)2Ce(NO3)6), others
                     Me3N+-O-  (trimethylamine N-oxide, N-methylmorpholine N-oxide)

Shvo, Y.; Hazum, E. J. Chem. Soc., Chem. Commun. 1974, 336 (for iron diene compelxes)

Me3NO

acetone-CH2Cl2

Green, J. R.; Carroll, M. K. Tetrahedron Lett. 1991, 32, 1141.

Me3NO

R Nicholas, K. M. Acc. Chem. Res. 1987, 20, 207.

c) Uses of η2- Metal Complexes

i) as a protecting group

-recall the intro.....that olefin coordination changes the electron density of
      that alkene
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Fe
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Fe(CO)4

Fe
OC

OC
 

Fe
OC

OC

-can make the alkene more or less reactive than the uncomplexes alkene,
         depending upon the case

Consider......

-therefore, very slightly overall electron donating (essentially the same)

but

+ charge on complex almost unboubtedly renders η2-complex
     less electron rich

-as a result, the alkene is less reactive to attack by E+, and to
    hydrogenation
-but(!), the alkene is more reative to attack by Nu-

Note:

+ =    Fp+
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Fp
 

Fp Fp

Fp
 

Fp Fp

FpBr

Br

Fp HgOAc

OAc

Fp

OH
OMe

OH
OMe

Fp

OH
OMeBr

Fp

OH
OMeBr

+

BF4
- +

H2, Pd/C

CF3CO2H

+

+

BF4
-

+ +

++ +

90% 82%

Br2 Hg(OAc)2

+ +

Br2

CH2Cl2, 90%

NaI, acetone

80%

-Fp+ alkene complexes are air stable, water stable, and you can store them at 0oC
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Co2(CO)6

Co Co
CO

CO
CO

OC
OC
OC

R

R

Co

Co

Co2(CO)6

Co2(CO)6

Co2(CO)6

Alkynes
-many alkyne complexes known

+

But Co complexes are especially robust

Co2(CO)8 +
-2CO not real structure, of course

or -bonding is called μ−η2  (μ2-η2)

-these are in general very stable complexes
-since p- bonds are used in bonding to metals as well, they are not available to
    electrophiles, like most other alkynes are

Co2(CO)8

H-N=N-H

1) BH3

2) H2O2
R Nicholas, K. M. Acc. Chem. Res. 1987, 20, 207.
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η2-Complexes as Electrophiles

a) Cationic Complexes  (Fp+)

-just as the '+' charge, nominally on Fe, ultimately withdraws electron density
    from the alkene and reduces its reactivity to electrophiles (E+)....

-so it by contrast increased reactivity of alkenes to nucleophiles (Nu-)

The stoichiometric chemistry is dominated by chemistry of + =    Fp+

Thus, + Nu:

or
Nu-

-list of Nu- 's hat do this is pretty large

Carbon based - R2CuLi or + F-

in some cases

enamines

+
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BnH
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[Fe]

MeH

MeH

NH2Bn

[Fe]

MeH

HMe

NH2Bn

Heteroatom based RnNH3-n ;  ROH (+Na2CO3); RSH (+Na2CO3); R3P

(amines) (alcohols) (thiols) (phosphines)

Stereochemistry of Addition

-The addition of Nu: or Nu-
 is stereospecifically trans to the metal. So.....

+

Nu:

+

+

Nu:
+

+

+

Regiochemistry

If you draw various resonance forms of the Fp+-alkene cation complex, the 
nucleophile ends up attacking the carbon atom where the 'traditional' organic
cation would be most highly stabilized (i.e., 'SN1 like') reactivity
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Fe
OC

OC CH3
CH3FpFp

CH2

CH3Fp

EtO2C

CO2Et

Fp CH3

EtO2C CO2Et

Fp Ph Fp Ph Fp

EtO2C CO2Et

Ph

O

Fp

OLi O

Fe(CO)2Cp

O

+ +

+ more contributing resonance form

Li(CH(CO2Et)2 Li(CH(CO2Et)2

minor major

Note: Unfortunately, with simple alkyl substutuents (like above), the regioselectivity
          is pretty poor.
However, with strong cation stabilizing or detsabilizing (electron withdrawing) groups,
          the outcome is much more decisive

+ + LiCH(CO2Et)2

+

+α

βδ+
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Fp R R H
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So what do you do with the products?
-there are very few natural products with covalent Fe-C bonds in them, so it's
 generally desired to turn these into something 'all organic'

1) -the alkyl-Fp compounds may be transformed into several functional groups, i.e....

I2 Br2

CS2

-normally, this occurs with inversion of configuration at the carbon being attacked.

But......

HCl or

CF3CO2H

HgCl2
} with retention of configuration

at the carbon attacked!

Why this dichotomy?

+   E+

(Lewis acid,
or electrophile)

+
R-Nu

R-E

if a good Nu- is present
(I-, Br-)

SN2 attack on R

if no strong Nu- present

reductive elimination of ER
(retention of configuration)
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     In the presence of an oxidant, migratory insertion of CO occurs before the metal
           is lost. The 17 e- species does this very rapidly
                 -common oxidants are CeIV, FeIII, CuII, O2
    
    This is most often done in methanol solvent, so that the final product is a methyl ester.

2) Oxidation

[O]

MeOH
+.

17e-

L

17e-

+

III

notice the retention of configuration

This includes Br2 and Cl2 as oxidants

Fp-R Br2

MeOH
Fp-R Cl2

3) Elimination

If the is a H atom b- to the iron, which can assume an antiperiplanar conformation,
it can be abstracted as H-, usually by Ph3C+

notice difference when solvent is CS2



38

Fp
R

HH R
Fp

CH3

Fp

H H

FpFp

Fp

Fp

Ph3C+ +

Rules for abstraction:
     -if there is a choice between forming a terminal alkene and an internal one, one
      normally gets the terminal alkene - probably a steric accessibility argument

Ph3C+ BF4
+

CH2Cl2

++

-if internal alkenes must be made, one gets mostly the (Z)- isomer
-no one really knows why....perhaps a greater stability of the complex

+

Ph3C+ BF4
+

major

References:
R Pearson, A. J. 'Iron Compounds in Organic Synthesis', 1994, Ch.2
R Rosenblum, M. J. Organomet. Chem. 1986, 300, 191.
R Rosenblum, M. Pure Appl. Chem. 1984, 56, 129.
R Rosenblum, M. Acc. Chem. Res. 1974, 7, 122.
R Green, J.R.; Donaldson, W. A. in 'Encyclopedia of Inorganic Chemistry' 1994, V. 2, p.1735.
Enantiomerically pure versions
Turnbull, M. M.; Foxman, B.M.; Rosenblum, M. Organometallics 1988, 7, 200.
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-some similar chemistry is known for the corresponding alkyne complexes, i.e.,

+ It is not nearly as well explored

see Reger, D.L. Organometallics 1984, 3, 135 & 1759.

Use in synthesis (M. Rosenblum)

+ 1) Cl2

Me3N

+. reduct.

elim?

+ NH3 +

NaBH4

Δ

CO
migration

Ag2O

72%

Wong, P. K. (Rosenblum) J. Am. Chem. Soc. 1977, 99, 2823.
Berryhill, S. R. (Rosenblum) J. Org. Chem. 1980, 45, 1984; 1983, 48, 158.
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R
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R
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Synthesis of stereochemically defined alkenes from enol ethers

+ +
+

EtOH

+ R2CuLi
(anti to Fe)

HBF4

(-EtOH)++
anti 

departure of
EtOH

This can be repeated, using other ether function, with modification to get either alkene isomer

+

1) Nu-

2) HBF4 +

I-

Δ

+

1) Nu-

2) HBF4 +
I-


