Pd" Complexes of Alkenes

-probably the other major choice in alkene-TM complexes

Early Chemistry

-Pd " forms comlexes with alkenes; an amine ligand is usually added to break up dimer and make a more reactive species

-susceptible to attack by nucleophiles on the more substituted C -can sometimes reduce Pd off at low T, but mostly get β-H elimination

 amines, water, alcohols, enolates

BUT......This is stoichiometric in Pd, and $\mathrm{PdCl}_{2} \mathbf{1 g}, \$ 102 ; 25 \mathrm{~g}, \$ 1155$

see, R Hegedus p.188-201
R Handbook of Organopalladium Chemistry for Organic Synthesis V2, Ch V3
Holton, R.A. J. Am. Chem. Soc. 1985, 107, 2127 (chelating amines/sulphides)

However, if one has a stoichiometric oxidant present to oxidize the $\mathbf{P d}^{\circ}$ back to $\mathbf{P d}^{\prime \prime}$, the could in principle be catalytic

- this can work: oxidant is most often O_{2} or benzoquinone (BQ), or Cull

Earliest Successes

- is with oxygen based nucleophiles $\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{ROH}\right)$
-perhaps because oxygen nucleophiles don't displace the alkene ligand
$\underset{R^{\prime}}{\mathbf{R}^{\prime}} \mathbf{O}$-Pd and \quad R-O-Pd \quad are not tremendously strong interactions
-traditional version, with water as nucleophile, is called the Wacker process

-reaction is selective for terminal alkenes; in fact intermolecular reactions for internal alkenes work poorly in most cases (except strong EWG substituted ones)
-Markovnikov addition - Nu: attacks most substituted side of the alkene normally -this can be overridden by coordinating groups within the substrate
$-\mathrm{CuCl}_{2}$ oxidizes Pd° back to $\mathrm{Pd}^{\prime \prime} ; \mathrm{O}_{2}$ oxidizes Cu^{\prime} back to $\mathrm{Cu}^{\text {II }}$

Alcohols and phenols can do this type of chemistry too, usually as an intramolecular addition

-normal tendency is to form 5- membered ring over 6- membered ring; this tendency can be overriden in some cases

- first work was with PdCl_{2} as the $\mathrm{Pd}^{\prime \prime}$ source, but now it is often replaced with other Pd" salts
-Reason - with Cl - salts, attack of Nu is anti to Pd ; whereas with $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{Pd}\left(\mathrm{OCOCF}_{2}\right)_{2}$, attack is syn to Pd -syn attack allows/forces β-H elimination away from ring

Hayashi, T.; Yamasaki, K.; Mimura, M.; Uozumi, Y. J. Am. Chem. Soc. 2004, 126, 3036.

-this even allows asymmetric synthesis at the newly formed chiral centre

$10 \mathrm{~mol} \%$
$\xrightarrow{\mathrm{Pd}\left(\mathrm{OCOCF}_{3}\right)_{2}}$
20mol\% ligand BQ, MeOH, 60°

75\%, 96\% ee
ligand

N Nucleophiles -sometimes called aza-Wacker

-problem with amine ligands - these are generally too basic/nucleophilic; tend to displace alkene as ligand
-as a result, in the vast majority of successful cases, the lone pair on \mathbf{N} is deactivated

or even

- with this restriction, this has become an increasingly important way of making heterocycles; especially possible for indole type systems

$5 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$

$\mathrm{O}_{2}, 2$ equiv NaOAc , DMSO, rt

Carbon Nucleophiles

-success in these nucleophilic attack reactions has even been extended to carbon based nucleophiles such as silyl enol ethers, enolizable β-dicarbonyls, electron rich aromatics and heterocycles - there are even some intermolecular cases

$10 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$

$\xrightarrow{1 \text { equiv } B Q}$
$20 \mathrm{~mol} \%$ ethyl nicotinate
t-AmOH-AcOH, 20 mol\% NaOAc

10mol\% Pd(OAc) ${ }_{2}$
O_{2}
40 mol\% ethyl nicotinate
t-AmOH-AcOH, 80°

Ferreira, E. M.; Stoltz, B. M.* J. Am. Chem. Soc. 2003, 125, 9578.

even organometallics, i.e., $\mathrm{Ar}-\mathrm{HgOAc}$ (ancient history), $\mathrm{ArB}(\mathrm{OH})_{2}, \mathrm{ArSnR}_{3}$

exhaustive review 즈 Becalli, E. M.; Broggini, G.; Martinelli, M.; Sottocomola, S. Chem. Rev. 2007, 107, 5318.

We have been hiding an important point for a bit now, though
Some of these (the organometallics, syn attack cases) are probably going through a different intermediate than has been presented

Nu bound to metal

-much more common way to get at the intermediates \underline{A} -by oxidative addition of Pd° to organic halides/triflates -called Heck reaction

Reveiws - many

R Heck, R.F. Org, React. 1982, 27, 345; Acc. Chem. Res. 1979, 12, 146.
R Larock, Adv. Met-Org. Chem. 1994, 3, 97.
R Jefery, T. Adv. Met. Org. Chem. 1996, 5, ch.4.
R Crisp, G. T. Chem. Soc. rev. 1998, 27, 427. (mechansitic detail)
R Knowles, J. P.; Whiting, A. Org. Biomol. Chem. 2007, 5, 31 mechanistic detail
R De Vries, J. G. Dalt. Trans. 2006, 421 (mechanistic discussion)
\underline{R} Ionso, F.; Beletskaya, I. P.; Yus, M.. Tetrahedron 2005, 61, 11771.
R Miyaura, N. Adv. Synth. Catal. 2004, 346, 1522.
R Jutand, A. Pure Appl. Chem. 2004, 76, 565 (mechanistic detail)
\underline{R} Dounay, A. B.; Overman, L. E. Chem. Rev. 2003, 103, 2945 (asymmetric synthesis)
$\underline{\underline{R}}$ Link, J. T. Org. React. 2002, 60157 (intramolecular rxns)

So now we need Pd°, but we added $\mathrm{Pd}^{\prime \prime}$
Not a typo; Pd" complexes often used and reduced in situ

Regiochemistry

-somewhat different than intermolecular cases
-some tendency to go away from EWG's and towards EDG's, but sterics now (apparently) dominates
-Nu: goes 'towards' the less substituted site

60

Stereochemistry

-resulting alkene is usually the most thermodynamically stable one, meaning transall else being equal

Nature of the Organic Halide
R-X (usually) can't have β-hydrogens on an sp ${ }^{3}$ carbon atom, because of β-elimination

β-elimination takes place before any coupling can occur
Thus

Halides
-Br is most common choice
-I faster at oxidative addn, but more side rxns (sometimes better, sometimes worse)
-triflates are excellent pseudohalides

-Cl historically sluggish, but coming along nicely with new catalysts, including sterically hindered phosphines, carbenes as ligands, and ortho- metallated palladacycles

R Whitcome, N. J.; Hii, K. K.; Gibson, S. E. Tetrahedron 2001, 57, 7449.
R Littke, A. F.; Fu, G. C. Angew. Chem. Int. Ed. Engl. 2002, 41, 4176.
R Christmann, U.; Vilar, R.* Angew. Chem. Int. Ed. 2005, 44, 366

A cute but increasingly irrelevant variation - acid chlorides
-aryl chlorides are very reactive to oxidative addition, and may be accessibe when the halides are not

-can occur under very mild conds, in some cases - being made obsolete by improvements to aryl chloride Heck reactions

> Spenser, A. J. Organomet. Chem. 1983, 247, 113; 1984, 265, 273.
> Jeffery, T. J. Chem. Soc., Chem. Commun. 1984, 1287.
> Tetrahedron Lett. 1985, 262667.

The Alkene

only practical ones
-ligands generally stabilize palladium intermediates, but are't always added -inorganic base is often used (instead of amine) to consume $\mathrm{H}-\mathrm{X}$

In some cases, other things can be done to the alkylpalladium

$$
\mathrm{R}-\mathrm{X}+\mathrm{Z}_{\mathrm{R}^{\prime}} \xrightarrow{\mathrm{Pd}^{\circ}}
$$

a) Trap with organometallics

Grigg, R. et al Tetrahedron Lett. 1990, 31, 6573 \& refs therein
b) Further cyclopalladation

3\% $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$

Yang, Y. et al (E.-i. Negishi) J. Am. Chem. Soc. 1990, 112, 8590.

For still more reviews, see...
R Handbook of Organopalldium Chemistry for Organic Synthesis V1, Ch IV 2.4-2.6
R Naso, F.; Marchese, G., in The Chemistry of Halides, Pseudo Halides, and Azides;
Patai, S; Rappoport, Z. eds Ch. 26, Wiley 1983,
R Green, J. R. in The Chemistry of Halides, Pseudo Halides, and Azides, Supplement D2, Ch 25, Wiley 1995
R Shibasaki, M. Soden, C. D. Kojima, A. Tetrahedron 1997, 53, 7371
R Balme, G. Bouyssi, D.; Lomberget, T. Monteiri, N. Synthesis 2003, 2115

η^{3} - Hydrocarbon Metal Complexes

i.e.

Note: We will discuss
these here, too; even though they're η^{1}

Preparation of η^{3}-allyl Complexes
i) From olefins (alkenes) with allylic leaving groups

Fish, R. W. et al (Rosenblum) J. Organomet. Chem. 1976, 105, 101.

ii) From Metal-Diene Complexes

Salzer, A.*; Hafner, A. Helv. Chem. Acta 1983, 66, 1774.

Trost, B. Tetrahedron 1977, 33, 2615.
iii) Activation of allylic C-H Bonds -most applicable for Pd complexes

i.e.,

Huttl, R. Chem. Ber. 1968, 101, 252.

Chrisope, D. R.; Beak, P.; Saunders, W. H., J. A. Chem. Soc. 1988, 110, 230
iv) Propargyl (di)Co complexes

Allyl/Propargyl η^{3} - Complexes as Electrophiles

a) Cationic allyl tetracarbonyl complexes

-complexes react with a pretty wide range of nucleophiles to give η^{2}-alkene complexes as immediate products
-these η^{2}-alkene complexes are not all that stable, easily decomplexed by mild oxidant -allyl attack is presominantly at less substituted side of allyl unit (more later)

Nu: can be...
$\mathrm{R}_{3} \mathrm{~N}$ (amines), $\mathrm{Ph}_{3} \mathrm{P}$ (phosphines), $\mathrm{R}_{2} \mathrm{Cd}(\mathrm{RMgBr}), \mathrm{RCu}(\mathrm{CN}) \mathrm{Znl}$

R Pearson, A. J. "Iron Compounds in Organic Synthesis", Academic Press, 1994, Ch. 3
\underline{R} Green, J. R.; Donaldson, W. A., in "Encyclopedia of Inorganic Chemistry", Lukehart, C. M., ed., Wiley 1994, V 4, p. 1735.

Regiochemistry

-Site of attack is normally at the less substituted end of the allyl unit
-C2 attack has never been observed

2) $\mathrm{HO}^{-}, \mathrm{H}^{+}$
3) air

-Site of attack is away from electron withdrawing group

Why care?

-allyl cations are very highly reactive; either too unstable to prepare or too reactive to be isolated or control their reactivity
-site γ-to carbonyl is normally nucleophilic; therefore this is umpolung reactivity
-iron allyls are geometrically stable

R de Koning, H.; Hiemstra, H.; Moolenar, M. J.; Speckamp, W. N. Eur. J. Org. Chem. 1998, 1729.
\underline{R} Enders, D.; Jandeleit, B.; von Berg, S. Synlett 1997, 421.
b) Allylpalladium" Complexes

$$
\text { Hegedus, p. } 245 \text { start }
$$

Tsuji, p. 116-168
-by FAR, the most widely used η^{3}-allylmetals -like the Pd alkene complexes, the chloro- bridged dimers usually aren't reactive enough -reactivity is enhanced in one of two ways

-can also be activated by other ligands (esp. phosphines), dimethyl sulphoxide (DMSO), hexamethylphosphoric triamide (HMPA)

- once 'activated', these can undergo nucleophilic attack by several reagents
$\mathrm{AcO}, \mathrm{R}_{2} \mathrm{NH}$,

less reliable
-attack superficially similar to allylirons
-i.e., normally at the less substituted allyl terminus
-this can, however, be affected by choice of phosphine ligand
-rationale - more electron rich C-Pd bond shouold be the stronger one - this is the more substituted one
- therefore the less substituted one is more weakly held, so Nu^{-}attacks there
-BUT , with a bigger ligand (i.e., (o-tol) ${ }_{3} \mathrm{P}$), there is a steric repulsion between PdL_{2} and the more substituted C - makes that bond weaker, more easily attacked

Consider.....

L
PPh_{3}
62
$n-\mathrm{Bu}_{3} \mathrm{P}$
100

38

0

82

Trost, B. M. et al J. Am. Chem. Soc. 1978, 100, 3416.
-electron withdrawing groups direct attack to the end site remote to the group -electron donating groups direct attack to the end near the EDG

-there are rare cases of attack at the central carbon of the allyl unit - C-2 attack
-usually observed for Nu' with high pKa's (20-30), or where the central carbon has
a leaving group
-C-2 attack has very limited use in synthetic organic chemistry so far

-for a good discussion and lead refs, see...
Aranyos, A., et al (Backvall, J. R.) Organometallics 1997, 16, 1058.
Organ, M. et al J. Am. Chem. Soc. 1998, 120, 9283.

Stereochemistry of Attack
-recall - oxidative addition to for π - allyl is on a alkyl centre, and therefore goes with inversion of configuration

-now, nucleophilic attack on the allylpalladium normally occurs away from the palladium (it could be called backside attack, too), so overall there is a retention of configuration at carbon

Note: This is the normal (and ideal) situation non-stabilized carbanions are not usually good for attack on these species; when the do work, the mechanism is different....

- then, the initial attack step is on the metal, which is followed by reductive elimination to give retention for this step

$\mathrm{Nu}^{-}=\mathrm{MeMg} X$,

a)

b)

Tetrahedron Lett. 1979, 3221
J. Chem. Soc., Chem. Commun. 1984, 107
b) Organometallics, 1985, 4, 417

c)

PhMgBr
J. Organomet. Chem. 1975, 102, 359
a) J. Am. Chem. Soc. 1984, 106, 5028.
c) J. Am. Chem. Soc. 1982, 104, 1310 and 5028.
-Acetate/carboxylate will attack with retention under special conditions, or if forced by the constraints of the molecule

Larock, R.C. J. Org. Chem. 1984, 49, 3662.

The best news is that many, many, many of these reactions can be done as catalytic reactions
for example, allylic oxidation McMurry, J. R.; Kocovsky, P. Tetrahedron Lett. 1984, 25, 4187.

or most commonly.....

