CHEMISTRY 59-230/232
First Test
Time 50 min
October 1991

NAME: \qquad
ID \#: \qquad

1. Give a structure which corresponds to the following IUPAC names. Make sure your drawings show all required stereochemistry. [16 points]
(a) \underline{Z} 2,4-dichloro-3-methyl-2-pentene
(b) cis 3,4-dimethylcyclohexene
(c) 3-bromo-7-chloro-1-octyne
2. Give an acceptable IUPAC name (including $\underline{\underline{E}}$ or \underline{Z} stereochemical descriptors) for the following structures.
(a)

(b)

(c)

3.(a) Draw the perspective drawing (NOT the Newman projection) of the less stable configuration of 1-isopropyl-2-methylcyclohexane in its less stable chair conformation. Label the substituents as being axial (a) or equatorial (e). [10 points]
(b) Draw the NEWMAN PROJECTION of each of the following molecules. [12 points]
(i) The conformation of 1-methylcyclohexane which has the most synclinal interactions.
(ii) 2-methylbutane in its least stable staggered conformation around the $\mathrm{C} 2-\mathrm{C} 3$ bond

4 (a) Choose the term from the following list (enantiomers, diastereomers, identical, positional isomers) which correctly describes the relationship between the pairs of drawing shown below. [16 points]
(i)

(ii)

and

(iii)

and

(iv)

and

(b) Assign the stereochemical dsescriptors [\underline{R} or $\underline{S}]$ to each of the chiral centres in the molecule shown below. [6 points]

(c) If any of the molecules shown below are meso forms, circle them

(d) Circle those structures in the following list which would NOT affect a beam of polarized light. [6 points]

5. Indicate whether each of the following statements is TRUE [T] or FALSE [F]. Note that for a statement to be true, all parts of it must be true.
a) the following structure is the Z isomer

b) A synclinal conformation is always of lower energy that an anticlinal one
c) In a molecule with the molecular formula $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{4}$ the index of hydrogen deficiency is EIGHT.
d) There are 6 set of equivalent hydrogens in 3-chloro-2,4-dimethylhexane
f) E 3-methyl-2-pentene is optically active.

