CHEMISTRY 59-135/137

FIRST TEST

1. Give an acceptable name for each of the following structures. If stereochemistry is important, make sure your name includes this.[20 points]
(a)

(b)

(c)

(d)

2. Draw the structure, including stereochemistry where required, which corresponds to the following IUPAC names. Structures which show only carbon and other non-hydrogen atoms are sufficient. [15 points]
(a) (E) 4,5-dibromo-8-methyl-2-nonene
(b) (E) 3,6-dichloro-2,4-dimethyl-4-decene
(c) 5,5-dimethyl-1,3-cyclopentadiene
3. (a) Draw the NEWMAN PROJECTION of the more stable chair conformation of the less stable configuration of 1-chloro-3-methylcyclohexane. Label the substituents as axial (a) or equatorial (e). [10 points]
(b) Draw the 3-dimensional drawing (NOT the Newman Projection) of cis-1-methyl-4isopropylcyclohexane in its more stable chair conformation and label the substituents as axial (a) or equatorial (e). [10 points]
(c) Which isomer, the E or the Z , is more stable in 3-bromomethyl-2-chloro-2,5-dimethyl-3hexene? \{Note - a bromomethyl group is $\mathrm{CH}_{2}-\mathrm{Br}$ \} [5 points]
(d) Using a Newman Projection, explain why a substituent on cyclohexane in one of the possible orientations (a or e) is more stable than when it is in the other orientation. [10 points]
4. On the axes provided, draw the energy profile for a reaction between A and B which has the following characteristics. In parts (b) and (c) show the step in the reaction where each of A and B become involved in the mechanism. [12 points]
a) a reaction which has two steps and the first step is slowest.
b) a reaction which occurs in two steps and whose rate of reaction is dependent on the concentrations of both reactants.
c) a reaction which occurs in three steps, and in which A is involved in the second step, but whose rate does not depend on the concentration of A .

5. Using the appropriate notation system, show the movement of electrons in the starting material which leads to the indicated process. [6 points]
(a)

(b)

6. Pick the word from the following list (configurational isomers, conformations, neither configurations nor conformations) which describes the relationship between the following pairs of compounds. [12 points]
(a) cis 2-butene and trans 2-butene
(b) 1,2-dimethylcyclohexane where the substituents both have the axial orientation and where one is axial and the other is equatorial.
(c) 4-methyl-trans-2-heptene and 5-methyl-cis-2-heptene
