SECOND TEST

Time 50 Min NAME:		March, 1992
ID #:	_	
1. Fill in the blanks with the correct simportant stereochemical features. arrow. [30 points] (a)		
CH ₃ + Br ₂ —		
(b)		OV.
	+ H ₂ O	OH
(c) ABr		
H ₃ C + OH		
(d)		
	+ H ₂	CH ₃

(e)

(f)

(g)

(h)

$$\begin{array}{c} CH_3 \\ CH_3CH_2C-Br + H_2O \\ CH(CH_3)_2 \end{array}$$

$$(\underline{S} \text{ config})$$

- 2. On the axes below, draw the energy profile for the following reactions <u>AND</u>, where indicated, give the form of the rate equation in terms of A and B. [18 points]
- (a) An exothermic reaction between A and B which occurs in two steps in which the first step is the slower.
- (b) a reaction between A and B which occurs in three steps, the last of which is the slowest and whose equilibrium constant is less than one.
- (c) a reaction between A and B which occurs in two steps and whose rate depends on the concentration of both A and B.

- 3. (a) Circle those molecules or ions in the list below which are capable of being stabilized by resonance. [10 points]
- 1,3-butadiene 1,4-pentadien \mathbf{q}_{2} C=CH-CH₂ \mathbf{H}_{3} C-O-CH=CH₂

$$CH_2=CH-C\equiv N$$
 $CH_2=CH-CH_2-NH_2$

(b) For the two molecules shown, draw as many resonance structures as possible. [10 points]

$$CH_3$$
- CH = CH - C - CH = CH_2

- 4. Draw the COMPLETE MECHANISM and show all the products obtained for the reaction of a solution of Br_2 in water with 1,3-butadiene. Assume that one molecule of butadiene reacts with ONLY ONE molecule of Br_2 . [10 points]
- 5. From the following list, circle those reagents which you would expect to react with cyclohexene without the aid of a catalyst. In ten words or less, explain how you made your choices. [10 points]

Br₂, NaOH I-Br NH₃ BH₃ H₂O CCI₄ KBr

- 6. For each of the following pairs of reactions, answer the question asked and give a <u>very brief</u> reason for your choice. [4 points each]
- (a) Which reaction is more likely to proceed by a Sn1 mechanism and why?

$$CH_3CH=CHCH_2Br + CN^{-} \longrightarrow CH_3CH=CHCH_2CN$$
 $CH_2=CHCH_2CH_2Br + CN^{-} \longrightarrow CH_2=CHCH_2CH_2CN$

(b) Which reaction is more likely to give a racemic product (and why)?

(c) Which reaction is more likely to give two positional isomers as products (and why)?

Br
$$CH_3CH=CHCHCH_2CH_3 + I$$
 \longrightarrow Br $CH_3CH_2CH_2CHCH_2CH_3 + I$