SECOND TEST | Time 50 Min
NAME: | | March, 1992 | |---|--------------------|-----------------| | ID #: | _ | | | 1. Fill in the blanks with the correct simportant stereochemical features. arrow. [30 points] (a) | | | | CH ₃ + Br ₂ — | | | | (b) | | OV. | | | + H ₂ O | OH
 | | (c) ABr | | | | H ₃ C + OH | | | | (d) | | | | | + H ₂ | CH ₃ | (e) (f) (g) (h) $$\begin{array}{c} CH_3 \\ CH_3CH_2C-Br + H_2O \\ CH(CH_3)_2 \end{array}$$ $$(\underline{S} \text{ config})$$ - 2. On the axes below, draw the energy profile for the following reactions <u>AND</u>, where indicated, give the form of the rate equation in terms of A and B. [18 points] - (a) An exothermic reaction between A and B which occurs in two steps in which the first step is the slower. - (b) a reaction between A and B which occurs in three steps, the last of which is the slowest and whose equilibrium constant is less than one. - (c) a reaction between A and B which occurs in two steps and whose rate depends on the concentration of both A and B. - 3. (a) Circle those molecules or ions in the list below which are capable of being stabilized by resonance. [10 points] - 1,3-butadiene 1,4-pentadien \mathbf{q}_{2} C=CH-CH₂ \mathbf{H}_{3} C-O-CH=CH₂ $$CH_2=CH-C\equiv N$$ $CH_2=CH-CH_2-NH_2$ (b) For the two molecules shown, draw as many resonance structures as possible. [10 points] $$CH_3$$ - CH = CH - C - CH = CH_2 - 4. Draw the COMPLETE MECHANISM and show all the products obtained for the reaction of a solution of Br_2 in water with 1,3-butadiene. Assume that one molecule of butadiene reacts with ONLY ONE molecule of Br_2 . [10 points] - 5. From the following list, circle those reagents which you would expect to react with cyclohexene without the aid of a catalyst. In ten words or less, explain how you made your choices. [10 points] Br₂, NaOH I-Br NH₃ BH₃ H₂O CCI₄ KBr - 6. For each of the following pairs of reactions, answer the question asked and give a <u>very brief</u> reason for your choice. [4 points each] - (a) Which reaction is more likely to proceed by a Sn1 mechanism and why? $$CH_3CH=CHCH_2Br + CN^{-} \longrightarrow CH_3CH=CHCH_2CN$$ $CH_2=CHCH_2CH_2Br + CN^{-} \longrightarrow CH_2=CHCH_2CH_2CN$ (b) Which reaction is more likely to give a racemic product (and why)? (c) Which reaction is more likely to give two positional isomers as products (and why)? Br $$CH_3CH=CHCHCH_2CH_3 + I$$ \longrightarrow Br $CH_3CH_2CH_2CHCH_2CH_3 + I$