NAME: \qquad
ID \#: \qquad

1. Fill in the blanks with the correct structural formula. Make sure your drawing shows any important stereochemical features. If a catalyst is required for the reaction, show it over the arrow. [30 points]
(a)

(b)

(c)

(d)

(e)

(f)

(g)

(R config.)
(h)

(S config)
2. On the axes below, draw the energy profile for the following reactions AND, where indicated, give the form of the rate equation in terms of A and B . [18 points]
(a) An exothermic reaction between A and B which occurs in two steps in whcih the first step is the slower.
(b) a reaction between A and B which occurs in three steps, the last of which is the slowest and whose equilibrium constant is less than one.
(c) a reaction between A and B which occurs in two steps and whose rate depends on the concentration of both A and B .

rate α

rate α

rate α [A] [B]
3. (a) Circle those molecules or ions in the list below which are capable of being stabilized by resonance. [10 points]
1,3-butadiene 1,4-pentadien $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\stackrel{\oplus}{\mathrm{C}} \mathrm{H}_{2} \quad \mathrm{H}_{3} \mathrm{C}-\mathrm{O}-\mathrm{CH}=\mathrm{CH}_{2}$
$\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{C} \equiv \mathrm{N} \quad \mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$
(b) For the two molecules shown, draw as many resonance structures as possible. [10 points]

$\mathrm{CH}_{3}-\mathrm{CH}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$

4. Draw the COMPLETE MECHANISM and show all the products obtained for the reaction of a solution of Br_{2} in water with 1,3-butadiene. Assume that one molecule of butadiene reacts with ONLY ONE molecule of Br_{2}. [10 points]
5. From the following list, circle those reagents which you would expect to react with cyclohexene without the aid of a catalyst. In ten words or less, explain how you made your choices. [10 points]
$\begin{array}{lllllllll}\mathrm{Br}_{2}, & \mathrm{NaOH} & \mathrm{I}-\mathrm{Br} & \mathrm{NH}_{3} & \mathrm{BH}_{3} & \mathrm{H}_{2} \mathrm{O} & \mathrm{CCl}_{4} & \mathrm{KBr}\end{array}$
6. For each of the following pairs of reactions, answer the question asked and give a very brief reason for your choice. [4 points each]
(a) Which reaction is more likely to proceed by a Sn 1 mechanism and why?

(b) Which reaction is more likely to give a racemic product (and why)?

(c) Which reaction is more likely to give two positional isomers as products (and why)?

