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Umpolung Synthesis 

-see Furhop, J.-H.; Li, G. Organic Synthesis-Concepts and Methods, Wiley-VCH, 2003. 

Organic molecules have innate reactivity patterns imposed upon them by virtue of the functional groups 

within their structures. This was taken advantage of extensively in the 331 course; for example: 

R R

O

δδδδ+

due to the electronegativity difference
between O and C

and

R
R'

O

δδδδ-

due to
base

R
R'

O

_ R
R'

O
_

 

In fact, this pattern of alternating reactivity can continue infinitely as long as the conjugated multiple 

bonds continue, as in  

 

 

As a result, certain functional group patterns are easy to make, such as 1,3-dioxygenated compounds, or 

1,5-dioxygenated compounds. The same could be said for nitrogen containing compounds, but we will 

focus on the former. 
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So, the question then becomes, how does one go about making 1,2-dioxygenated and 1,4-dioxygenated 

compounds? 

What is required is some way of inverting reactivity of carbonyl or carbonyl-like compounds. This 

‘inverted’ reactivity is called Umpolung reactivity (or Umpolung synthesis). 
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-For a text, see Umpoled Synthons, Hase, T. A., Ed.; Wiley Interscience, 1987. 

Let’s start with 1,2-dioxygenated compounds 

1,2-Dioxygenated compounds 

Reasoning from first principles, making these compounds with require one of two approaches, either: 
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A. We’ll start with the 1st approach. What can we possibly do for an acyl anion equivalent? 

(see Wyatt, Warren, Ch. 14; Furhop, Ch. 1.7) 

1) Acetylide anions.   Recall that terminal alkynes are relatively acidic, especially for hydrocarbons. This 

can be used; so… 
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This can be convertable into a 1,2-dioxygenated compound, by an electrophilic addition of water across 

the triple bond. Recall that this requires an Hg2+ salt to make this happen. 
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This is somewhat limited, because it is only applicable to the anion of acetylene (ethyne) itself. If there 

are more substituents on the alkyne, there is a problem with the regiochemistry of H2o addition to the 

propargyl alcohol. On the other hand, since acetylene/acetylide is small, this transformation often works 

with sterically hindered carbonyl partners. 
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Other Sources of X-  ̅CH2 

Cyanide ion     C̅N         commercially available as NaCN, KCN, from    H-CΞN   pKa = 9.2 

Nitroalkanes    

 

 

 

Dithianes 
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2. Cyanide Ion 

Cyanide ion will add to most aldehydes and ketones reversibly to give a cyanohydrin. It is more often 

base catalyzed, but acid and Lewis acid catalyzed versions are known as well. 
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This sometimes has problems with forcing the reaction to the product side, and a competing benzoin 

condensation, so the reaction is usually performed by trimethylsilyl cyanide and a Lewis acid. 
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Hydrolysis of the nitrile function can now give the α-hydroxy acid. Acidic conditions are usually used 

because of the competing cyanohydrin reversal under basic conditions. 

For some related chemistry, see the Strecker amino acid synthesis, and the benzoin condensation. 
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Note: The benzoin condensation is becoming increasingly im portant  

The benzoin condensation is becoming increasingly important, so it is worth some elaboration. The 

original version is cyanide ion catalyzed, and involves yet another acyl anion equivalent in the process. 

The reaction is most often accomplished on aldehydes without acidic α- protons, to avoid aldol type 
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reactions competing; there are exceptions.  In addition, it is normally a dimerization of two identical 

aromatic aldehydes or an intramolecular reaction, so that ‘crossed’ Benzoin regiochemistry issues are 

avoided. Finally, practically, cyanide sources largely have been replaced by things like thiazolium ions. 

Note that the deprotonated thiazolium may be considered as an N-heterocyclic carbene (NHC); it is the 

NHC that would serve in an analogous manner to cyanide ion. 
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3. Dithianes 

 See Clayden p 1254 (1st ed), p. 660 (2nd ed) 

Dithianes are for most purposes simply the sulphur version of acetals. They are made quite similarly, 

usually using a ketone or aldehyde, a Lewis acid (instead of a protic one), 1,3-propanedithiol, and an 

appropriate solvent. 
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These will function as protecting group in for many of the same transformations as conventional acetals, 

but if one of R or R1 is an H, a strong base (such a n-BuLi) will abstract that proton. The resultant anion is 

highly nucleophilic, and will attack aldehydes and many ketones. 
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There are several methods of ‘hydrolysis ‘ of dithianes; since S is a ‘soft’ base, a proton has much less 

affinity for S thanfor O. As a result, Hg2+, a soft Lewis acid, is excellent where S is concerned. 
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 See Comprehensive Organic Synthesis, VI, p. 677; Yus, M. Tetrahedron 2003, 59, 6147. 

 For other deprotection conditions, see Wuts, P. G. M. Protective Groups in Organic               

Synthesis  (2nd, 4th Ed –my office; 3rd Ed-Dr. Eichhorn) 

There is an issue sometimes, that the dithiane anions are more susceptible to steric hindrance than 

acetylide ions. 
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Note: There are other version of dithianes which are partially oxidized ones, i.e.,  

 

4. And what about nitro compounds? 

It is possible to get aldol type reactions with nitro compounds and aldehydes or ketones; it is well known 

as the Henry reaction. 

 -in fact, the nitro group is so electron withdrawing that a dianion nitroalkanes can be made 

The problem with the Henry reaction approach, though, is that the ‘hydrolysis’ of the nitro function to a 

carbonyl is not successful for these types of compounds. Elimination reactions and ‘retro’-Henry 
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reactions compete. On the other hand, there are other transformations of a nitro compound that do 

work to give other types of 1,2-difunctionalized compounds. 
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Kisanga, P. B.; Verkade, J. G.*
J. Org. Chem. 1999, 64, 4298.

 

For reviews on the Henry reaction, see; Rosini, G. Comprehensive Organic Synthesis, II, Ch. 1.10 (p. 321) 

     Rosini, G.; Ballini, R. Synthesis, 1988, 833. 

     Luzzio, F. A. Tetrahedron, 2001, 57, 915. 

An example of its use in synthesis…. 
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Brown, E. Tetrahedr on 1973, 29, 455.  

B. Oxygen Electrophiles for Enolates 

The alternative approach to doing an aldol- type reaction on an acyl anion equivalent, is to react a fairly 

conventional enolate with some O+ equivalent. This is obviously very difficult due to the electronegative 

nature of oxygen, and the representation below is the six valent electron, O+ species that you’ve been 

told is not accessible. 

R

O
_

R

O
_ + O+-R1

R

O

OR1

 

In truth, it’s really not quite as bad as that, since many reactions of enolates are SN2, and so we don’t 

really need a truly cationic oxygen. What we really need is for ……. 
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As a result, there is a reasonable chance at being successful with reagents such as.. 
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especially using the relief of ring strain to help the reaction. 

There are two particularly well known manifestations of this. 

1) The Vedejs reagent, known of MoOPh, which is   MoO5-pyr-HMPA. 

It’s prepared by oxidation of MoO3… 

MoO3 + H2O2 + HMPA + pyridine
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Org. Synth. 1985, 64, 127.

 

 

It reacts with enolates by attack on one of the oxygen atoms, with opening of the 3 membered ring. 
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An actual example.. 

D-(+)-camphor

1) LDA, THF, -78 o
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Advantages - This works well with enolates derived from.. Ketones, esters (or lactones), amides, nitriles. 

Disadvantages – i) One can get some α-diketone as side- product 

  ii) It works poorly with unhindered (i.e., methyl derived) enolates 

  iii) HMPA is a carcinogen – on the other hand, the DMPU adduct (known as MoOPD) is 

known, and it seems to work reasonably well (Anderson, J. D.; Smith, S. C. Synlett 1990, 107) 

N N

O

1,3-Dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone
= DMPU

 

2) The Davis Oxaziridines 

If you substitute a 3 membered ring with an oxygen and a nitrogen (oxaziridine) with a strong 

electron withdrawing group on N, the N- is actually the better leaving group… 
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See Davis, F. A.; Shepperd, A. C. Tetrahedron 1989, 45, 5703 (general) 

Davis, F. A.; Chen, B.-C. Chem. Rev. 1992, 92, 919. (asymmetric) 
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So if an enolate is reacted with an N-sulfonyl oxaziridine… 
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This is the major side product for oxygenation of ketone and ester enolates. It is substantial with lithium 

enolates, but much less significant with sodium or (especially) potassium enolates. For amide enolates, 

which tend to be more reactive, the lithium enolates are normally fine. So…. 
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Aside: There is also an excellent method for α- hydroxyl incorporation using silyl enol ethers, involving 

an epoxidation. It is sometimes called the Rubottom oxidation. (COS VII, p. 163) 
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