
1,4-Dioxygenated Compounds 

Compounds with a 1,4- relationship between oxygen (or nitrogen) functions are the other major class of 

difunctional compounds  that are almost always made by some form of Umpolung synthesis. Using the 

same sort of general rationale we used for 1,2-dioxygenated compounds, it is straightforward to come 

up with at least 3 conceptually possible ways to get access to these systems. They include 

A. Conjugate addition of acyl anion equivalents 
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A. Conjugate Addition of Acyl Anion Equivalents 

1. Nitroalkanes revisited 

Nitroalkanes are likely the most acidic CH acid sources in organic chemistry. In fact, one nitro 

function is about as acidifying as two carbonyls, so that a nitroalkane is roughly of the same acidity 

as a β- keto ester. 

H3C
NO2 pK a 10 (H2O)

17.2 (DMSO)
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OEt

OO
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Extending that analogy to its chemistry, it is not surprising that nitroalkane anions (also called 

nitronates) react very similarly, preferring 1,4- (conjugate) addition over 1,2- addition when the 

choice is available. 
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The base for this reaction is usually very weak. Common bases include such things as: 

 3
o
 amine bases – Et3N, i-Pr2NEt, DABCO, tetramethylguanidine 

 KF on alumina (Al2O3)  

 Basic alumina (Al2O3)    

 

 

                                                

Some examples, just randomly chosen from the literature, include the following. Note how the 

nitroalkane is always in a substantial excess. 
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JCS Perkin 1, 1983, 2253  

2. Nitroalkenes as α- carbonyl cations. The converse of the reaction, where one uses a nitroalkene as 

the Michael acceptor, will also work. In this case, the nitroalkene is function as an α- carbonyl 

cation.  

OLi

+ NO2

1) add

2) H2O

O
NO2

N

Ph
NO2

+
1) add

2) H2O, EtOH

O

NO2

Ph

 

N
N

DABCO

Me2N NMe2

NH

tetramethylguanidine



In addition, there are Lewis acid version of both types of the reactions know, but especially using 

nitroalkene substrates (see: Yoshikosi, A.; Miyashita, M.  Acc. Chem. Res. 1985, 18, 284). 
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OMe
1) TiCl4 + Ti(O iPr)4,

CH2Cl2, -78 o
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So the question at this point is how is the nitroalkane version of a Michael type reaction a 1,4-

dioxygenated compound, and what happened in the above case that got that deoxygenated compound. 

The key feature of nitroalkanes is that have a tautomerism just like keto-enol tautomerism occurring 

(although here the other tautomer is called an aci-nitro or isonitro compound), and that tautomer is 

imine like. In other words, the C=N double bond of that tautomer can be hydrolyzed under acidic 

conditions. This is called the Nef reaction. 
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Usually the Nef reaction isn’t performed simply with aqueous acid, such as the one above, as there are 

many modifications including one under both oxidizing conditions and under reducing conditions. For a 

review on these, I suggest .. 

Ballini, R.; Petrini, M. Tetrahedron 2004, 60, 1017; Pinnick, H. W. Org. React. 1990, 38, 655. 

The most common conditions are reducing ones, either TiCl3 in H2O (pH < 1, acidic), or TiCl3 + NaOAc (or 

NH4OAc) in H2o (pH 5-6, almosti neutral). The latter set of near neutral conditions is so that acid 

sensitive functional groups, such as acetals, survive the process. It’s a bit of a guess, a reasonable 

mechanistic proposal for the Ti
III

 mediated Nef involves reduction of the aci-nitro tautomer to an oxime. 
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Some of oxidizing reagents, which won’t be discussed further, include dimethyldioxirane (DMD) and 

KMnO4; these are usually employed under basic conditions. The Ballini/Petrini review has an extensive 

discussion of reagents. 
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Nitroalkenes are certainly the most common α- carbonyl cation equivalents used for the purpose of 1,4-

dioxygenated compound synthesis. There are others, such as ketene dithioacetals, especially as their 

monoxides. Compounds such as these undergo attack on the alkene by ester or ketone enolates, 

enamines, lithio- imines, and the anions derived from β-dicarbonyls. An example follows: 
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A drawback to these α- carbonyl cation equivalents is the rather involved preparation of the ketene 

dithioacetal monoxide. 

3. Homoenolates (β-Enolates) 

In homoenolate chemistry (we’ll deal exclusively with the formally anionic site β- to the carbonyl, so β-

enolate will be an interchangeable term), there are two significant problems. They are: 

i) There is no reason for the β- site to be acidified significantly 

ii) If one actually manages to make one of these, they probably won’t survive because... 
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The siloxycyclopropane is drawn at the end because that actually turns out to be useful; in reality it’s 

made using Na
o
 metal rather than Mg

o
. For the moment however, let’s address the initial problem about 

what can be done to stop this. Reasonable tactics include: 

i) Protect the carbonyl, if it’s easily done. The corresponding aldehyde is well known for this. 
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Grignard reagent A is surprisingly not very nucleophilic, but reacts well with acid chlorides in the 

presence of Cu
+1

 salts. 

A
CuI, THF

Cl
( )5 OMe

O O ( )5 OMe

O O

O

O

acetone,

HCl(aq)

~70%

( )5 OMe

O O

O

H
 

For aldehyde and ketone electrophiles, the ethoxyethyl protected alcohol derivative seems to work 

better (see Stowell, J. C.Chem  Rev. 1984, 84, 409.) 
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ii) Siloxycyclopropanes as masked homoenolates 

(see Kuwajima, I. Nakamura, E. Comprehensive Organic Synthesis, Vol.  2, Ch. 1.14.) 

The siloxycyclopropanes are stable in the absence of water and can be stored, and in the presence of 

Lewis acids (especially Ti
IV

 and Zn
II
 ones) are actually in equilibrium with their homoenolate 

counterparts, i.e., 
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The most common example is with siloxycyclopropanes derived from esters, and TiCl4, which is 

stabilized by coordination of the carbonyl oxygen to titanium… 
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These are not highly, highly  nucleophilic species, so that you couldn’t alkylate an alkyl halide with these, 

but due to the strongly Lewis acidity of Ti
IV

 and at least moderate nucleophilicity, these will attack 



aldehydes at 0 
o
C. While a clear rationale is lacking, the attacking ketones can be done, but usually only 

if ½ an equivalent of Ti(OPr-i)4 is added. 
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That’s about it for the range of nucleophiles with Ti. Many other metals/Lewis acids can be used to make 

the analogous homoenolates, but the other really useful one is with Zn
II
, as mentioned before. 
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These reagents are a bit more flexibile than their titanium counterparts, and can be used for a few 

different types of reactions, including: 

i) Conjugate (1,4-)(Michael type) addition reactions with an added Cu
I
 source such as 

CuBr•SMe2 

ii) React with acid chlorides, in an acylation reaction, in the presence of a catalyst such as PdCl2 

iii) Undergo a cross coupling reaction (see later, this is called a Negishi cross coupling) with aryl 

or vinyl halide or triflates in the presence of a palladium catalyst 
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4. Buy Them 

Finally, it is worth keeping in mind that several 1,4-dioxygenated compounds, or disguised versions, a 

readily available commercially. Some examples are: 
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Furan is the curious one, but the important point is that furans hydrolyze in with acid to a 1,4- 

dicarbonyl. 
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These difunctionalized furans are pretty easy to get access to because almost all the reactivity of furan is 

at the C2 and C5 positions (next to the oxygen atom) 
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but often complicated
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O

n-BuLi

THF, -78 o
O Li

O E

E+
directed lithiation
we'll see soon

Gschwend, H. W.; Rodriguez, H. R. Or g. React. 1979, 26, 1.  

Propargyl alcohols are similarly useful, and really give more flexible versions of butyne-1,4-diol; many of 

them are commercially available. 
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For a simple (and ancient) use of furan chemistry in synthesis, here’s an example from Buchi, G.; Wuest, 

J. J. Org. Chem. 1966, 31, 977. 
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1) n-BuLi

2) Br O

H2SO4,

aq CH3CO2H O
O
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O

cis-jasmone  

Further comments. 

We have been so obsessed with 1,2- and 1,4- deoxygenated systems, that it is easy to forget than these 

acyl anion equivalents can often be alkylated, to give more sophisticated  acyl anion equivalents. Some 

examples follow. 
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1,6-Dioxygenated Compounds 

In principle, these are simply homologated extensions of 1,4-dioxygenated compounds, so we won’t 

cover them explicitly. For an example, though, see Green, J. R. Synlett 2012, 23, 1271. (warning, 

Shameless self-promotion). 

 

 

 

 

 


