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Abstract
Five species of bacteria including Escherichia coli, Mycobacterium smegmatis, Pseudomonas aeruginosa, Staphylococcus epidermidis,
and Enterobacter cloacae were deposited from suspensions of various titers onto disposable nitrocellulose filter media for
analysis by laser-induced breakdown spectroscopy (LIBS). Bacteria were concentrated and isolated in the center of the filter
media during centrifugation using a simple and convenient sample preparation step. Summing all the single-shot LIBS spectra
acquired from a given bacterial deposition provided perfectly sensitive and specific discrimination from sterile water control
specimens in a partial least squares discriminant analysis (PLS-DA). Use of the single-shot spectra provided only a 0.87 and 0.72
sensitivity and specificity, respectively. To increase the statistical validity of chemometric analyses, a library of pseudodata was
created by adding Gaussian noise to the measured intensity of every emission line in an averaged spectrum of each bacterium.
The normally distributed pseudodata, consisting of 4995 spectra, were used to compare the performance of the PLS-DA with a
discriminant function analysis (DFA) and an artificial neural network (ANN). For the highly similar bacterial data, no algorithm
showed significantly superior performance, although the PLS-DA performed least accurately with a classification error of 0.21
compared to 0.16 and 0.17 for ANN and DFA, respectively. Single-shot LIBS spectra from all of the bacterial species were
classified in a DFA model tested with a tenfold cross-validation. Classification errors ranging from 20% to 31% were measured
due to repeatability limitations in the single-shot data.
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Introduction

The use of laser-induced breakdown spectroscopy (LIBS) for
the rapid detection and classification of bacteria has been
widely investigated.1,2 Efforts to fully integrate the technology
into a commercial clinical instrument have been impeded by a
lack of consensus concerning the specimen preparation
protocol. While LIBS is often touted as a “minimal-to-no
sample preparation” analytic technique, generally the analy-
sis of bacterial cells requires substantial preparation prior to
ablation with the LIBS laser due to their small size and limited
mass.

Examples of LIBS analyses of bacteria requiring truly
minimal sample preparation have been offered by firing laser

pulses directly onto “solid” bacterial colonies, which are as
close to a bulk material as can be constructed in such a
microbiological system.3–8 While this is an effective means of
generating sufficient quantities of cells to yield high signal-to-
noise ratio spectra, the number of bacteria present in such
specimens is clinically unrealistic without requiring additional
culturing time which may take from 24 to 72 h. This delay
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obviates the advantage of speed and real-time diagnosis of-
fered by the LIBS analysis.

A large number of bacterial cells are not intrinsically
necessary for bacterial detection, as LIBS spectra have been
obtained from a very low number of cells and even single cells
present as bioaerosols in a dilute air stream.9,10 This has also
been demonstrated on single fungal spores and bacteria
particles in an electro-dynamic balance (EDB) trap.11 While
these methods demonstrate single-cell limits of detection, the
preparation methods required to isolate cells from a clinical
specimen for inclusion in a dry gas stream or introduction into
an EDB trap may preclude their adoption into a clinical
environment.

Instead, many authors have investigated ways to easily
detect the trace numbers of cells that would be present in a
clinical specimen. Of these, serologically tagging cells with
unique elemental nanoparticles has proven to be a sensitive
technique.12,13 One disadvantage to this technique is the
necessity of knowing the identity of the organism being tested
a priori to design the appropriate antibody tag. Alternately, an
unknown specimen needs to be exposed to all available im-
munoassays and then every sample is tested in parallel, as in a
multi-well immunoassay. As well, the selectivity and specificity
of each immunoassay tag adds an additional area of concern to
such approaches.

An alternate approach has been to deposit small numbers
of cells on inorganic or abiotic substrates that do not contain
the elements present in the bacterial cells responsible for
identification. Such substrates include silicon wafers, alumi-
num disks, and steel disks.14,15 A limitation of this technique is
that due to the nonporosity of the inert surface, the liquid in
the specimen is typically driven off by natural evaporation in a
preparation step that regularly is conducted overnight, again
slowing the process. Also, such techniques have only been
shown to be effective for sampling very small volumes of
liquids, on the order of 5–10 μL.

Another successfully demonstrated approach has been the
use of disposable nitrocellulose filters through which signifi-
cantly larger volumes of bacteria-containing liquid can be
centrifuged in minutes.16,17 The addition of a concentration
cone to the centrifugation process concentrates the bacteria
in only a small region of the filter while quickly eliminating the
liquid.18 This concentration lowered the limit of detection of
Escherichia coli to approximately 1000 colony forming units
(CFU) suspended in 1 mL of water, an improvement of a
factor of 50 compared to nonconcentrated filters. The cur-
rent study was conducted to test the ability to differentiate or
classify several species of bacterial cells deposited in this
manner and to investigate the effect that reducing the titer of
the fluid specimens would have. In addition, the use of various
chemometric algorithms was explored to determine any
differences in effectiveness or accuracy when used to dis-
criminate spectra obtained from the ablation of such bacterial
concentrations.

Experimental

Bacterial Deposition

Liquid suspensions of Escherichia coli, Mycobacterium smeg-
matis, Pseudomonas aeruginosa, Staphylococcus epidermidis, and
Enterobacter cloacae were prepared after culturing on solid
growth media and repeated washing of the cells with de-
ionized water. Cells were then suspended in pure deionized
water and uniform concentrations were achieved by moni-
toring the fluid concentration using optical densitometry.
Typically, many milliliters of these suspensions were fabricated
with a nominal concentration of 108–109 CFU per mL. Optical
densitometry measurements were made on these “full con-
centration” suspensions. Serial dilutions were then made from
these initial suspensions by removing known volumes of
suspension with a micropipette and adding an amount of
sterile deionized water to achieve the desired dilution. All
dilutions were thus made relative to the full concentration
initial suspensions and were made in concentrations of one-
fifth (used in the majority of experiments), one-tenth, one-
fiftieth, one-hundredth, and one-five hundredth. Concentra-
tions below one-fifth were only made from E. coli and M.
smegmatis. Once the appropriate concentrations were cre-
ated, 1.0 mL aliquots of these suspensions were pipetted into a
custom-fabricated centrifuge/cone-concentration apparatus
that is described below. Using the full concentration sus-
pension or even higher concentrations with a greater number
of cells resulted in rapid clogging of the concentration cone
hole, blocking the flow of cells through the cone during
centrifugation.

The deposition of bacterial cells upon disposable filtration
media prior to LIBS testing has been described in detail
elsewhere.17,18 Briefly, experiments were performed with
13 mm diameter nitrocellulose filters with a nominal 0.45 μm
pore size (HAWP01300, Millipore-Sigma). The filter media
were cut with a punch and die set to create 9.5 mm circular
diameter filters which would fit within the diameter of
custom-fabricated centrifuge tube inserts which needed to
slide into standard centrifuge tubes. Once secured within the
two-part centrifuge tube insert, a light-weight hollow alumi-
num cone which contained a 1 mm diameter hole through
which liquid could pass was placed into the centrifuge tube
insert. One milliliter of a water suspension containing bacterial
cells was pipetted into the cone in the top of the centrifuge
insert. When secured by the centrifuge tube cap, the apex of
the metal cone pressed slightly into the surface of the filter
medium, creating a light seal. This assembly was then placed in
a standard centrifuge tube and centrifuged at 5000 rpm
generating 2500 g of force for five minutes. During this
centrifugation, the cone forced the liquid through the 1 mm
diameter opening, concentrating all the bacterial cells onto an
easily identifiable central region of the nitrocellulose filter.
After centrifugation, the centrifuge tube insert was dis-
assembled, exposing the filter which was then removed and
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mounted on a 25 mm × 25 mm piece of magnetized steel with
a piece of double-sided sticky tape. The filter was allowed to
dry in place to eliminate any residual water in the filter which
tended to decrease overall LIBS intensity. Drying the filter on
the double-sided sticky tape prevented the filter from curling
up or developing wrinkles as it dried. Each filter was allowed
to dry for at least 15 min prior to LIBS ablation. Beyond the
15-min minimum which ensured proper drying, no LIBS de-
pendence on the duration of time between deposition and
LIBS ablation was observed for times ranging from 15 min to
24 h. The majority of filters were ablated within six hours of
bacterial deposition.

Laser-Induced Breakdown Spectroscopy

The LIBS apparatus used in this investigation has been
described in detail previously.17–19 A 1064 nm neodymium-
doped yttrium aluminum garnet (Nd:YAG) pulsed laser
(Quanta Ray LAB-150-10, Spectra Physics) operating at
10 Hz produced 10 ns laser pulses that were attenuated in
energy to produce 8 mJ pulses on the filter targets. A
periscope assembly and a long working distance 5× AR-
coated microscope objective focused the laser down to a
diameter of 75 µm. All ablation was performed in an at-
mospheric pressure argon environment with an argon
purge at a flow rate of 567 L/h.

All LIBS emission was collected by two matching off-axis
parabolic aluminum mirrors which focused the emission
into a 1 m steel-encased multi-modal optical fiber. The fiber
directed the emission to an echelle spectrometer (ESA
3000, LLA Instruments, Inc.) with a spectral range from 200
to 780 nm. The dispersed light in the spectrometer was
detected and recorded with an intensified charge-coupled
device (ICCD) camera (Kodak KAF 1001). The timing of the
laser, echelle spectrometer, and gating of the ICCD were
controlled by a PC running the spectrometer ESAWIN
v.3.20 software (LLA Instruments, Inc.). All bacterial
spectra were acquired at a delay time of 2 μs after plasma
formation using an ICCD gate window width of 20 μs.
Amplification of the spectra by the ICCD was kept constant
for all spectra. Data were acquired from a single laser shot
and the sample was then manually translated 150 μm to
acquire a spectrum from an undisturbed area of the target.
Approximately 20–30 spectra were acquired from each
circular deposition area, shown in Figure 1. More spectra
could be acquired from a single filter if required by reducing
the distance between laser shots. A representative spec-
trum obtained by averaging 20 single-shot LIBS spectra
acquired from one filter prepared with a one-fifth E. coli
deposition is shown in Figure 2. Figure 2 also shows a
representative spectrum obtained by averaging 20 single-
shot LIBS spectra acquired from one blank filter prepared
with sterile deionized water.

Each spectrum was analyzed by measuring the integrated
emission intensity of 19 neutral and singly ionized lines from

Figure 1. (a) Magnification of LIBS ablation craters on a nitrocellulose
filter with a bacterial deposition in the center after centrifugation and
concentration. A slight discoloration is evident as are four trapezoidal
imprints from the centrifugation device used to localize the deposition. SEM
micrographs of (b) LIBS ablation craters in a bacterial deposition of S.
epidermidis, 250× magnification and (c) a 4000× magnification of the
bacterial deposition in between the craters. The highly nonuniform nature
of the bacterial deposition is evident in both (b) and (c).
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calcium, magnesium, phosphorus, sodium, and carbon, visible
in Figure 2. The identification of the 19 specific emission
lines is given in Table S1 (Supplemental Material). The
ESAWIN software calculated the area under the curve of
the background-subtracted spectrum in a region 60 pixels
wide centered on the emission line. Due to the depen-
dence of the spectrometer resolution on wavelength, the
spectral width of that 60-pixel region varied from ap-
proximately 0.31 nm in the vicinity of the shortest
wavelength line to approximately 0.82 in the region of the
longest wavelength line. The 19 measured intensities were
then summed together, and each intensity was divided by
the sum to normalize the spectrum for small shot-to-shot
variations. Those 19 normalized intensities were used to
create 145 ratios yielding a total of 164 independent
predictor variables to enhance discrimination accuracy
when used in a chemometric analysis as has been de-
scribed in detail elsewhere.16,20,21 The identification of
the 145 ratios used as predictor variables is given in Table
S2 in the Supplemental Material. It has been established
that the use of summed intensity ratios as predictor
variables in a chemometric analysis reduces the effects of
the shot-to-shot variability inherent to LIBS and provides
nonlinear variables that can provide additional sample
discrimination.15,22

Chemometric Analysis

Chemometric analyses were performed using two software
packages. Discriminant function analysis (DFA) was per-
formed using SPSS Statistics v.27 (IBM, Inc., 2020). Partial
least squares discriminant analysis (PLS-DA) and artificial
neural network (ANN) analysis were both performed using

PLS_Toolbox Solo v8.8.1 (Eigenvector Research, Inc.,
2020). All calculations were performed using standard
desktop computing resources.

Data was standardized by the PLS-DA algorithm prior to
classification using an included preprocessing routine. Stan-
dardization involves both mean centering the data for a given
predictor variable by subtracting the mean of that variable
from all values to set the mean to zero and also dividing all the
values by the standard deviation to set the standard deviation
for that variable to unity. In the implementation of PLS-DA,
typically the number of latent variables (LVs) used was the
number suggested by the PLS_Toolbox, which arrives at this
value by calculating the calibration classification error and the
cross-validation classification error for one to 20 LVs every
time a model is constructed, and then suggesting the number
of LVs that minimized those errors without overfitting the
data.

For the E. coli versus water discrimination tests described in
the Detection of E. coli/Discrimination from Sterile Specimens
section, five LVs were utilized in the construction of every
model. For the Gaussian pseudodata tests described in the
Comparison of Algorithms section, one or two LVs was
sufficient, probably because each predictor variable was al-
ready normally distributed about a mean value. For the real
bacterial data analysis described in the Classification of Bac-
teria by Species section, typically three to five LVs were
required.

The ANN test had 164 input nodes, utilized only one
hidden layer which contained 15 nodes, and there were five
output nodes. These parameters for both PLS-DA and ANN
are fairly standard for the chemometric analysis of LIBS
data.23,24

Results

Concentrations of Five Species

LIBS data were collected from “blank” filters, which were
never exposed to any water or microbiological specimens,
“sterile water” filters, through which only sterile deionized
water was centrifuged and concentrated, and the various
concentrations of bacterial specimens from the five bacterial
species. 20–30 single-shot LIBS spectra were collected from
each filter, with the data acquisition spanning approximately
two years. The experimental apparatus and the sample
preparation protocol were unchanged during that time pe-
riod. A dedicated stainless steel calibration sample was ana-
lyzed every day that data was acquired before acquiring
bacterial LIBS data to monitor and track the performance of
the apparatus and to ensure there were no overall changes in
absolute LIBS intensity.

To quantify the strength of the LIBS emission in a way
which would maximize the differences in LIBS spectra ac-
quired from blank, sterile water, and bacterial filters, several
methods of analyzing the data were investigated. The most

Figure 2. A representative spectrum obtained by averaging 20
single-shot LIBS spectra obtained from one filter prepared with a
one-fifth E. coli deposition (red) and a representative spectrum
obtained by averaging 20 single-shot LIBS spectra obtained from one
blank filter prepared with sterile deionized water (blue). All
spectra were obtained in an argon over-pressure environment at a
delay time of 2 μs. The same elemental emission lines were observed
in both spectra, but the intensity of the lines was larger in the
bacteria spectrum. The carbon line at 247 nm is due primarily to
ablation of nitrocellulose filter substrate and its intensity was the
same (within uncertainty) in both spectra.
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sensitive metric was found by calculating the sum of the 18
noncarbon lines in the normalized spectrum and dividing
that sum by the normalized carbon intensity. In the blank
filter spectra, the only spectral feature of any significant
intensity was the carbon 247 nm line from the ablated ni-
trocellulose filter, minimizing the numerator while maxi-
mizing the denominator, resulting in a “noncarbon to
carbon” ratio close to zero. In the bacterial spectra, strong
spectra would contain intense lines of calcium, magnesium,
sodium, and phosphorus (absent in the spectra from non-
biological targets), maximizing the numerator and mini-
mizing the denominator, resulting in “noncarbon to carbon”
ratios that ranged from zero (nearly empty spectra) to six
(the strongest spectra). Spectra obtained from filters that
had only been centrifuged with the sterile deionized water
contained small emission lines from calcium, magnesium,
and sodium as can be seen in Figure 2. At no time were any
lines observed in the water spectra that were not observed
in the bacterial spectra and the same 19 lines listed in Table
S1 were used to analyze the water, although many of these
emission lines were measured to be zero. The water spectra
typically possessed a “noncarbon to carbon” ratio below
one.

This analysis is shown in Figure 3, which plots the cal-
culated “noncarbon to carbon” ratio versus the spectrum
number for 1051 single-shot LIBS spectra obtained from
blank filters, filters that water was centrifuged through, and
filters with bacterial depositions. In this figure, blank filter
data are shown in black, water data in blue, and the bacteria
data by the colors indicated. Each separate filter is plotted
using a different symbol and those data were acquired on
different days. The concentrations of the bacterial sus-
pensions used to make the depositions are given. The av-
erage (solid line) and the one-sigma standard deviations
from the average (dashed lines) of our blank filter data (in
black) and the deionized water filter data (in blue) are
indicated to provide a measurement of our background
signal, the intensity of the emission lines in the LIBS
spectrum when only sterile water is present, and the re-
peatability of the measurement.

In Figure 3, the blank filter data possess an average value of
0.207 (solid black line) with a standard deviation of 0.038
(dashed black line), yielding a relative standard deviation of
0.183. It should be pointed out that a significant portion of that
RSD is due to only one near-outlier point, the first data point,
which has a value approximately twice as large as any other
point.Without inclusion of this point, the RSD is 0.133, a value
much more in line with what was obtained for small emission
lines measured in the daily calibration steel sample mentioned
earlier. The first data point is well within three sigma, so the
point is retained. Nonetheless, the blank filter data all possess
very small “noncarbon to carbon ratios” and, again neglecting
the first data point, only one bacterial spectrum out of the 862
measured possessed a ratio value smaller than the largest

value measured for the filter, providing good separation be-
tween filter data and bacterial data.

The “noncarbon to carbon” ratios (shown in blue) cal-
culated from water spectra which were acquired over a
month from seven separate filters possessed an average of
0.422 (solid blue line) with a standard deviation of 0.142
(dashed blue line), yielding an RSD of 0.336. This RSD value
was larger than was measured for other targets ablated with
this apparatus, including the blank filters, indicating this was
not an intrinsic property of the filter itself nor of the appa-
ratus. Of the 139 water data points, 133 possessed “non-
carbon to carbon” ratios that exceeded the one-sigma
standard deviation of the blank filter, while only six fell within
one-sigma of the blank filter average. Therefore, while the
scatter of these single-shot measurements was high, the values
of the ratios provided a good indicator of the presence of
water.

The bacteria data possessed much greater variability and as
such no average or RSD was calculated. The large scatter in
repeated single-shot bacterial measurements has been dem-
onstrated multiple times and is attributed to the stochastic
nature of LIBS ablation exaggerated by the nonuniform and
nonsolid bacterial surface which can be seen in the SEM
micrographs in Figure 1. The bacterial depositions possessed
characteristics more like a foam than a solid film, being filled

Figure 3. Analysis of the relative intensities of emission lines
measured in 1051 single-shot LIBS spectra acquired from
nitrocellulose filters. The majority of these filters had bacteria
concentrated upon them, each color representing a different
bacterial species. Spectra from filters through which sterile
deionized water was centrifuged were analyzed (dark blue symbols
at left), as were spectra from “blank” filters that were not prepared
with water or bacteria (black symbols at far left). Various
concentrations of bacterial suspensions were prepared prior to
centrifugation as indicated at the top of the figure and the bacterial
concentration increases from left to right in this figure. Data
plotted with the same icon were obtained from the same filter
(usually 20 or 30 spectra per filter), whereas a different icon indicates
data acquired from a completely different deposition on a different
day.
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with air bubbles, gaps, and cracks that formed as the depo-
sition film dried. For these reasons, as well as the thermal
properties of the bacterial film itself, these surfaces ablated
poorly.

In addition, the dependence of this ratio on the concen-
trations of the suspension did not follow a consistent trend.
This was attributed to the fact that these were truly sus-
pensions not solutions, and so they cannot be expected to be
well characterized by a linear curve of growth.25,26 The
bacteria are frequently mucus-like. The cells are clumpy or
stringy forming a heterogeneous suspension, not uniform
homogenous suspension of isolated individual cells, making a
true dilution difficult or impossible. Efforts to reduce the
stickiness of the bacteria cells with standard microbiological
detergents such as Tween 20 are ongoing, but have not re-
duced the scatter in subsequent shots obtained from a single
filter in any way.27 The nonhomogenous nature of the sus-
pensions was also evidenced by some filters occasionally
possessing twenty single-shot spectra where the ratio of all
shots was less than or equal to the average for water, indi-
cating that essentially no bacterial cells were transferred into
the centrifuge insert prior to deposition. These filters were
not included in this analysis. Finally, all of the P. aeruginosa data
were extremely low intensity, indicating an inability to create
proper suspensions of this particular bacterium. This was
attributed to the peculiar nature of this species and its pro-
clivity to form mucoid biofilms. Nonetheless, these filters
were left in the analysis for completeness.

Detection of E. coli/Discrimination from
Sterile Specimens

Partial least square discriminant analysis was performed on all
of the E. coli data at all concentrations and all of the water data.
In total, 14 E. coli filters comprising 320 data shots and seven
water filters comprising 139 data shots were analyzed.

First, a PLS-DA model was constructed from the single-
shot LIBS spectra. The accuracy of a diagnostic test is defined
by both the sensitivity and the specificity. The sensitivity is
defined as the rate of true positives; in the case of this test, it
was the fraction of test spectra correctly identified as E. coli
out of all the E. coli spectra tested. The specificity is defined as
the rate of true negatives; in the case of this test, it was the
fraction of test spectra that correctly identified as not E. coli
out of all the water spectra tested. Using five latent variables,
the model was constructed with an E. coli sensitivity of 0.93
and specificity of 0.95 as tested with a 10-split venetian blinds
cross-validation. Next, entire filters were withheld from the
model one at a time and then tested against that model to
allow 21 externally validated tests of the model. The sensitivity
and the specificity of the tests were calculated for each filter
based on the number of single-shot spectra on that filter that
classified as E. coli or water. The average sensitivity of the
single-shot spectra from the 14 E. coli filters was 0.87. Seven of

those 14 filters had 100% of the shots on them (20–30 shots
per filter) classified correctly as E. coli (sensitivity of 1.0). The
worst performing filter had only 33% of the shots correctly
classified as E. coli. The average specificity of the single-shot
spectra from the seven water filters was 0.72. Two of the
seven filters had 100% of the shots correctly classified as
water, not E. coli (specificity of 1.0). The worst performing
water filter had only 35% of the shots correctly classified as
not belonging to the E. coli class. An example of one such
external validation is shown in Figure 4 which shows a model
constructed from the water (red data, nominal predictor
score of 1) and the E. coli (green data, nominal predictor score
of 0). The data points from one filter of E. coli, samples
numbered 211 through 230, were not involved in constructing
that model and instead were withheld for testing against that
model. These unclassified points are represented by the gray
points to the right of sample number 460. 100% of these data
points correctly classified as E. coli, as can be seen by all the
spectra possessing a predictor score below the Bayesian
threshold, consistent with the E. coli spectra in that model.

The variation in the LIBS intensities of single-shot spectra
on all the filters containing bacteria, shown in Figure 3,
suggested that it was better to sum all of the spectra acquired
on a given filter rather than rely on a single-shot spectrum.
Ultimately, when applied as a bacterial diagnostic there will be
no need for 20 or 30 individual LIBS spectra obtained from
one specimen. Only one diagnosis per test specimen is de-
sired, with perhaps an additional independent measurement
made for confirmation purposes and/or redundancy. To

Figure 4. A PLS-DA test of 139 single-shot LIBS spectra from seven
filters exposed to only sterile DI water (red data, nominal
predictor score of 1) and 320 single-shot LIBS spectra from 14 filters
upon which various concentrations of E. coli were deposited (green
data, nominal predictor score of 0). Data were acquired over the
span of approximately a year. In the test shown, all spectra from the
fourth filter of E. coli (samples 211 through 230) were removed from
the model, which can be seen by the gap in the E. coli data. These
unclassified data were then used to validate that model (the gray data
to the right of sample 460). 100% of these data were correctly
classified as E. coli. Every filter of E. coli and water was withheld one
at a time and tested in this way to determine the diagnostic sensitivity
and specificity.
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accomplish this, the “add all” feature in the ESAWIN software
was used which added up the raw pixel intensities from the
ICCD for each individual spectrum prior to CCD readout to
produce a single spectrum. This effectively averages the 20
spectra, reducing noise and allowing smaller spectral features
to be measured with more accuracy. This is referred to as an
“add-all” spectrum.

A PLS-DA model was constructed from the 21 add-all
spectra, one spectrum per filter, and again an external vali-
dation was performed by sequentially withholding each
spectrum from a model and testing it against the model
constructed from the others. In this test, 13 of the 14 E. coli
filters correctly classified as E. coli and six of the seven water
filters correctly classified as water, yielding a sensitivity of 0.93
and a specificity of 0.86.

Finally, an averaged spectrum for all the single-shot spectra
on a filter was generated. These spectra were created by
extracting the 19 emission intensities for the 20 or 30 spectra
on each filter as described earlier. The measured peak in-
tensities for each variable were then summed together in
Excel and the resulting summed spectrum was normalized (as
was always done for single-shot spectra). The ratios were then
calculated from this summed and normalized spectrum.

In principle, this summation processing is similar, but not
identical, to the “add-all” processing because that is per-
formed on data before intensities have been measured and
extracted from the raw camera data, while the summation is
done after individual peak intensities were extracted from the
raw data. Extensive studies of these two methods for aver-
aging multiple shots from a single filter have shown that the
two methods yield similar, but not necessarily identical, re-
sults. Using these summed spectra, a PLS-DA was performed.
In this test, 14 of 14 E. coli filters correctly classified as E. coli
and seven of seven water filters correctly classified as water,
yielding a sensitivity of 1.00 and a specificity of 1.00. The
results of all three analyses are tabulated in Table I.

Comparison of Algorithms

Prior to attempting to classify all of the highly noisy single-shot
bacteria spectra from all five species, tests were conducted to
determine which algorithm and which parameters maximized
diagnostic accuracy. To conduct these tests on a very large,
robust, and well-behaved dataset, a library of pseudodata was
generated. This was done by taking all the single-shot spectra
from a single species and averaging the values for each of the
19 measured emission line intensities. This average spectrum

was then normalized by the sum of all intensities, as described
previously. This was done for each of the five types of bacteria
to generate five seed spectra, one for each species.

Each seed spectrum was used to generate 998 replicates of
each species by applying a Gaussian noise filter to each of the
19 channels. The Gaussian noise filter had a variable width that
ranged from 1, which generated highly similar copies of the
seed spectrum (low noise), to 2500, which generated highly
noisy very dissimilar spectra. This width is unitless and is
denoted by σ since it defines the typical width of the Gaussian
distribution which is normally distributed about the mean of
the distribution. The use of a Gaussian filter ensured that for a
given emission line intensity (predictor variable) the values of
that intensity in the 999 spectra were normally distributed
about a mean and possessed a well-defined standard deviation.
This was done for every emission line and the σ used was the
same for all emission lines in a given pseudodataset. To
simulate random noise on each individual emission line and
not merely fluctuations of the entire spectral intensity, the
noise filter was applied independently to each of the 19 lines.
This resulted in all of the noise in each channel of the simulated
pseudodata being uncorrelated. This was perhaps an over-
estimation of the noise experienced in the true data.

These pseudodata were discriminated using a DFA, PLS-
DA, and ANN. All of the σ were tested, but only the σ = 250
data is presented here. This data was chosen because the
performance of the classifications resembled the performance
of the actual LIBS data. Also, it was desirable to use pseu-
dodata that possessed lower sensitivities and specificities as
the goal of the study was to determine if any one algorithm
was superior in discriminating very difficult to classify noisy
data. Pseudodata with very small σ (below 5) generally were
discriminated with 100% sensitivity and specificity for all al-
gorithms, providing no basis for comparison.

For each of the algorithms, 800 pseudodata points were
chosen at random to construct the training model, and the
199 remaining points were withheld for validation of the
model. This 80:20 split is also common for such studies.23

Confusion matrices were constructed from the results of each
validation and the sensitivity and specificity for each species
were calculated. Lastly, the classification error was calculated,
which is a way to combine the sensitivity and specificity. The
classification error is the average of the false positive rate and
the false negative rate for a species and is equal to

1�
�ðsensitivityþ specificityÞ

2

�
(1)

Table I. Sensitivity and specificity of PLS-DA tests of LIBS spectra to detect E. coli in DI water specimens.

Single shots (459 spectra) “Add-all” filters (21 filters) “Summed” filters (21 filters)

Sensitivity 87% 93% 100%
Specificity 72% 86% 100%
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where the sensitivity and specificity have values as defined
earlier. A perfectly sensitive and specific test would possess a
classification error of 0 (indicating no errors). The results of
the ANN, PLS-DA, and DFA for these data are shown in
Figure S1 (Supplemental Material). The classification errors
for each of the five species were averaged to obtain a total
classification error for the algorithms used. The classification
error for the discrimination of the five species was calculated
to be 0.16, 0.21, and 0.17 for ANN, PLS-DA, and DFA, re-
spectively. Although no one algorithm was clearly optimal at
performing the classifications, the PLS-DA was clearly the
worst performing algorithm with these pseudodata, while the
ANN and DFA performed similarly (a difference in classifi-
cation of 0.01 is not a significant difference in this context).
These results show that such performance is a limitation of the
data, not an intrinsic limitation of the algorithm.

The DFA discrimination (performed by the SPSS program)
could build a model from the 4000 “known” pseudodata
spectra and test the 955 unclassified spectra (each spectrum
composed of 164 independent predictor variables) in a few
seconds on a desktop PC. The ANN discrimination (per-
formed by the PLS_Toolbox) took between 12 and 36 h on
the same desktop PC to build the model before testing of the
unclassified spectra could be performed. Based on this dif-
ference in computational requirements, it was determined to
perform DFA on the real LIBS datasets until a more optimized
ANN analysis could be performed.

Classification of Bacteria by Species

Presented in Figure 3 are the 862 individual spectra from the
five bacterial species that were classified using a DFA model.
All data were standardized prior to analysis. A tenfold cross-
validation was performed where the spectrum order was
randomized, and the dataset was separated into 10 groups:
nine groups were used to train the discrimination model and
the tenth was used for validation.28–30 The cross-validation
was performed a total of 10 times until all 10 groups were
used for validation and the overall performance was calcu-
lated. The imbalance in the number of spectra present in each
class and the relativity low numbers of spectra (in some cases)
relative to the number of predictor variables degraded clas-
sification accuracy. The sensitivity, specificity, classification

error and the number of spectra per species are shown in
Table II.

Discussion

The use of a ratio of the sum of normalized noncarbon
emission lines to the carbon line emission intensity was found
to provide a very useful metric for quickly quantifying the
relative intensity of the bacterial LIBS spectra. This ratio has
not yet proven robust enough to calculate a concentration
curve which would allow a calculation of a limit of detection
but was found to be very useful in identifying spectra with very
few or no bacterial cells. This ratio was also useful for
identifying the presence of nonzero emission line intensities
from the important elements of sodium, magnesium, and
calcium in the LIBS spectra obtained from sterile water. These
nonzero line intensities in the absence of any bacterial cells
were not due to the filter media but were due to the presence
of dissolved elements in the water used to suspend the
bacteria as well as improper cleaning of all components of the
apparatus prior to use. Primarily, this was attributed to the
bacterial suspensions of previous tests leaving behind trace
amounts of those elements which were always strongly ob-
served in the bacterial LIBS spectrum. An aggressive cleaning
protocol consisting of ultrasonication in acetone and meth-
anol were finally adopted to minimize the LIBS intensity ac-
quired from pure deionized water specimens. No quantity of
cleaning was effective at reducing the water spectral intensity
to that of a blank filter indicating the presence of these ele-
ments in the water. Future experiments will attempt to utilize
ultrapure 18.2 MV water in place of the deionized water
previously used to further lower this background.

In addition, attempts to reduce the intrinsic clumpiness or
stickiness of the bacterial cells utilizing decreasing concen-
trations of microbial detergents as well as mechanical dis-
ruption will be investigated. It is hoped that this will address
some of the high degree of variability caused by the non-
uniformity of the deposited bacterial film as well as reduce the
uncertainty on the concentrations of the suspensions being
tested. Culturing the bacterial samples in liquid growth media
rather than from solid agar plates may also prove to be ef-
fective at reducing this clumping. However, such culturing is
followed by subsequent centrifugation and pelletization, which

Table II. Sensitivity, specificity, and classification error of a DFA tenfold cross-validation of LIBS spectra from five species of bacteria.

No. of spectra

E. coli S. epidermidis E. cloacae P. aeruginosa M. smegmatis

400 80 113 80 189

Sensitivity 60% 64% 50% 66% 65%
Specificity 79% 91% 91% 94% 82%
Classification error 31% 23% 29% 20% 27%
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may lead to an unavoidable reclumping of the cells, effectively
negating the advantages gained by this method of culturing.

Moving forward, it is expected that the summation or
averaging of individual single-shot spectra from a single filter
will be utilized to generate significantly less noisy and more
reproducible data. The major drawback of this is the re-
duction in the number of spectra that can be tested to achieve
good statistics, but the benefit is improved classification ac-
curacy. In the E. coli versus water study, the sensitivity and the
specificity obtained by analyzing single-shot spectra were 0.87
and 0.73, respectively, while analysis of the “add all” spectra
improved these numbers to 0.93 and 0.86, respectively, albeit
with fewer samples to ensure accurate statistics. This result
suggests that the summation of spectra, which theoretically
allows the use of all available cells on a filter to construct a
single spectrum (or perhaps two for redundancy), will ulti-
mately provide the best diagnostic accuracy. This result may
be further improved in the future by acquiring more spectra
per filter by moving the laser shots closer together. Signifi-
cantly more data needs to be acquired to demonstrate this,
but it is time consuming with our current setup to generate
data from a statistically large number of different filters.

The classification accuracy of the data collected was lower
than expected due to the high variability of the data, as can be
seen in Figure 3. Unlike the degree of reproducibility observed
in spectra from blank filters obtained in our studies (ap-
proximately 18%, but more likely closer to 13%) or from
serum deposited and then dried on a filter (with reproduc-
ibility values of less than 1% for spectra from a given filter and
reproducibility across larger datasets comprised of many
filters at approximately 6%), the mechanical properties of the
bacterial films caused a loss of shot-to-shot reproducibility.28

A DFA performed on single-shot spectra from five species
(presented in Table II) reflected this loss of reproducibility in
the calculated classification errors. In this analysis, classifica-
tion errors ranged from 20% to 31% with the two species of
E. coli and E. cloacae being the hardest species to discriminate,
with classification errors of 31% and 29%, respectively. A
plausible explanation for this is that E. coli and E. cloacae both
belong to the same group of Gram-negative rods and thus
possess a similar phenotype, making them biochemically
similar. They are the two most similar microorganisms out of
the five tested in this study.

The use of add-all or summed data was shown in this work
to increase accuracy when bacterial spectra were differen-
tiated from sterile water spectra, but caused a loss of statistical
certainty, as this decreased the number of datasets by at least a
factor of 20 per specimen. For several of the species in this
study, only three or four filters were tested, which is not
adequate for statistical certainty. In most statistical chemo-
metric analyses, a conservative guideline is that the number of
samples should be a factor of 10 greater than the number of
independent predictor variables to avoid overfitting the data.
This is seldom, if ever, achieved in LIBS studies utilizing
chemometrics. In our case, this would necessitate over a

thousand filters per species (approximately 20 000 laser
shots) which is not feasible. Nonetheless, data from a greater
number of filters are being accumulated to allow a true ex-
ternal validation of the data, where the summed spectrum
from each filter is withheld one at a time and tested against a
model that contains at least 10–20 other spectra from sep-
arate filters.

The creation of pseudodata by applying Gaussian noise to
the real spectral data allowed for the creation of an arbitrary
number of datasets unconstrained by this limitation. These
studies, which agreed broadly with the tenfold cross-
validation studies of the real data, also showed a significant
decrease in classification accuracy compared to what had
previously been observed when the bacteria were ablated on
nutrient-free agar, which provided essentially background-
free spectra.20 Work is ongoing to improve the method
for constructing pseudodata so that it more accurately rep-
resents the scatter in the real bacterial LIBS data, allowing a
more rapid development of effective chemometric strategies
by using an arbitrarily large library of pseudodata to obtain the
true statistics of the algorithm performance. Future efforts
will focus on strategies for monitoring individual laser shots to
perform real-time outlier rejection of spectra comprised of
anomalously weak emission lines such that only spectra that
exceed a threshold intensity are recorded. Experiments are
underway to deposit the bacteria from a heterogeneous
suspension onto the ablation substrate in a much more
controlled and uniform way. Potentially, the use of more
realistic clinical specimens will solve this problem, as in most
clinical specimens, bacteria are not present in the form of
stringy or mucoid aggregates.

Conclusion

One-thousand fifty-one single-shot LIBS spectra were ac-
quired from sterile nitrocellulose filter media prepared in
three ways. Spectra from blank media were acquired as were
spectra frommedia through which sterile deionized water had
been centrifuged and from media upon which suspensions of
bacteria of various concentrations had been deposited via
centrifugation. The spectra were acquired over the course of
approximately two years utilizing a consistent apparatus and
specimen preparation protocol. Five species of bacteria were
analyzed in this way.

Escherichia coli of all concentrations was efficiently dis-
criminated from sterile water specimens in a five latent
variable PLS-DA. The sensitivity and specificity of the ex-
ternally validated test were 87% and 72%, respectively when
the single-shot spectra were used but rose to 93% and 86%
when the spectra were summed in the raw data, and 100% and
100% when the intensities of measured spectra peaks were
summed after extraction from the raw data.

A large library of spectral pseudodata was created by
applying a Gaussian noise filter to an averaged bacterial
spectrum of each species. In this way, 998 replicates of each
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species were constructed to compare the performances of
DFA, PLS-DA, and ANNwith a model constructed from 4000
spectra. For the five bacterial species, sensitivities ranged from
approximately 50%–100%, with S. epidermidis and E. cloacae
being the hardest species to discriminate, performing poorly
in all of the algorithms. The overall classification error for all
species was 0.16 for ANN, 0.21 for PLS-DA and 0.17 for DFA.
No clear advantage was gained by using a specific algorithm
with these data, pointing to limitations in the data itself. The
utilization of ANN when performed on 5000 spectra, each
composed of 164 independent predictor variables, was found
to be prohibitively time and computationally intensive when a
desktop PC was used (over 12 h to construct a model with the
processor being used at 100% for the calculation).

The sensitivity, specificity, and classification error for a DFA
performed on the single-shot spectra from the five species in a
tenfold cross-validation were measured. Classification errors
ranging from 20% to 30% were obtained. The single-shot
spectra obtained in this way were found to possess a signifi-
cant amount of variation in their spectral intensities, leading to
this decrease in classification accuracy from what has been
previously observed. It was shown that the addition or aver-
aging of single-shot data enhanced the accuracy, although not
enough data was accumulated for all five species to demon-
strate this broadly and this was accompanied by an unavoidable
decrease in statistical certainty due to a severe reduction in the
number of datasets. Nonetheless, this method of spectral
addition will continue to be investigated in the future.
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