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We have constructed a broadband apparatus for wavelength metrology capable of absolute accuracy
at a level of better than 2 parts in 109. An evacuated plane-parallel Fabry–Pérot interferometer with
continuously adjustable mirror separation is used to compare the wavelength of a single-frequency
tunable laser with that of an iodine-stabilized HeNe laser used as a wavelength standard. This work
details apparatus construction, a thorough investigation of systematic errors, and data analysis. The
wavelengths of five Doppler-free130Te2 transitions in the region from 475.6 to 490.8 nm have been
measured and are found to be in excellent agreement with previous measurements. In addition, the
wavelengths of five previously unmeasured130Te2 transitions spanning the region from 424.9 to
462.3 nm have been determined for use as new reference wavelength standards. ©2004 American
Institute of Physics.[DOI: 10.1063/1.1791871]

I. INTRODUCTION

Wavelength meters based on Michelson or Fizeau inter-
ferometers have long been the standard method of wave-
length determination for tunable CW dye laser light sources.
The wavelength of the “unknown” laser is compared with
that of a reference laser by means of fringe counting. The
accuracy of these devices is largely limited by the inability to
precisely control alignment of the two laser beams in the
interferometer.1 The plane-parallel Fabry–Pérot(FP) interfer-
ometer has long been the instrument of choice for precision
wavelength measurements on light from incoherent light
sources.2 In recent times FP interferometry has been applied
to wavelength comparisons between laser light sources. Pet-
ley et al.3 employed a FP locked to an I2-stabilized HeNe
laser to compare the wavelength of a scanning dye laser to
that of the HeNe laser. Aminet al.4 used a pressure-scanned
FP to compare the wavelength of a dye laser locked to an
atomic absorption line to that of an I2-stabilized HeNe laser.
Both experiments measured the Rydberg constant by satura-
tion spectroscopy of the Balmera line, whose wavelength
was already very well known, thus simplifying the task of
determining the integer part of the order number.

Sansonetti5 developed a more general laser wavelength
meter in which the FP ring pattern was employed to compare
the wavelengths of the unknown and reference lasers, and a
traveling Michelson wavelength meter was used to resolve
the integer-order-number ambiguity of the FP. Sansonetti’s
wavelength meter created a pseudo-incoherent light source
from the laser beams by scattering from a moving diffuser;
this mitigates sensitivity to alignment and collimation of the
beams and time-averages over laser speckle. He achieved an
accuracy of a few parts in 109 in several measurements.5–7 In
the present work we have undertaken a detailed and thorough
investigation of the systematics of a new device based on

this concept. An important change is the use of a scanning
étalon, which allows stepped changes in the mirror spacing
during a measurement cycle to diagnose and control system-
atic errors. We also use a telescope to project the interference
pattern, rendering the instrument free of chromatic aberration
to a very high degree over a broad spectrum of wavelengths.
We have verified its accuracy by measuring the wavelengths
of five well-studied Doppler-free transitions in130Te2, and
have made precise measurements of five previously unmea-
sured130Tee transitions in the 424.9–462.3 nm wavelength
range.

The technique of Fabry–Pérot interferometry has been
thoroughly discussed by Meissner.2 The well-known Airy
formula gives the intensity pattern of light transmitted
through a pair of plane parallel mirrors as

I =
T2/s1 − Rd2

1 + s4R/s1 − Rd2dsin2sppd
, s1d

where T and R are the transmission and reflection coeffi-
cients at the mirrors, respectively, and the(generally nonin-
tegral) order numberp is the phase difference in one round
trip, in units of 2p. For light of vacuum wavelengthl (wave
numbers=1/l) traveling at an angle of incidenceu to two
mirror surfaces separated by a distancet, the order number is
given by

p =
2t

l
cosu = 2ts cosu. s2d

At the center of the ring patternsu=0d, the order number will
in general not be integral, but can be written as an integerP
plus a fractional part«

p = P + « = 2ts. s3d

Hence, determination of the integral and fractional parts of
the order numbers at the center of the ring pattern for light of
unknown wave numbers and known wave numbersref
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(from a reference laser) allows us to determine the unknown
wave number quite simply as

s =
P + «

Pref + «ref
sref. s4d

For the reference laser used in our wavelength meter,sref is
known absolutely to 2 parts in 1010. With t=15 cm, the inte-
ger parts of the order numbers, which are known precisely,
are Pref<4.743105 and P<6.753105 (for s
<22 500 cm−1). Measuring the ring patterns determines«
and «ref to 5310−4, and thus the absolute accuracy of the
method is about 1 part in 109.

The fractional order numbers are determined by observ-
ing a slice through the Airy ring pattern with a silicon-diode
array, alternately exposing the instrument to light from the
unknown and reference lasers. Although it would appear
from the formula above that it is not necessary to know the
mirror separationt, in fact this must be measured very pre-
cisely in order to deduce the integer parts of the order num-
bers. We accomplish this by the “method of exact
fractions,”8,9 using a traveling Michelson wavelength meter
with an absolute accuracy of better than 1310−7. Oncet is
known to a precision of<0.3 ppm,Pref and P can be ob-
tained from«ref and « (measured from the ring pattern), s
(measured approximately with the Michelson wavelength
meter), andsref.

A small but significant correction at our level of accu-
racy arises from the wave number dependence of the phase
shift upon reflection from the aluminum mirrors, which has
not been included in the formulas above. The resulting cor-
rection to the order number is less than 5310−3 over the
wavelength region of interest, and is determined to a frac-
tional accuracy of 10% by the “method of virtual
mirrors,”2,10 in which measurements are made with different
mirror spacings.

II. APPARATUS

A. Interferometer

Figure 1 is a schematic diagram showing the experimen-
tal components and the light paths between them. The laser
beams from the frequency-offset-locked HeNe laser and a
CW dye laser are separately expanded by lenses. Computer-
controlled electromechanical shutters in the path of each la-
ser beam are used to select light from either laser for indi-
vidual analysis by the Fabry–Pérot interferometer. The paths
of the two laser beams are combined by a polarizing beam-
splitter cube. An expanded laser beam is focused by a
100 mm focal-length cylindrical lens to form a horizontal
line source on a spinning plastic wheel for illumination of
the interferometer. The downstream face of the plastic wheel
is roughened to scatter the transmitted laser beam over a
broad range of angles and to destroy its coherence, thereby
removing the speckle pattern on the interference rings, which
would be a source of noise. The scattered laser light is col-
limated by an 80 mm focal-length achromatic lens and
masked by a 33 mm diam aperture before entering the FP
vacuum enclosure.

The plane-parallel FP étalon(Burleigh Model RC-110)
is housed in a vacuum enclosure to eliminate corrections for
the index of refraction of air. The vacuum is maintained be-
low 30 mbar by a roughing pump isolated by a molecular
sieve filter to prevent contamination of the étalon mirrors.
The 50.8 mm diam vacuum windows are anti-reflection
coated BK-7 glass plates, flat tol /10 and parallel to 5 arc s.
The matched l /200 étalon mirrors are 50.8 mm diam
Spectrosil-B blanks possessing a flatness finesse of 100. The
reflectivity of the aluminum coatings is 85% at 632.8 nm,
resulting in a reflectivity finesse of 19.3. Bare aluminum is
chosen for the reflecting surfaces since its reflectivity is
broadband and phase shifts due to reflections from these sur-
faces are small and vary smoothly with wavelength.11,12 Ob-
served finesses vary from a maximum of 16 at the reference
wavelength to<12 at 420 nm. These modest finesses spread
the intensity of an interference fringe projected onto the pho-
todiode array detector over at least 5 pixels for accurate de-
termination of fringe positions to better than a single pixel
width. The uncoated sides of the étalon mirrors are wedged
by 10 arc minutes; the wedge angles of the étalon plates are
oriented at 180° with respect to each other, with the apexes
of the “prisms” up and down. These wedge angles eliminate
formation of additional étalons from these faces, but weak
back reflections from the uncoated sides produce faint sec-
ondary copies of the FP ring pattern above and below the
main pattern. The intensity of the secondary patterns where
they overlap the primary pattern is essentially zero due to the
line source illumination at the scattering wheel.

Coarse alignment of the étalon mirrors is accomplished
by fine-pitch mechanical screws. The ultimate alignment of
the étalon is made in vacuum by three piezoelectric crystal
(PZT) adjusters while simultaneously monitoring the mea-
sured finesse from an analysis of the interference pattern. In
addition to these alignment PZTs, 3 stacks of matched PZTs
can be used to scan the étalon separation over a distance of

FIG. 1. Schematic apparatus diagram. A HeNe laser offset-locked to an
I2-stabilized HeNe laser serves as the reference for wavelength determina-
tion of a CW dye laser locked to a saturated absorption line in Te2. A
Fabry–Pérot étalon is illuminated separately by light from these two lasers
and the resulting transmitted interference ring patterns are measured on a
linear photodiode array(PDA).
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2 mm corresponding toDPref<6. This capability has proved
to be invaluable for understanding experimental systematics,
and is a significant departure from previous FP-based wave-
length meters where the étalon spacings are static(except for
slowly varying drifts). Fabrication of the étalon assembly,
with the exception of the PZT material, is almost entirely
from Super Invar(coefficient of linear expansionaø0.36
310−6 °C−1). The mirror mount holding the PZT-actuated
étalon mirror is clamped to three Super Invar rods; it may be
translated along the rods and reclamped, permitting a choice
of the mirror spacing from less than 0.1 cm up to 15 cm.
Remounting the scanning mirror backwards and reversing
this mirror mount permits spacings up to 22.5 cm, which
were useful in determining the mirror phase shifts. After
evacuation of the étalon housing and thermal stabilization of
the étalon, drifts in the mirror spacing of approximately
1 nm per hour or less were observed for a spacing of 15 cm.

Transmitted light emerging from the FP vacuum enclo-
sure is focused onto the photodiode array(PDA) by a
2000 mm focal-length Schmidt-Cassegrain telescope, or a
pair of achromatic lenses in the case of small values of the
separationt of the étalon mirrors. An off-center portion of
the 200 mm entrance aperture of the telescope is used to
collect the light. With the exception of the Schmidt plate, the
telescope is all reflecting and thus nearly free of chromatic
aberration. The telescope has the further advantage that its
optical design results in a more compact apparatus compared
to that employing an achromatic lens of comparable focal
length. Mounting of the PDA onto the telescope is rather
straightforward given the standard threaded mount found on
the telescope. This results in an optical system that is easily
aligned on the ring pattern by translating the telescope and
PDA as a single unit, and is readily focused by the manual
control that translates the primary telescope mirror. For
t,4 cm, a combination of two achromatic lenses producing
a 666 mm focal length replaces the telescope to produce an
interference pattern with 10–15 rings on the PDA.

A slice along a diameter of the projected ring pattern is
detected by a linear PDA. The EG&G Reticon K-Series chip
consists of 1024 silicon photodiodes on 25mm centers, each
with a height of 250mm. The PDA has a quartz window and
is cooled to 5°C to reduce dark noise, permitting longer
integration times. The light intensity recorded by individual
pixels is digitized at a rate of 195 kHz by a computer data-
acquisition board, with complete patterns acquired every
13.5 ms. Typically, 10 individual ring patterns are acquired
and averaged for display and analysis. Data acquired with the
PDA darkened are used for background subtraction. A full
measurement cycle, including acquisition and analysis of one
averaged ring pattern from each laser, is completed at a rate
of approximately 1 Hz.

The reference wavelength used in this work is generated
by a Winters Electro-Optics Inc. Model 100 I2-stabilized
HeNe laser whose frequency is known to a few parts in 1011.
To provide a reference beam of increased intensity without
frequency modulation, a single-frequency HeNe laser(Re-
search Electro-Optics Inc. Model LTRP−0051-BW-NS)
housed in a pressure-stabilized Invar cavity is frequency-
offset-locked to the reference laser, yielding 900mW of

power. The frequency offsets<13 MHzd is directly mea-
sured by a frequency counter monitoring the beat frequency
of a portion of the offset-locked laser output combined with
that of the I2-stabilized HeNe laser on an amplified photodi-
ode (New Focus Model 1801). The uncertainty in the beat
frequency of <0.1 MHz leads to an accuracy of<2
310−10 for our reference wavelength.

B. Tellurium saturated-absorption spectrometer

A schematic of the intermodulation13 saturated-
absorption spectrometer is shown in Fig. 2. Laser light from
the dye laser using Stilbene 420 or Coumarin 480 is split into
a pump beam and a weaker probe beamsIpump/ Iprobe<10d. A
dual-frequency chopper modulates the pump and probe beam
intensities at 3.0 and 2.5 kHz, respectively, and supplies a
reference signal at 5.5 kHz. Mirrors reflect the two beams to
be collinear and overlapped as they traverse the tellurium
absorption cell in opposite directions. A portion of the probe
beam after transmission through the cell is sampled with a
beam splitter, detected by an amplified photodiode, and
phase detected at the 5.5 kHz sum frequency by a lock-in
amplifier.

The absorption cell is an evacuated 7.5 cm-long,
2.5 cm diam sealed quartz cylinder containing a small
amount of130Te. A tube furnace heats the cell to produce a
calculated Te2 vapor pressure14 of 0.91 mbar at 502°C. The
furnace has quartz windows on either side to reduce tempera-
ture gradients while permitting transmission of the laser
beams. The cell is centered in the furnace, while its cold arm,
which is bent to be parallel to the axis of the cell, extends
5 cm beyond the cell window into a region of lower tem-
perature nearer a furnace window. The cell body temperature
varies from 520°C near its center to approximately 515°C at
its windows. A temperature controller deriving its input from
a type-K thermocouple attached to the cold finger regulates
the temperature to within 3°C of the set point with an abso-
lute measurement accuracy of better than 2°C. We estimate
the total uncertainty in determining the coldest point of the
Te2 cell to be an additional 5°C, yielding an overall uncer-
tainty in the cold-point temperature measurement of 6°C.
The corresponding vapor pressure of Te2 and its uncertainty

FIG. 2. Saturated absorption spectrometer. Light from a dye laser is split
into separate pump and probe beams, modulated by a dual frequency chop-
per, and overlapped in a130Te2 cell heated to 500°C in a temperature-
regulated furnace. The resulting saturated-absorption signal is used to lock
the dye laser frequency to the side of the absorption line.
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is 0.91s13d mbar. The single-pass absorption for the Te2 va-
por at 502°C is 23s2d% for the Doppler-limited line at
20 564.385 cm−1, in agreement with other work.7 For the
same cell temperature, the single pass absorption at
22 634.330 cm−1 is 85s3d%.

The frequency of the tunable dye laser is stabilized by
locking it to the side of a saturated absorption line using the
DC ratio method. In this method, the output of the lock-in
amplifier is analog-divided by a laser power signal to remove
small (,2% peak-to-peak) dye-laser intensity fluctuations,
and the output is compared to a reference voltage. The volt-
age difference generates an error signal, which is fed back
into the dye laser’s external frequency input. Assuming sym-
metric line profiles, wavelength measurements were made
with the dye laser locked alternately on both sides of the
saturated absorption line at the same fractional absorption
and averaged. A fitting analysis of the line shapes with sym-
metric and asymmetric Lorentzian profiles indicates that,
with the present signal-to-noise(S/N) ratio, no asymmetries
that could shift the measured line center by more than
200 kHz can be detected. The line shapes have full widths at
half maximum(FWHM) of 15–25 MHz. Significant power
broadening of 5–7 MHz was observed for several strong
lines at higher pump powerss.50 mWd. No statistically sig-
nificant shifts in the measured wave numbers were observed
for lock-points varying between 25% and 75% of maximum
saturated absorption.

For measurements spanning the wavelength region from
424.9 to 462.3 nm, the output power from the dye laser
ranged from 75 to 350 mW for Stilbene 420 dye pumped
with 4.75 W of ultraviolet light from an Ar+ pump laser.
About 60% of that power was required for saturated absorp-
tion measurements, producing line shapes with excellent S/N
ratios of<75. The typical FP input power was 1.5 mW for
wavelength measurements in the range 420–465 nm, where
the responsivity of the PDA is lower by a factor of<2.5
compared to that at the reference wavelength. The relative
intensity of the two laser beams and the extent of their ex-
pansions along the horizontal plane were adjusted to produce
ring patterns with similar intensity envelope distributions for
both lasers. The majority of the remaining lights<25 mWd
was directed to a Michelson wavelength meter. In the
475.6–490.8 nm region, Coumarin 480 dye pumped by
3.0 W of ultraviolet light produced only 35−85 mW of out-
put power. The increased laser intensity fluctuations as well
as reduced Te2 absorptions in this spectral window resulted
in S/N ratios of less than 10 in the observed saturated-
absorption signals.

C. Michelson wavelength meter

The Michelson wavelength meter is based on a triangu-
lar design by Hall.15 The reference laser is a polarization-
stabilized HeNe. A small NIST-traceable “weather station”
monitors temperature, pressure and humidity, from which a
correction for the index of refraction of air is calculated.
With approximately 45 cm of travel and320 fringe multi-
plication of the HeNe reference fringes, it achieves an abso-
lute accuracy ofø1310−7. This level of accuracy is neces-
sary and sufficient for an accurate determination of the étalon

spacing by the method of exact fractions.8,9 Our implemen-
tation of this method utilizes measurements of the dye laser
wave number and the fractional order number at the center of
the ring pattern in the FP étalon for 8 wavelengths geometri-
cally spaced over a 1000 cm−1 span; details of the method
are given in the Appendix. In addition, the fractional order
number of the light from the offset-locked HeNe laser,«ref, is
measured. Together these data are analyzed for unambiguous
determination of the spacing of the étalon mirrors to better
than 1 nm for subsequent calculation of the integer part of
the order number at the center of the ring pattern. This pro-
cedure is necessary only once a day at the start of data ac-
quisition due to the very slow drift of the étalon spacing. The
Michelson wavelength meter is also used initially to set the
wavelength of the dye laser for a particular Doppler-free
transition to within 0.002 cm−1.

III. RING PATTERN ANALYSIS

As discussed in the Introduction, it is necessary to deter-
mine the fractional part of the order number at the center of
the ring pattern,«, to a relative precision of 5310−4 to
achieve a precision of 1310−9 in the measured wave num-
ber. To investigate possible systematic errors in the determi-
nation of «, the ring patterns were analyzed by a standard
nonlinear least-squares(NLLS) fit to a modified Airy pattern
(“Airy method”) and also by the usual analysis method in-
volving a plot of ring number versus the square of the ring
radius(“rings method”).2

A. Airy method

Figure 3 shows a typical ring pattern recorded by the
PDA, the results of a NLLS fit to it, and the subsequent
residuals. The fitting model for intensityI as a function of
position x on the PDA is given by a Gaussian intensity en-
velope with peak intensityI0, center locationx0, and FWHM
2wÎln 2, times an Airy functionAsxd, plus a constant back-
groundB

FIG. 3. A typical Fabry–Pérot interference pattern for 632.8 nm laser light
(dots) and a fit to a product of an Airy function and a Gaussian intensity
envelope(line). The upper curve shows the residuals from the fit. The frac-
tional order number is 0.0334(4) and the finesse is 14.2. The pattern is the
average of 10 scans of the PDA, each requiring 13.5 ms.
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Isxd = I0e
−sx − x0d2/w2

Asxd + B. s5d

The Airy function, approximated for small angles of inci-
dence on the étalon, is given by

Asxd =
1

1 + f sin2hpf«-sx-xcd2/sgj
, s6d

where f is a parameter related to the finesseF according to
f =s2F /pd2,« is the fractional part of the order number at the
center of the ring pattern,xc, ands is a parameter related to
the focal length f of the projection system and the integer
part of the order number at the center of the pattern,P,
according tos=2f2/P. (Note thatxc, the center of the inter-
ference pattern, is close to, but not necessarily exactly coin-
cident with, the center of the intensity envelope,x0.) In total
eight parameters,I0,x0 w,B, f ,xc,s and, most importantly,«,
are adjusted in the NLLS fit.

B. Rings method

A ring is defined by the locus of points at which the Airy
function reaches a local maximum. For rays with nearly nor-
mal incidence on the étalon, it can be shown from Eq.(6)
that the radius of thej th ring, r j =xj-xc, wherexj is the loca-
tion of the local maximum, satisfies

r j
2 = ss j − 1 +«d. s7d

Thus a linear plot ofr j
2 vs j yields« as«=1+ intercept/slope.

The individualxj are determined by fitting a function derived
as an approximation to Eq.(6) which is valid in the vicinity
of a ring peak when 2F /p@1. It is multiplied by the Gauss-
ian envelope function described above to correct for the non-
uniform laser intensity across the ring peak

Isxd = I0e
−sx − x0d2/w2 1

1 + k jsxj
2 − x2d2 + B. s8d

Herek j <1/sWjr jd2 whereWj is the FWHM of the ring, and
all other parameters are as defined for Eq.(6). Equation(8)
contains the asymmetry of the ring peaks, which decreases
with increasing ring radius.

The Gaussian-envelope parametersI0,x0,w and the
backgroundB are determined by modeling the entire ring
pattern as in the “Airy method”. Except forI0, they are fixed
during the fit of a single ring peak.

IV. MIRROR PHASE SHIFT CORRECTION

The formula for the “unknown” wave number given in
Eq. (4) does not include the effect of the phase change upon
reflection from the Al mirrors. It is convenient to include the
phase change at the reference wavelength in an effective mir-
ror separation,t, and introduce a wave-number-dependent
relative phase correctiondssd which is zero atsref. Hence
Eq. (3) becomes

s = fP + « + dssdg/2t. s9d

The standard method of determining the phase correction is
to measure the same wave number at two mirror
separations,2,10 sometimes referred to as the “method of vir-
tual mirrors.” It can be seen from Eqs.(3) and (9) that the
wave number measured without taking the phase correction

into account,smeas, is related to the true wave numbers by

smeas= s −
dssd
2t

, s10d

and thus a plot ofsmeasvs 1/2t yields the true wave number
as its intercept and the phase shift as the negative of its slope.
By taking measurements atmore than two spacings, we can
test for possible systematic errors.

Doppler-free 130Te2 transitions with s,21 626 cm−1

were measured at four different étalon spacings ranging from
2.76 to 22.54 cm. The remaining transitions were measured
at 7 spacings spanning essentially the same range. Measure-
ments of the saturated absorption transition at
22 634.330 cm−1 as a function of 1/s2td are shown in Fig. 4,
illustrating typical results. There are 77 line-center measure-
ments in total, with 47 of those made at the maximum spac-
ing. The linear fit gives d=−0.006 36s15d and s
=22 634.330 264s5d. Uncertainties for the parameters of the
linear fit have been scaled by the square root of the reduced
chi-squaredsÎxreduced

2 <1.7d.
Becausedssd is a smoothly varying function,11,12a more

accurate value can be obtained by fitting the data for our
whole range of wavelengths to a single function ofs. The
statistical information is only sufficient for a linear fit.(Note
that the dependence over the full range from our region to
632.8 nm isnot linear and thus we do not constrain the in-
tercept.) The dependence ofd on s over the spectral region
of interest is shown in Fig. 5. Uncertainties for the param-
eters of the linear fit have been scaled byÎxreduced

2 <2.1. The
rms residual from the fit to these data is 0.000 43 and the
maximum residual is 0.000 84. For an étalon spacing of
22.5 cm, choosingd=−0.004 32s43d at s=21 615 cm−1 (the
center of the wave number range) yields a phase correction
to s of −2.9s3d MHz, or a fractional correction of 4.4s4d
310−9. Thus the phase correction is essential, but its uncer-
tainty contributes only about 4 parts in 1010 to the error bud-
get.

FIG. 4. Measured wave number,smeas, for the saturated-absorption line at
22 634.330 cm−1 versus 1/s2td, where t is the étalon spacing. The phase
correction,dssd, at this wave number is equal to the negative of the slope
and the phase-corrected wave number is the intercept.
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V. SYSTEMATIC ERROR INVESTIGATION

Comparison of the dye laser wave number computed
from fractional orders derived by these two independent
methods serves as a check for computational and systematic
errors in analysis.

A. Computer simulations

Modified Airy patterns were computer-simulated under a
variety of assumptions in order to evaluate possible causes of
systematic error in values of«, and hence in the final wave
numbers. The main conclusions are as follows:

(1) The value of« is not sensitive either to creating a pattern
with one envelope function(e.g., Gaussian) and analyz-
ing it with another(e.g., triangular), or moderately shift-
ing the analysis envelope relative to the creation enve-
lope.

(2) The value of« is not sensitive to integrating over pixel
height. This was determined by including this integra-
tion in the simulation of a pattern with a known value of
«, but then analyzing that pattern for« using a model
that assumes zero pixel height. The ability to ignore this
integration in the analysis of the Airy pattern dramati-
cally sped up data acquisition.

(3) Ignoring the central region of the Airy pattern in the
analysis produces closer agreement between the two
methods of analysis. When« is near 0 or 1, there is a
broad central “bull’s eye” whose shape is quite sensitive
to the envelope function but contributes very little to the
knowledge of«, and for other values of«, the central
region contains only noise. In all our data analysis the
central region is, therefore, omitted.

(4) In the rings method, fitting the individual peaks with the
function of Eq.(8) gives better results than a symmetric
function such as a parabola or a Gaussian. The use of
Eq. (8) produces fractional differences between input
and analyzed values ofs at a level of 2310−10 (com-
parable to the “Airy method”), compared to typically

103 worse for the symmetric functions. These tests
were done by averaging up to 100 simulations with ran-
dom noise.

The differential refraction of the unknown and reference in-
terference patterns by the wedged substrate of the final étalon
mirror was examined theoretically and found to be inconse-
quential at our level of precision.

B. Experimental tests

The simulations were complemented by a number of ex-
perimental tests for systematic problems. One of the most
important relies on the ability to scan the étalon spacing
systematically using the PZT actuators. The addition of sys-
tematic variation of the étalon spacing represents a marked
improvement over previous wavelength meters employing a
fixed-spacing étalon that required a series of wavelength
measurements acquired over several days as the étalon spac-
ing slowly drifts to build a set of measurements spanning
significantly different values of« for both the reference and
unknown lasers.

With the dye laser frequency-locked to the side of a satu-
rated absorption feature, its wave number is repeatedly mea-
sured as the étalon spacing is stepped through a small change
in distance. The initial étalon spacing is determined by the
method of exact fractions. After a measurement of the dye
laser wave number, the computer reduces the étalon spacing
by a small amountsDt=6.3 nmd corresponding toD«ref

=0.02, computes a trial value for the new spacing, and per-
forms another measurement. This is repeated 50 times until
the mirror completes a full cycle of translation corresponding
to D«ref=1. A typical standard deviation for these 50 mea-
surements, which is used as the measurement error, is less
than 1 MHz. The laser wave number is then re-measured at
the opposite lock point of the saturated-absorption line shape
and the two results are averaged to produce a single deter-
mination of the transition wave number.

This important diagnostic procedure uncovered a subtle
systematic error which we were able to eliminate by chang-
ing the procedure used to focus the ring pattern, as well as
the projection lens used at small mirror spacings. Repeated
wave number measurements of the dye laser locked to a
saturated absorption line were made as the étalon spacing
was scanned over one order of interference at 632.8 nm. A
plot of the measured wave number versus HeNe fractional
order, at a small mirror spacingst=6.7 mmd, shown in Fig.
6, illustrates obvious discontinuities. It is apparent from Eq.
(4) that at shorter spacings, where the integer part of the
order number is smaller, this effect is magnified. These dis-
continuities arise at the two spacings where either« or «ref

crosses 0 or 1. It is precisely at these two points that the
analysis procedure for determination of« from the ring pat-
tern ignores another innermost ring in order to exclude the
central section as described above. Since the measured wave
number must be independent of the étalon spacing as well as
the portion of the Airy pattern we choose to analyze, these
discontinuities suggested to us that there might be a system-
atic deviation of the measured ring pattern from the theoret-

FIG. 5. The wave-number-dependent phase correctiondssd arising from
reflections in the Fabry–Pérot étalon has been measured at 10 different wave
numbers(see Fig. 4 for a typical measurement) and analyzed with a linear
fit.
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ical Airy pattern (modified by the intensity envelope func-
tion).

We then improved our data acquisition program to dis-
play in real time the residuals from the fit to Eq.(7) in the
rings method, and indeed observed a nonrandom pattern. We
found that we could remove this effect from either the HeNe
pattern or the dye-laser pattern, but not both at the same
time, by means of a small adjustment of the focus of the
projection lens(1 to 2 mm), which consisted of a 500 mm
focal-length achromatic lens in the case of the small mirror
spacings. This suggested that the observed effect was due to
chromatic aberration. We substituted a combination of two
different achromats with an effective focal length of 666 mm
to improve the compensation for this effect. The Schmidt–
Cassegrain telescope used to project the ring patterns onto
the PDA for the longest étalon spacings exhibited essentially
zero chromatic aberration.

It was then necessary to find a new criterion for position-
ing the PDA at the focal plane of the projection optics. Our
original method was to choose a PDA position that maxi-
mized the observed finesse. We subsequently found that the
optimum focusing condition is obtained by monitoring plots
of the residuals from the rings method linear regression, as
well as observing the fringe pattern and a numerical display
of the finesse for both reference and “unknown” lasers. Small
changes from the optimum focusing distance(,5 mm for
the 666 mm-focal-length achromat) produce obvious system-
atic deviations from zero in these residual plots, which tend
to be similar for both lasers. The PDA position is changed
until the residuals are minimized and the plots are flat for
both lasers, and the observed finesses, adjusted by the mirror
PZTs, are at a maximum. Data are always taken with a series
of values of«ref corresponding to an order change of 1 to
check that discontinuities in the plot of measured wave num-
ber versus« have been eliminated.

Another potential source of systematic error is the re-
cording of a slice of the Airy pattern that is not along a
diameter. To ensure that the PDA is aligned with the center
of the ring pattern, the PDA is translated in the vertical di-
rection while simultaneously monitoring« and looking for a
maximum. Repetition of this process by different individuals
leads to a scatter in the measured wave number of no greater
than 0.2 MHz, and is implicitly included in the error budget
as part of the item “reproducibility of results”(see below).
The position of the incoming laser light on the scattering
wheel is then re-optimized to ensure maximum intensity re-
corded on the PDA.(Although the interference pattern de-
pends only on the projection lens, the intensity envelope de-
pends also on the collimating lens and the source location.)
This procedure is then repeated several times. The PDA is
also translated horizontally so that the observed ring pattern,
as reported by the analysis software, is centered on the array.

VI. RESULTS AND DISCUSSION

A series of identical measurements of a given Doppler-
free saturated absorption line acquired over a few minutes
reveals a statistical scatter that is much less than 1 MHz.
Repetition of measurements of that transition on subsequent
days or after major changes of the alignment of the optics
produces small systematic shifts in the measured wave num-
ber. The probable sources of these shifts are distortions of the
observed ring patterns due to changes in alignment of the
PDA with respect to the center of the pattern, the focusing of
the final projecting optics onto the PDA, aberrations in these
focusing optics, or even changes in adjustment of the étalon
parallelism. Repeated measurements of transition wave num-
bers taken at the longest étalon spacing over several weeks
have a standard deviation of 0.98 MHz, which we adopt as
our estimate of the reproducibility of the measurements.

Typical pressure shifts for saturated absorption line cen-
ters in this wavelength region and temperature are
<0.75 MHz/mbar.16–18 For a 0.13 mbar uncertainty in the
Te2-cell pressure arising from the 6°C temperature uncer-
tainty, the uncertainty in the pressure shift should be
ø0.1 MHz. Since the pressure shift varies withs, a conser-
vative estimate of the uncertainty due to pressure shifts is
0.3 MHz. Uncertainties in the offset-lock frequency are less
than 0.2 MHz. Other uncertainties such as the frequency of
the reference laser and dispersion in the index of refraction
of residual gas in the evacuated FP étalon are negligible at
this level of precision. Assuming that the uncertainties in
determination of the phase dispersion corrections0.3 MHzd,
measurement reproducibilitys0.98 MHzd, pressure shifts of
absorption line centerss0.3 MHzd, line shape asymmetry
s0.2 MHzd and offset-lock frequencys0.2 MHzd are inde-
pendent, they have been added in quadrature to obtain a
1.1 MHz or 0.000 037 cm−1 overall estimate for the uncer-
tainty in the wave number determination of these130Te2 tran-
sitions. The error budget is summarized in Table I.

Measurements of130Te2 transitions spanning the spectral
region from 20 369 to 23 531 cm−1, using the longest étalon
spacing, have been corrected for the reflective phase shifts in

FIG. 6. Measured wave number,smeas, vs fractional order number«ref. A
systematic effect is clearly evident in the measured wave number of a130Te2
saturated absorption line as the étalon spacing is varied through one order of
interference at 632.8 nm. These discontinuities, which arise when either« or
«ref crosses 0 or 1, are evidence of deviation of the measured ring pattern
from an Airy pattern. This problem was eliminated by a new focusing pro-
cedure and a more achromatic projection system.
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the étalon mirror coatings with the values ofdssd from the fit
shown in Fig. 5. These results and previous
measurements7,17,19 are summarized in Table II. The agree-
ment with previous high-accuracy work of similar uncer-
tainty is excellent, supporting the assertion that these mea-
surements of Doppler-free saturated-absorption transitions in
tellurium are accurate standards at the ±1 MHz level. We are
in the process of increasing the number of measured transi-
tions in the spectral range from 21 500 to 23 750 cm−1 for
130Te2, where no other convenient frequency standards exist
at this level of precision. We are also planning to incorporate
frequency-modulation spectroscopy as a replacement for the
DC ratio method of frequency-locking the dye laser to the
saturated130Te2 features. This should improve the measure-
ment scatter and increase our rate of data acquisition signifi-
cantly. We also intend to extend the wavelength measure-
ment range of the instrument into the infrared region. The
only necessary change involves the replacement of the sili-
con PDA with an InGaAs array.
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APPENDIX: METHOD OF EXACT FRACTIONS
The “method of exact fractions”8,9 determines the integer

part of the order number,P, and a precise value of the mirror
spacing,t, by making use of determinations of the fractional
part, «, for at least two reasonably well-known wave num-
bers. From Eq.(4) we see that the order numbers must sat-
isfy

P2 + «2

P1 + «1
=

s2

s1
. sA1d

Using an approximate value oft, known values ofs1 ands2,
and the measured values of«1 and «2, we obtain initial
guesses forP1 and P2. A search of integer values for the
latter then determines the pair that make the fractions agree.

With the advent of tunable CW lasers, it makes sense to
inquire if there is an efficient way to chooses1,s2, . . . to
maximize the efficiency of this procedure, given that arbi-
trary wave numbers can be generated and measured toø10−7

absolute accuracy with a traveling Michelson wavelength
meter. Indeed, we have found a method in whichno search is
necessary. Our idea is to choose wave numbers separated by
intervals that form a geometric progression

s j − s j−1 = rss j−1 − s j−2d. sA2d

The first interval is chosen to be small enough to be conve-
niently counted, for examples1−s0=1 cm−1, corresponding
to P1−P0=30 for a 1 GHz-FSR étalon. Then, at each stepj
of the procedure we determine the difference of integer or-
ders exactly by using the approximatet from the previous
step,

TABLE I. Measurement uncertainties. See text for further explanation.

Source of uncertainty UncertaintysMHzd

Residual gas index of refraction dispersion negligible
Reference frequency negligible
Offset-lock frequency 0.20
Absorption line shape asymmetry 0.20
Pressure shifts 0.30
Phase-shift determination 0.30
Reproducibility of results(statistical) 0.98
Overall total(quadrature) 1.10

TABLE II. Saturated absorption measurements of130Te2. Measurements of wave numbersscm−1d of 10 tran-
sitions in130Te2, spanning the region from 425 to 491 nm are compared with existing high-accuracy work.

This work
Gillaspy and Sansonetti

(Ref. 7)
McIntyre and Hänsch

(Ref. 17)
Barwoodet al.

(Ref. 19)

20 369.513 701(37) 20 369.513 706(44)
20 476.871 022(37) 20 476.871 017(30) 20 476.871 063(20) 20 476.871 033(16)
20 569.705 514(37) 20 569.705 510(44)
20 769.195 166(37) 20 769.195 160(44)
21 020.718 476(37) 21 020.718 447(44)
21 626.668 960(37)
22 184.304 882(37)
22 634.330 275(37)
22 970.191 921(37)
23 530.779 797(37)
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Pj − Pj−1 = nints2tj−1ss j − s j−1d − s« j − « j−1dd, sA3d

where “nint” stands for nearest integer, and we compute a
more accurate value of the spacing,tj, from Eq. (3)

tj =
sPj − Pj−1d + s« j − « j−1d

2ss j − s j−1d
. sA4d

In order for this procedure to succeed, the calculated uncer-
tainty in the difference of integer parts,DP, must be much
less than 1 at each step, so that the true difference can be
determined unambiguously. A standard error propagation, in
which the uncertainty in the wave numbers measured by the
Michelson wavelength meter,Ds, dominates over that in the
FP fractional orders,D«, shows that the geometric ratio must
be chosen to satisfy

r , ÎsDP · 1 cm−1/30Î2Dsd2 − 1. sA5d

For DP=0.2 andDs=0.001 cm−1, we find r ,4.6. Thus, for
example, 6 geometrically spaced wave numbers can span an
overall range of more than 2000 cm−1, resulting in a mea-
surement oft to an accuracy of about 1 part in 107, limited
by the Michelson wavelength meter.
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