Rapid Detection & Diagnosis of Bacterial Pathogens in Clinical Specimens Using Laser-Induced Breakdown Spectroscopy

Presented at 2022 CAP Congress

Emma Blanchette
Department of Physics
University of Windsor

Introduction and Motivation

 We are using laser induced breakdown spectroscopy (LIBS) to rapidly diagnose bacterial pathogens

- Current methods of diagnosis takes ~ 1-3 days
 - Lack of technology for fast diagnosis
 use of broad spectrum drugs
 - Sepsis requires fast treatment; preferably within an hour of diagnosis
 - UTI's are the second most common infection people seek treatment for

Goal: Develop rapid technique to diagnose bacterial infection in clinical setting

LIBS has Potential for This Application... it's Fast!

- A laser is focused onto a target to create a high temperature microplasma
- Time-resolved spectra is recorded... all in under 1 minute!

Pulsed laser is focused on target surface which absorbs laser energy

Target material is vaporized, generating a cloud of atoms above the target surface

Cloud of atoms absorbs the remaining laser energy, forming a plasma

As the plasma cools, photons are emitted and collected for elemental analysis

Experimental Setup and Parameters

 Nd:YAG laser, with 10 ns pulse duration and 10 Hz pulse frequency

- Light is collected from ablation events and fed into a steel-encased optical fibre
 - NA = 0.22, core ϕ = 600 μ m
- Echelle spectrometer detects the light from fibre and generates a spectrum
 - Spectrometer uses an ICCD camera to convert photons to signal

Sample Preparation (Blood & Urine + Bacteria)

Results: Urine Spectrum

E. coli in sterile urine and Sterile Urine 2 µs delay after plasma initiation 20 SCFH Argon environment Single laser shot

Results: Blood Spectrum

E. Coli in sterile blood and Sterile Blood 2 μs delay after plasma initiation 20 SCFH Argon environment Single laser pulse

Is the Fingerprint of Blood/Urine Different than Bacteria?

- A partial least squares discriminant analysis (PLSDA) test was conducted using external validation to determine if bacteria can be detected in blood and urine
- ✓ We can detect several types of bacteria in blood and urine reliably

Average Specificity: 100%

Average Sensitivity: 98.90% Average Specificity: 100%

350

400

Can we differentiate between species?

- ✓ We can discriminate between species with high specificity and sensitivity (confirmed by others) using discriminant function analysis (DFA)
- ✓ We can differentiate between strains of *E. coli*
- ✓ Many multivariate techniques work²

	DFA			PLSDA	
E. COLI	True	False	E. COLI	True	False
Positive	95.65%	9.17%	Positive	89.63%	15.95%
Negative	90.83%	4.35%	Negative	84.05%	10.37%
STAPHYLOCOCCUS	True	False	STAPHYLOCOCCUS	True	False
Positive	54.05%	0.51%	Positive	86.49%	5.85%
Negative	99.49%	45.95%	Negative	94.15%	13.51%
STREPTOCOCCUS	True	False	STREPTOCOCCUS	True	False
Positive	95.59%	1.02%	Positive	99.26%	13.32%
Negative	98.98%	4.41%	Negative	88.68%	0.74%
MYCOBACTERIUM	True	False	MYCOBACTERIUM	True	False
Positive	88.31%	1.06%	Positive	96.10%	4.08%
	98.94%	11.69%	Negative	95.92%	3.90%

Specificity: 90.60 ± 21.33 %

PLSDA: Sensitivity: 93.13 ± 10.25 %

DFA - Diagnosing a Bacterial Infection in Blood

- Attempting to replicate previous results with:
 - Fewer cells
 - Non-zero background (coming from filter and blood)
- ✓ Average Sensitivity = 80.97 %
- ✓ Average Specificity = 90.8 %*

Bacteria	Sensitivity	Specificity	Classification Error
E. coli in sterile blood	78.8 %	90.4 %	15.40 %
S. aureus in sterile blood	86.1 %	89.4 %	12.25 %
E. cloacae in sterile blood	78.0 %	92.5 %	14.75 %

DFA – Diagnosing a Bacterial Infection in Urine

- Attempting to replicate previous results with:
 - Fewer cells
 - Non-zero background (coming from filter and urine)
- ✓ Average Sensitivity = 91.70 %
- ✓ Average Specificity = 95.8 %*

Bacteria	Sensitivity	Specificity	Classification Error
E. coli in sterile urine	96.7 %	98.3 %	2.5 %
S. aureus in sterile urine	91.7 %	91.7 %	8.3 %
E. cloacae in sterile urine	86.7 %	97.5 %	7.9 %

Class

S. aureus

E. coli

ANN Results – Diagnosing a Bacterial Infection in Blood & Urine

ANN on Bacteria in Blood

Can discriminate between species with good specificity and variable sensitivity

Slightly better than DFA

Avg Sensitivity: 82.5 %

Avg Specificity: 91.3 %*

Sample Type	Sensitivity	Specificity
Sterile blood containing S. aureus	87.5 %	89.2 %
Sterile blood containing <i>E. coli</i>	79.2 %	91.3 %
Sterile blood containing <i>E. cloacae</i>	80.8 %	93.3 %

ANN on Bacteria in Urine

 Can discriminate between species with high specificity and high sensitivity

Better than DFA

Avg Sensitivity: 95.8 %

Avg Specificity: 98.9 %*

Sample Type	Sensitivity	Specificity
Sterile Urine containing S. aureus	98.9 %	100 %
Sterile Urine containing <i>E. coli</i>	89.5 %	99.6 %
Sterile Urine containing E. cloacae	99.1 %	97.1 %

Parameters:

Test size = 20% of data (80% is used for the model)

Hidden layers = 1

Batch size = 32

Epochs: determined by algorithm (based on loss curve) Optimizing: hidden nodes & patience for each data set

Conclusions

- ✓ We have determined that spectra of blood/urine and bacteria are different
- ✓ We can reliably detect bacteria in sterile blood and urine
- ✓ DFA and ANN shows promising results for discrimination between species present in blood

Special Issue

Detection and Classification of Bacterial Cells After Centrifugation and Filtration of Liquid Specimens Using Laser-Induced Breakdown Spectroscopy

Applied Spectroscopy 2022, Vol. 0(0) I-II © The Author(s) 2022

Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/00037028221092789 journals.sagepub.com/home/asp

\$SAGE

Emma J. Blanchette¹, Sydney C. Sleiman¹, Haiqa Arain¹, Alayna Tieu¹, Chloe L. Clement¹, Griffin C. Howson¹, Emily A. Tracey¹, Hadia Malik¹, Jeremy C. Marvin¹ and Steven J. Rehse¹ ©

Applied Spectroscopy

Special Issue

Silver Microparticle-Enhanced Laser-Induced Breakdown Spectroscopy

Applied Spectroscopy 2022, Vol. 0(0) I-I2 © The Author(s) 2022

Article reuse guidelines:

sagepub.com/journals-permissions DOI: 10.1177/00037028221096483 journals.sagepub.com/home/asp

\$SAGE

Jeremy C. Marvin¹, Emma J. Blanchette¹, Sydney C. Sleiman¹, Haiqa Arain¹, Emily A. Tracey¹ and Steven J. Rehse¹

Acknowledgements

• Advisor: Dr. Steven Rehse

Colleagues:

- Haiqa Arain
- Emily Tracey
- Griffin Howson
- Alayna Tieu
- Chloe Clement
- Hadia Malik
- Caroline Alionte
- Grace Johnson
- August Baughan

• Sponsors:

- Natural Sciences and Engineering Research Council of Canada (NSERC)
- University of Windsor Outstanding Scholars

Commercial benchtop systems have been built...

Coriosity Laser Imager - Elemission

J200 – Applied Spectra

ChemReveal LIBS Desktop Elemental Analyzer – TSO

LIBS on Viruses? Size matters!

https://www.abpischools.org.uk/topic/pathogens/2/1

- Bacteria are ~1-3 μm
- Corona viruses are ~100-300 nm
- Volume is roughly 1,000 10,000 lower!
- Also, viruses are not rich / don't contain trace metals, as bacteria do.

https://www.cdc.gov/sars/lab/images.html

SEM of *E. coli* specimen from our lab

SEM of SARS coronavirus, Antiviral Therapy 9:287-289, 2004

Two known papers on the use of LIBS to identify viruses:

(full details in S.J. Rehse, Spectrochimica Acta Part B 154 (2019) 50–69)

detect the presences of an MS-2 bacteriophage (smallpox surrogate) J.L. Gottfried, Anal. Bioanal. Chem. 400 (2011) 3289–3301,

differentiation with LIBS of four strains of live *hantavirus* R.A. Multari et al., Appl. Opt. 51 (2012) B57–B64,

Metal Cone: Limit of Detection

Alexandra E. Paulick, Dylan J. Malenfant, Steven J. Rehse*
Department of Physics, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada

LOD ~ 11 000 CFU per laser ablation event

metal cone well-plate

insert

Recall:

Well-plate → LOD ~ 50 000 CFU per laser ablation event Insert → LOD ~ 90 000 CFU per laser ablation event

Bacteria on Agar – Initial DFA Results

 Bacteria was ablated on nutrient-free agar surface providing essentially zero background signal

Bacteria film deposited on agar

Ablation craters

Confirming the Different Spectral Fingerprints With ANN

- ANN was used to confirm the previous result
- 3 species of bacteria and several samples of sterile blood were input into our ANN
- ✓ Sterile blood is classified correctly 100% of the time
- ✓ We can reliably detect bacteria in blood

Sample Type	Sensitivity	Specificity
Sterile Blood	100 %	100 %
Sterile blood containing S. aureus	73.33 %	91.23 %
Sterile blood containing <i>E. coli</i>	53.33 %	98.86 %
Sterile blood containing E. cloacae	93.33 %	93.86 %

How do we use the bacterial signal?

- DETECTION: need to be able to detect the presence of bacteria from sterile sources
- ✓ We can discriminate between single-shot data of bacteria and sterile water with good accuracy¹
- ✓ After summing all single shots on a filter, we can discriminate between bacteria and sterile water reliably¹

	Single-Shot Spectra	Added Spectra
Sensitivity	87%	100%
Specificity	93%	100%

Sensitivity, Specificity, and Classification Error

Sensitivity = (True Positives)/(True Positives + False Negatives)
Specificity = (True Negatives)/(True Negatives + False Positives)

The classification error combines the sensitivity and specificity

Classification error = 1-(sensitivity + specificity)/2

Effect of Adding Spectra

Blank Filter Spectrum

Sodium Polyanetholesulfonate (SPS)

- Structure of the blood anti-coagulant; the only thing we see in our spectrum is sodium
- Doesn't appear to affect detection of bacteria

Image of Plasma

Ar filled chamber

Plasma

