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Abstract 

The aim of this thesis is to expand on and improve the existing techniques used for 

detecting and identifying bacterial pathogens in clinical specimens with laser-induced 

breakdown spectroscopy (LIBS). Specifically, the existing experimental procedures, 

including bacterial sample preparation and data acquisition, as well as the data analysis 

with chemometric algorithms were investigated. Substantial reductions in LIBS 

background signal were achieved by implementing rigorous cleaning steps and the 

introduction of the use of ultrapure water. Following this, a database of LIBS spectra was 

acquired from specimens of E. coli, S. aureus, E. cloacae, M. smegmatis, and P. aeruginosa. 

The use of both discriminant function analysis (DFA) and partial least squares discriminant 

analysis (PLSDA) were compared. A PLSDA model built using the sum of all spectra 

acquired from 21 filters of E. coli and deionized water resulted in a sensitivity and 

specificity of 100% and 100%, respectively, in an external validation. To optimize the 

classification accuracy of the single-shot spectra for E. coli, E. cloacae, and S. aureus, outlier 

rejection schemes and data pre-processing methods were investigated. Classification 

errors of 30% motivated the use of artificial neural network analysis with principle 

component analysis pre-processing (PCA-ANN). The average sensitivity and specificity 

obtained using a randomized 80:20 split validation of the data was 94.18% and 97.01%, 

respectively. External validation was done on 52 filters of E. coli, E. cloacae, and S. aureus, 

giving an average sensitivity of 65.7%, and on 49 filters of E. coli, S. aureus, and M. 

smegmatis giving an average sensitivity of 87.2%.  

Samples of blood and urine were obtained from a hospital and spiked with the same 

species listed above. 98.9% sensitivity and 100% specificity were achieved for detection of 

bacteria in urine. 96.3% sensitivity and 98.6% specificity were achieved for detection of 

bacteria in blood. Discrimination using PCA-ANN on species in urine using an 80:20 split 

resulted in an average sensitivity and specificity of 97.2% and 98.6%, respectively. External 

validation on 16 filters gave an average sensitivity 77.5%. Applying PCA-ANN using an 

80:20 split on species in blood resulted in 100% sensitivity and specificity. External 

validation on 19 filters gave an average sensitivity of 82.3%. These results indicate the 

potential usefulness of LIBS in the clinical setting.  
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Chapter 1: Introduction to Current Diagnostic Techniques for Bacterial 

Infections 

Bacteria are omnipresent microorganisms found in the human body and the 

environment. Of the bacteria that inhabit the human body, many are harmless, and are in 

some cases helpful. However, some bacteria can cause infection leading to illness and 

mortality. While some of these infections could be treated in the past with broad spectrum 

antibiotics, new antibiotic resistant strains of bacteria are emerging making them harder to 

treat. A 1996 report published by the World Health Organization (WHO) stated that 

microbial disease is the leading cause of premature death worldwide.1 A 2019 report by the 

Centers for Disease Control and Prevention stated that in the Unites States alone more than 

2.8 million antibiotic-resistant infections causing 35000 deaths were recorded.2 The 

number of antibiotic resistant pathogens continues to grow worldwide, causing many more 

deaths per year. Parallel to this rising number of antibiotic resistance agents is the 

economical strain on the health care system.2 Antibiotic resistant infections are difficult to 

treat and often require longer hospital stays, follow up visits, and the use of drugs that may 

be more costly than the basic antibiotic. Antibiotic resistance also threatens to impair 

modern medicine; many surgeries and treatments rely on the availability of antibiotics to 

fight post-surgical infections.2 Without the appropriate antibiotics, many life-saving 

medical procedures such as organ transplants cannot be offered. To combat this, several 

strategies are in use, including infection prevention through vaccination and sterilization, 

and the reduction of unnecessary use of antibiotics.2 Rapid pathogen identification can 

result in quick and targeted treatment and can be introduced as another strategy to combat 

antibiotic resistance as it will reduce overuse of broad-spectrum antibiotics.  

Aside from the effects of antibiotic resistance on patient outcomes, there are several 

other impacts of bacterial infections in general that cause a burden to the healthcare 

system and the population. For example, lower respiratory infections (LRI) caused by both 

viral and bacterial pathogens are a leading cause of death and infection for all ages.3 LRI 

infections alone cause over 2 million deaths a year in all ages and disproportionately affect 

children under the age of 5 and countries with lower socio-economic status.3 As well many 

infections can be acquired after invasive medical procedures causing prolonged hospital 
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stays and an overall greater burden on the healthcare system. These diseases that are 

readily curable still present a challenge and a burden to the healthcare system.2  

In this thesis I investigate a new practical way to diagnose pathogenic bacteria in 

clinical specimens using a novel laser-based technique called laser-induced breakdown 

spectroscopy (LIBS). While the use of LIBS for this application is novel, there are many 

other techniques to diagnose pathogens that can be classified into four broad categories, 

these categories are: microbiological techniques, serological techniques, genetic-based 

techniques, and compositional techniques. By understanding the advantages and 

limitations of each of the existing well-developed techniques, the reader can better 

understand the role that a rapid LIBS-based diagnostic could play in the diagnosis of 

bacterial infections, lessening the burden of bacterial disease, and aiding in the prevention 

of antibiotic resistance. We can readily compare the LIBS technique to existing methods.  

1.1 Microbiological Techniques of Diagnosis 

The focus of microbiological techniques is to diagnose based on the physiological 

characteristics of the bacteria. This can be done by observing how they react to chemicals 

and stains, their membrane composition, and what media they can grow in. This section 

will review the techniques of culturing, Gram staining, and microscopy that can be used to 

observe these microbiological traits. For a more in-depth review, the reader is encouraged 

to review Mechanisms of Microbial Disease (3rd Edition), Chapter 55, “Diagnostic 

Principles.”   

1.1.1 Culturing 

Bacteria can be grown in liquid or solid media, referred to as broth and agar, 

respectively.4 This process is known as culturing. Culturing is the most specific way to 

establish what bacteria is causing infection. The goal of culturing is to identify phenotypic 

traits characteristic of bacterial species, such as metabolic by-products, specific enzymes, 

utilization of various nutrients, and motility.5 There are many culturing strategies that can 

be used based on where in the body the infection is coming from. If the infection is present 

in sterile body fluids such as cerebral spinal fluid, the culturing strategy is to recover any 

microorganisms that might be present in the fluid.5 The bacteria will be cultured on a 
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variety of media to identify it. If the physician is looking for a specific pathogen in the 

sterile fluid, then specific media that the bacteria is known to grown on is used to confirm 

its presence.5  

Infections present in other regions of the body in which non-pathogenic bacteria are 

known to inhabit, such as the colon, are more difficult to diagnose with culturing 

techniques. The strategy used for this is selective media. A selective medium contains 

specific nutrients that are meant to isolate certain species of bacteria. Using this method, 

pathogenic organisms can be discriminated from the normal gut flora.4,5  

Culturing can identify the exact organism and can also establish a cell count, or colony 

forming unit (CFU) count, which will determine if enough bacteria were present to cause 

an infection.6 Cell culturing can also help the physician ascertain susceptibility to 

antibiotics. There are however many drawbacks to this method. Not all bacterial pathogens 

can be cultured, and some culturing takes a day or more to complete. Patient outcomes and 

targeted treatment often depend on the time of diagnosis, therefore making culturing a 

poor defense against antibiotic resistance.5 As well, interpreting a culture requires a skilled 

and experienced laboratory technician or physician, and a well-equipped microbiology 

laboratory with a large inventory of supplies and biochemicals – many of which are 

thermally sensitive or have limited shelf lives.5 These drawbacks make the microbiology 

techniques unideal. 

1.1.2 Microscopic Diagnosis Techniques 

Microscopy-based techniques rely on knowledge of the pathogen’s phenotypic 

properties. Under the microscope, features, movement patterns, and staining results can be 

used to accurately identify some bacterial species.5 Most infections cannot be diagnosed 

through simple microscopy since their physical characteristics are too simple or are not 

distinguishing. A common infection diagnosed solely by microscopy is Treponema 

pallidum, the bacteria that causes syphilis, since it’s spirochete shape and movement 

patterns are easily distinguishable from most other infectious or native bacteria.5 

Techniques employed with microscopy are Gram staining and fluoroscopy. 
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Gram staining is a method used often in conjunction with microscopy. It can potentially 

elucidate three clinically relevant pieces of information. The first piece of information is the 

presence of bacteria in a normally sterile bodily fluid, such as cerebral spinal fluid (CSF) or 

urine.7 Second, the morphology and staining properties of the organism can further direct 

efforts of diagnosis. Finally, with clinical specimens that have distinctive morphologic 

features and are present in highly specific regions or fluids of the body a definitive 

diagnosis can be made.5  

A major advantage to this technique is quick diagnosis; no culture is required to view 

bacteria under a microscope and Gram staining is a relatively quick procedure. As well, this 

technique can detect anaerobic organisms in many cases, such as Heliobacter pylori, 

without the need for culturing.7 One of the drawbacks to Gram staining and subsequent 

analysis under the microscope is analyzing cultures containing both pathogens and species 

native to the body. Under these conditions, the Gram stain cannot distinguish a pathogen 

causing infection. As well, highly trained and experienced professionals are needed to 

interpret stains under a microscope.5 More information on the procedure of Gram staining 

is given in chapter 3.  

Fluoroscopy is also used in conjunction with microscopy. Fluoroscopy uses an antibody 

tagged with a fluorescent substance which allows the microscopist to visualize where the 

antibodies are binding. The specificity of this test depends on the specificity of the 

antibodies used and the choice of antibodies used depends on physician expertise.5 

1.2 Serological Techniques of Diagnosis 

Serological techniques rely on the detection of antigens of microorganisms and 

antibodies produced in bodily fluids through the antibody-antigen specific reaction.5 

Understanding the basics of the antibody-antigen specific reaction is required for 

understanding serological techniques of diagnosis. The antibody is a protein that is made 

up of two heavy chains and two light chains. Each light chain and heavy chain have constant 

and variable regions; the region we are concerned with here is the variable region. The 

sequences of amino acids in the variable region are different for each antibody and 
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correspond to one antigen. Therefore, the antibody can bind specifically to one antigen. 

These techniques are used to characterize the host’s immune response.8  

This section will summarize the use of the most prevalent serodiagnosis methods, 

including enzyme linked immunosorbent assay (ELISA) and Western blotting. A more 

detailed description of these methods is given in Mechanisms of Microbial Disease (3rd 

Edition), Chapter 55, “Diagnostic Principles”. 

1.2.1 Western Blotting 

Western blotting, also known as the immunoblot, is a highly specific test that allows for 

a protein to be identified in the midst of a complex mixture of other proteins due to the 

antibody-antigen interaction.5 The technique first uses gel electrophoresis to separate the 

antigenic molecules from a pathogen. The separated macromolecules are then placed or 

‘blotted’ onto a solid matrix. Patient serum can then be added to the matrix to determine if 

any of the patients’ antibodies match with the antigens.5 

A notable advantage of this technique is the high sensitivity and specificity; the highly 

specific nature of the antibody-antigen interaction dictates this. As well, this technique in 

theory would need only one antibody to correctly diagnose, making the limit of detection of 

this technique very low.5 However, a major disadvantage is that it has limited use for any 

early diagnosis of acute infections. When the body responds to an acute infection, it takes 

time for the immune system to produce the appropriate antibodies needed to fight off 

infection.4 As well, once these antibodies are produced, they stay in the body indefinitely, 

which indicates another disadvantage: unless further tests are performed, the physician 

cannot distinguish if the antibodies are part of an ongoing infection or exist because of a 

previous infection.4 Another disadvantage of this technique is that immunocompromised 

patients have a weak serological response, rendering an antibody based test ineffective.9 

1.2.2 Enzyme Linked Immunosorbent Assay 

Enzyme linked immunosorbent assay (ELISA) is a technique that can detect and 

quantify proteins, antibodies, and other substances in solution.10 ELISA is classified as an 

antigen detection test, which uses antibodies to capture microbial antigens.5 First, the 



6 
 

antigen of interest is immobilized on a solid matrix support. Next, the antibody in patient 

serum is complexed with an enzyme that catalyzes the production of coloured compounds. 

The solid support is then incubated with this patient serum; if the antibodies that 

correspond to the antigens on the solid support are present in the serum, they will bind to 

the antigens. Any other material present in solution that does not bind is removed in a 

washing step, leaving behind only the antibodies bound to the antigens.9 The purpose of 

the enzymes is for easier visual detection of the antibody-antigen complexes left behind 

after the washing step and improving the sensitivity of the technique.5 This process is 

shown schematically in Figure 1.1 

 

Figure 1.1: An overview of ELISA. (1) The antigen is adhered to a solid matrix support. (2) The antigen is inoculated with 
antibody and attached enzyme. (3) Substrate is added to mixture and enzyme converts it to coloured product. Adapted 
from ref [10]. 

The advantages and disadvantages of ELISA are similar to Western blotting. The 

advantages are the high sensitivity and specificity, as well as low numbers of antibodies 

required for detection.10 The disadvantages are the extremely low numbers of antibodies 

present at the beginning of infection and the additional number of tests required to 

determine if the infection is ongoing or occurred earlier.4 Additional disadvantages to this 

technique are that the presence of an enzyme on the antibody may decrease the affinity 

between the antibody and antigen and labelling antibodies with enzymes can be time 

consuming and expensive.10 As well, the presence of antibodies in immunocompromised 

patients is often too weak to provide a definitive test response.9 

1.3 Genetic Probes 

Genetic based diagnosis relies on isolating and identifying DNA sequences that are 

specific to a certain pathogen. DNA is composed of two separate, but complementary 
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strands made of nucleic acids that are held together by hydrogen bonds. Because hydrogen 

bonds are relatively weak, they can be separated easily using heat in a process called 

denaturing. Putting the strands back together is called annealing; it can be done by simply 

cooling the DNA. Only complementary strands will be able to bind to one another once they 

are cooled.11  

In this section, the polymerase chain reaction (PCR) to create more copies of DNA will 

be described, as well as the diagnostic test of fluorescent in situ hybridization (FISH). There 

are some inherent advantages and disadvantages that these nucleic acid techniques share. 

Advantages include speed of diagnosis over cultivation-based techniques, which can be 

accomplished within hours and with high sensitivity. Disadvantages include inability to 

further study the organism for antibiotic resistance and strain type.8 As well, the 

techniques are sensitive, but a large amount of DNA material is needed to get a positive 

test. Therefore, before the probe is applied, PCR must be done for DNA amplification.8 For a 

more detailed description of these processes, see Mechanisms of Microbial Disease (3rd 

Edition), Chapter 55, “Diagnostic Principles.” and Bacteria Pathogenesis: A Molecular 

Approach, Chapter 3, “Molecular Approaches to Diagnosis and Characterization of Bacterial 

Infections.” 

1.3.1 Fluorescent In Situ Hybridization  

Fluorescence in situ hybridization (FISH) is a technique that relies heavily on the ideas 

of denaturing and annealing of DNA strands. FISH takes advantage of this process by using 

a probe sequence of nucleic acid with a fluorescent molecule attached to it; this is the first 

step of the process. The second step is to heat both the probe genes and the genes isolated 

from the microbial organism to denature them. The single stranded probes are then added 

to the mixture of single stranded DNA. Cooling of the new mixture takes place to anneal the 

probe to the complementary target gene sequence if it is present. The fluorescent molecule 

shows the site of hybridization between the two strands. The mixture is typically analyzed 

under the microscope.12 This process is shown schematically in Figure 1.2. 
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Figure 1.2: FISH process. Target DNA and fluorescence tagged probe sequence DNA is first denatured. Annealing of the 
target and probe occurs and fluorescence is detected. Figure created with bioRender. 

The types of probes used have evolved over the decades as the technique became more 

prominent.13 Originally, probes for the DNA or RNA of a specific bacterium were used, but 

this posed several challenges. One of these challenges was getting the length of the 

nucleotide sequence big enough to be more specific, small probes would be present in too 

many target molecules, large probes decrease selectivity towards the target. This method 

typically used sequences about 15-30 bases long and since each bacterium contains only 

one genome, the intensity of the fluorescence was not high.13 Modern day approaches focus 

on using rRNA sequences which has several advantages over the previous method. First, 

most bacteria contain a few hundred to several hundred thousand ribosomes per cell 
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which greatly increases intensity of fluorescence. Second, one probe sequence can identify 

several types of bacteria.14 

A notable advantage of FISH is that it can diagnose species that are notoriously difficult 

to culture because they are obligate or facultative anaerobes. Prominent anaerobic 

pathogenic bacteria that FISH can detect include Coxellia burnetii and Tropheryma 

whipplei, which cause infectious endocarditis. As well, Yersinia pestis, infectious agent of 

the bubonic, septicaemic, and pneumonic plagues can be detected with FISH.14 These 

diseases can be highly fatal if not detected early,2 making FISH and other non-cultivation-

based techniques crucial. This technique also has speed and a low operating cost, making it 

more economical. As well, high sensitivity can be achieved since only one cell is required.14 

A notable disadvantage includes expertise of the operator when examining the final 

mixture; an operator with considerable education and training is required. As well, since 

microscopic analysis occurs, there is no standardization, and many false-positive results 

occur.14 

1.3.2 Polymerase Chain Reaction 

Polymerase chain reaction (PCR) is a technique that makes several copies of the target 

DNA sample.5 First, the target gene is denatured, and a primer is annealed to each strand. 

Extension of the DNA occurs by adding a DNA polymerase and additional nucleic acids to 

the solution. The DNA polymerase synthesizes a new strand complementary to the 

template strand in the 5’ to 3’ direction. Once the DNA polymerase has completed 

catalyzing all the DNA synthesis, the solution is once again denatured so that all original 

strands and all newly synthesized strands become the template for the next cycle of 

polymerization.5 The overall process can then be summarized in three steps as follows: 

denaturation (heating), annealing of primers, and DNA synthesis (cooling). With each cycle, 

the number of DNA copies in solution doubles. Once a large amount of DNA is obtained 

from the reaction, the strands are detected using gel electrophoresis.15 This process is 

shown schematically in Figure 1.3. 



10 
 

 

Figure 1.3: The process of polymerase chain reaction. Denaturation of the target strand (black) occurs first, followed by 
the annealing of a primer (red) to the target strand, and elongation of the new strand (green) creates a new copy. By the 
end of the process, there will be 2n copies, where n is the number of cycles. Figure created with bioRender. 

There are several advantages to using PCR, one being that PCR is very economical. 

Unlike culturing, PCR requires only one reagent or primer to be used for every bacterial 

species. This is because PCR is performed on bacterial rRNA genes which contain nearly 

universal sequences across all species of bacteria. As well, PCR kits are relatively easy to 

use; they require less operator training because they come with simple instructions.15 The 

disadvantage with this technique is the high potential for cross-contamination due to its 

high sensitivity and therefore false positives are commonly observed.5 
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1.4 Compositional Spectroscopic Methods  

The most recent advancements for diagnosis of bacterial pathogens depend on 

analyzing the composition of the bacteria of interest. Two principle methods that are used 

in composition analysis are matrix-assisted laser desorption ionization time-of-flight mass 

spectrometry (MALDI-TOF MS) and Raman spectroscopy. Both rely on the specific 

molecular or protein composition of bacterial cells. MALDI-TOF MS uses the proteins of 

bacterial cells as a ‘fingerprint’ to identify each species.16 Raman spectroscopy uses 

electromagnetic radiation to probe the molecular composition of the outer membranes of 

cells to produce a characteristic scattering spectrum.17 These techniques have only been 

introduced and popularized over the last decade.18 For a more in-depth review on MALDI-

TOF MS the reader is encouraged to consult the textbook, MALDI-TOF and Tandem MS For 

Clinical Microbiology.  

1.4.1 Matrix Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry 

MALDI-TOF MS uses mass spectrometry (MS), which ionizes chemical compounds into 

charged particles and measures the mass to charge ratio. Alone, MS can typically only 

analyze smaller molecules, but used in conjunction with matrix assisted laser desorption 

ionization (MALDI), it can be used on larger biomolecules such as proteins.18 General 

sample preparation for MALDI-TOF MS begins by placing the sample in an organic matrix 

solution. Upon drying, the matrix and sample crystalize. Typically, samples are prepared in 

wells on a MALDI target plate. Applying a laser to the sample well ionizes the samples.18 

After ionization, the charged samples are accelerated across a fixed potential causing them 

to separate based on the mass-to-charge ratio. Measurement of the time-of-flight (TOF) of 

the protein fragments through a flight tube provides a characteristic spectrum called the 

peptide mass fingerprint (PMF). The majority of molecules detected in MALDI spectra are 

ribosomal proteins.16 Diagnosis of the organism is done by comparing the PMF received to 

known PMF spectra in a database. The genus of the organism can be established using this 

method, and often the strain level.16  

There are several advantages of this technique. It is relatively inexpensive to run 

samples, and results are available at the species and strain level in minutes.16 One of the 
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major disadvantages is cost; there is a large initial investment to obtain a machine and 

continued investment is required for maintenance and servicing. This makes MALDI-TOF 

MS not readily accessible in smaller hospitals and clinics. As well, there are some closely 

related bacterial species or strains that are often confused for one another when using 

MALDI-TOF MS; an example being Streptococcus species.16 MALDI-TOF MS requires 

enough bacteria to make a diagnosis, so culturing before analysis is often required. This of 

course limits the technique to identification of organisms that can be cultured. Depending 

on the species, this can add several hours to the time before a diagnosis can be made.16  

1.4.2 Raman Spectroscopy  

Raman spectroscopy relies on the inelastic scattering of laser light from molecules. The 

frequency of the scattered photons is shifted either up or down relative to the frequency 

used to probe the molecule. This is called the Raman shift and it provides information 

about the molecule’s vibrational modes.19 Analysis and classification of the resulting 

spectra is typically carried out by chemometric algorithms.19  

Several advantages exist for the use of Raman spectroscopy on diagnosis of pathogenic 

organisms. This technique is culture independent and does not depend on growth media 

and growth phase. However, unlike MALDI-TOF, this is a non-destructive technique. High 

specificity can also be achieved using Raman spectroscopy at a relatively low cost.20 

Disadvantages of the technique include lower signal due to high background fluorescence; 

amino acids and nucleic acids make up this interfering background signal. Raman 

spectroscopy is also an emerging technology that is still under investigation for bacterial 

diagnosis, and therefore no commercial database exists for diagnosis.19 

1.5 Scope of Thesis 

The goal of our group’s work is to use LIBS to develop a rapid medical diagnostic tool 

for bacterial infections. The focus of my thesis specifically is to develop a quick sample 

preparation method for bacteria in bodily fluids. My thesis will also describe our efforts to 

improve the detection of bacteria by reducing the background signal through more 

rigorous cleaning methods. My thesis will present the results of detection and diagnosis of 

bacteria in sterile clinical fluids, including blood and urine.  
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The first chapter of my thesis describes the current state of the antibiotic resistance 

crisis as well as notable challenges for diagnosing and treating infections in the clinical 

setting. LIBS is introduced as a robust, cost-effective technique that addresses many of the 

issues currently faced in the clinic because it will quickly diagnose deadly bacterial diseases 

and improve treatment timelines, thereby reducing the rate of antibiotic resistance. The 

first chapter of this thesis also provides the reader with a comprehensive overview of the 

current diagnostic tests used in the clinic, including the methodologies of each test and the 

advantages and disadvantages of each test, thus allowing the reader to better understand 

the relative advantages and disadvantages of the LIBS technique as it is used here.  

The second chapter of my thesis provides an overview of the work that has been done 

in the field of LIBS with special emphasis given to LIBS done on biological specimens. This 

chapter describes the progression of the field from the initial studies conducted in 2003 

focused on single-cell detection of Bacillus anthracis, to the first applications of 

chemometric algorithms, and finally to the study of more complex systems of cells. Chapter 

3 of my thesis will introduce and discuss the LIBS theory, experimental setup, and 

methodologies used throughout the experiment. It will also contain an introduction to the 

chemometric algorithms used in this work. Chapter 4 will discuss reducing the background 

signal of our bacterial spectra by investigating more rigorous cleaning procedures, differing 

ablation substrate, and the water used for bacterial storage and preparation. Outlier 

rejection techniques are also investigated with the goal of improving discrimination. 

Chapter 5 discusses classification of bacteria by species using chemometric algorithms. 

Several preprocessing methods are applied to the data21 before classification for both 5-

class and 3-class tests. A new chemometric algorithm was developed and applied to the 

data which improved results. Chapter 6 describes detection and diagnosis of bacteria in 

sterile blood and urine. Detection of bacteria in sterile blood and urine is done by using 

chemometrics to compare spectra of sterile blood and urine to those contaminated with 

bacteria. Diagnosis between bacterial species present in either blood or urine is 

demonstrated in 3-class and 4-class tests using the same techniques used in Chapter 5. 

High accuracy of detection in clinical fluids is achieved, as well as in discrimination 

between species. Finally, chapter 7 focuses on studying the efficacy of dual centrifugation. 
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However, while studying dual-stage centrifugation, it was found that the deposition of cells 

on filter was not occurring as consistently as originally thought. Through further 

investigation, evidence suggested that the issues with our deposition procedure were the 

poor seal between the cone and filter, and cells going around the filter instead of landing on 

it. Suggestions for future studies are made in this chapter to prevent this flaw in deposition 

and improve sample reproducibility.  
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Chapter 2: A Review of LIBS on Bacteria 

Despite the many advancements of modern medicine in both diagnosis and treatment of 

pathogenic microorganisms, they are still a great threat to the human population. It is 

recognized that there is a need for a diagnostic tool that can quickly and accurately detect 

bacterial pathogens for more targeted treatment.22 As discussed in the previous chapter, 

there are several existing techniques that provide great sensitivity and specificity, but 

typically at the cost of time, money, or both. Culturing is highly specific and provides a 

wealth of information about the pathogen, but often takes days to perform and is limited; 

not all bacteria can be cultured. Methods that require culturing before analysis, such as 

MALDI-TOF MS, suffer from the same shortcomings. A common disadvantage across many 

of the techniques, including culturing, FISH, and Gram staining is that they require operator 

expertise in performing the tests and interpreting results. Serological methods are easy and 

cost efficient to perform, but they often require some expertise in interpreting the result 

due to high cross-contamination potential and the presence of non-pathogenic bacteria. 

Finally, MALDI-TOF MS and Raman require little expertise to run but require huge capital 

investments and maintenance.23  

LIBS is a solution proposed for many of these drawbacks in diagnosing bacterial 

pathogens and a significant effort has been made by several groups to make LIBS a viable 

option for pathogen diagnosis. This chapter will expand upon the previous efforts made by 

other groups investigating LIBS on pathogens. In this thesis, the proposed solution of LIBS 

is expanded upon by improving detection of bacteria and investigating LIBS on bodily 

fluids such as blood and urine to develop a point of care diagnostic tool. For a greater in-

depth review on applications of LIBS on tissues, cancers, dentistry, surgery and other 

medical implementations, the reader is directed to Laser-Induced Breakdown 

Spectroscopy: Theory and Applications, Chapter 17, “Biomedical Applications of LIBS”, as 

well as “A Review of the Use of Laser-Induced Breakdown Spectroscopy for Bacterial 

Classification, Quantification, and Identification,” by Steven J. Rehse.  
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2.1 An Introduction to Laser-Induced Breakdown Spectroscopy 

Laser-induced breakdown spectroscopy (LIBS) is a rapid minimally-destructive 

spectroscopic technique used to determine the elemental composition of a sample.24 A 

typical LIBS experiment will focus a pulsed laser with pulse duration of a nanosecond, 

picosecond, or femtosecond onto a target material. The focused pulse ablates the target and 

ejects particles into the air directly above the target. The energy from the rest of the 

incoming pulse is absorbed by this newly formed cloud, creating a plasma. As the plasma 

cools, it gives off light that is characteristic of the elements in the plasma, which is collected 

by an optical fibre connected to a spectrometer, which results in a time-resolved optical 

spectrum.  The spectrum can then be used to quantify the concentration of the elements 

present or used as a fingerprint to qualitatively identify the material ablated.24 A summary 

of the process of LIBS is shown in Figure 2.1.25 

 

Figure 2.1: A summary of the LIBS process: (a) the incoming laser pulse, (b) laser pulse ablates a portion of the tagret 
forming a cloud of atoms above the analyte, (c) the remainder of the pulse is absorbed by the cloud, creating a plasma, 
and (d) the plasma gives off light as it cools. Adapted from ref [25]. 

The technique of LIBS is highly flexible, it can be used on solid, liquid, and gas phases 

and can detect very small amounts of material, typically parts per million or lower. It is a 

versatile technique that can detect a wide range of elements using either UV, visible, or 

infrared light. The technique is extremely fast; the time from the start of the pulse to 

displaying the data occurs in less than 1 second. With handheld LIBS devices, little 

expertise is needed because of the ease of use, and with chemometric algorithms for data 

analysis, virtually no expertise is needed for interpretation of results.26 



19 
 

Because of the high flexibility and high sensitivity, LIBS has found applications in 

several fields of study.27 In the category of environment quality control, it has been used to 

study soil composition and quality extensively. A major application of soil study is 

agriculture where soil is tested with LIBS to determine which crops it will sustain best.28 

LIBS is used for geochemical fingerprinting to determine which geological processes were 

involved in the formation of a given rock or mineral.29 LIBS at a distance (called “remote 

LIBS” or “stand-off LIBS”) is used for the detection and identification of trace explosives.30 

LIBS on metals and quantifying metal alloys is another lucrative field of application.31 

In the food industry and health sector, LIBS has been investigated for rapid pathogen 

detection and diagnosis. Rapid, real-time, and portable detection of pathogens is sorely 

needed in the food industry, as food-borne illnesses account for approximately 300,000 

hospitalizations and several thousand deaths per year.32 As well, the annual cost due to 

strain on the health care system and lost productivity is estimated between $2-$6 billion.33 

Currently the methods used to detect bacteria in food are ELISA and culturing, which are 

time consuming.34 Work was done by Barnett et al. specifically for the food industry to 

detect Salmonella enterica in milk, chicken broth, and brain heart fusion using LIBS. 

Efficient identification was achieved with a fourth harmonic (266 nm) nanosecond LIBS 

system.35 

In the health sector, proof of concepts involving the discrimination between pollen 

spores and Bacillus anthracis spores, as well as the detection of yeast and fungal spores 

have led to several advancements being made in diagnosing bacterial infections.36  

2.2 A Review of the Progress Made in LIBS on Bacteria  

Studies using LIBS on bacteria first appeared in 2003, in part motivated by the 

bioterrorism attacks with Bacillus anthracis, or ‘anthrax’ in 2001. These studies consisted 

mostly of proof-of-concept and focused heavily on the ability to achieve appreciable 

signal.36 Morel et al. tested 6 different types of bacteria and showed that compressed 

bacterial pellets had a homogenous composition.37 Hybl et al. demonstrated single cell 

detection capability when bacteria was delivered through dense aerosol streams. They also 

demonstrated discrimination using principal component analysis (PCA) between bacteria 
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B. globigii spores, pollen spores, and fungal spores; this is shown in Figure 2.2.38 These 

early works laid the foundation and demonstrated proof-of-concept for continued studies 

of LIBS on bacteria. These studies however had some inherent flaws; many of the testing 

substrates involved very high numbers of bacteria compressed into unrealistic freeze-dried 

pellets. As well, no method of discriminating between species that produced highly similar 

spectra was investigated. However, it was demonstrated early on that spectra from other 

interferents such as pollen spores could be distinguished from bacterial spores, as shown 

by Samuels et al.36  

 

Figure 2.2: Principal component analysis (PCA) was used to generate a 3-dimensional plot to show the discrimination 
between media, pollen, fungus, and bacteria (Bg). Figure adapted from ref [38]. 

It was recognized early on that chemometric algorithms would play a large role in 

discriminating between bacterial species. A detailed description of how these chemometric 

algorithms are specifically used to discriminate bacterial LIBS spectra is provided in 

Chapter Three. In 2007, Merdes et al. began using principal component analysis (PCA) to 

distinguish between B. anthracis and other biological interferents, namely pollen spores, 

egg albumin, molds, and starch. Using the MATLAB PCA program and spectra with 2048 

channels they were able to demonstrate successful identification of B. anthracis with a false 
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negative rate of 3% and false positive rate of 1%.39 Development of other chemometric 

algorithms by the United States Army Research Laboratory followed this, with focus mostly 

on developing and testing artificial neural networks (ANN) and combining these with 

linear regression models. They focused on identifying the pathogenic bacteria Bacillus 

atrophaeus on unknown background substrates such as road dust or egg albumin.40 

Further progression in chemometrics was accomplished by Cisewski et al. who investigated 

using linear models to pre-process data before classification using a support vector 

machine (SVM). The goal of this approach was to categorize the analyte as a Bacillus spore. 

This method demonstrated that pre-processing of data could work and performed well 

with a classification error of 3%.41 

Elucidating the appropriate parameters and how to use the chemometric algorithms 

followed shortly after development and testing with work done by Gottfried et al. and 

Munson et al. on down-selecting the number of variables used for testing. The reason for 

this was to lessen computing requirements and to ensure that the model was not being 

overfitted.42,43 Munson et al. compared the chemometric algorithms PCA and soft 

independent modelling of class analogy (SIMCA) using Bacillus organisms and common 

interferents. They reduced the number of variables used in the algorithms by selecting only 

the lines in spectra that were pertinent to their analysis and disregarding any lines that 

gave them no information. Removing lines as opposed to a full-spectrum analysis is still 

being investigated today.42 Gottfried et al. used this idea of variable down selection and 

partial least squares discriminant analysis (PLSDA) to discriminate between 

Staphylococcus aureus, Escherichia coli, Bacillus atrophaeus, MS-2 bacteriophage, and α-

Hemolysin. By carefully choosing variables to down-select, they achieved excellent 

discrimination of the 5 aforementioned targets.43   

Efforts made in testing the limits of chemometric algorithms in the interest of pursuing 

clinical diagnostic applications were occurring in parallel. Using discriminant function 

analysis (DFA) and down-selecting to 19 independent variables, Rehse et al. attempted to 

classify 3 strains of E. coli, environmental mold, and Candida albicans yeast. This was the 

first strain level discrimination between bacteria.44 The effect of culturing in a different 

media on discriminatory ability was tested using the same species previously mentioned 



22 
 

and adding pathogenic enterohemorrhagic E. coli to the analysis. 100% discrimination was 

observed despite the different culturing media.45 Finally, the same technique was used to 

determine the effect of MacConkey agar which contains bile salts that alter bacterial 

membranes. Two strains of E. coli were used along with Pseudomonas aeruginosa. The 

analysis demonstrated that MacConkey agar media was the only media that affected 

discrimination.46 

Building on this, Rehse et al. purposely altered the membrane chemistry of Gram-

negative bacterial species by using different culturing media. They found that LIBS could 

monitor the changing concentrations of the cations Ca, Mg, and Na and concluded that LIBS 

was possibly a serological or surface antigen-based detection technique.47 Early work was 

also done by Baudelet et al. to compare nanosecond LIBS to femtosecond LIBS. Genus level 

discrimination was accomplished between Acinetobacter baylyi, Bacillus subtilis, Erwinia 

chrysanthemi, Escherischia coli, and Shewanella oneidensis using the elements Na, Mg, Ca, 

P, K, and Fe.48 The advantages of femtosecond LIBS were also noted, namely the intense 

molecular CN band emission.49 These last few experiments represent an important result: 

LIBS relies on membrane chemistry of bacteria for classification.  

The effect of sterilization and metabolic state on classification of bacterial LIBS targets 

was also investigated by Rehse et al. A strain of E. coli (Strain C) was split into two groups, 

one was exposed to ultraviolet radiation and the other was autoclaved. Exposing bacteria 

to UV light or autoclaving them sterilizes them and makes them completely safe. LIBS 

measurements were made for each case, and it was demonstrated that though the bacteria 

were sterilized, no loss of signal was observed after exposure to UV light. The acquired 

spectra were then plugged into a chemometric algorithm with another E. coli strain (ATCCC 

25922) and M. smegmatis where 100% correct classification was observed for the 

sterilized strains, showing that before working with bacteria clinically they can be 

sterilized and rendered completely safe without sacrificing accuracy of diagnosis.50 This is 

shown in Figure 2.3. 
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Figure 2.3: A DFA discrimination between UV-exposed, autoclaved, and live E. coli, along with M. smegmatis and a second 
strain of E. coli. The robust discrimination between E. coli (UV, autoclaved, live, ATCC25922) and M. smegmatis shows 
that sterilized bacteria produce the same result as live bacteria. Figure adapted from ref [50].   

Next, Rehse et al. investigated LIBS on non-culturable bacteria. They deposited S. 

viridians and E. coli (Strain C) on agar media containing no nutrients and left the bacteria 

to grow at 21 °C. Because of the lack of nutrients and lower temperatures, the bacteria 

went into a non-reproducing or metabolically inactive state. The bacteria therefore were 

not culturable. Spectra were acquired after several days, and it was shown that the spectra 

of the non-culturable specimens were not altered compared to their previous spectra. As 

well, discrimination was achieved with high accuracy. This result demonstrates that LIBS is 

capable of detecting and diagnosing non-culturable bacteria, which is highly applicable in 

clinical laboratories.50 

Important and relevant clinical questions have also been investigated, namely the 

efficacy of the technique in mixed cultures and the efficacy of LIBS when other solutes or 

fluids are present. Rehse et al. investigated the effectiveness of LIBS on mixed cultures, or 

cultures containing two or more bacterial species.51 This is clinically relevant because the 

body contains several species of non-pathogenic microorganisms that help the body, 

particularly in the GI tract and on the skin. In these environments, detecting a pathogen 
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amongst other species could prove to be a challenge.52 Two-component bacterial mixtures 

were prepared containing E. coli and M. smegmatis. The ratio of these mixtures was altered 

to determine where the threshold of accurate detection was. It was found that when the 

mixture consisted of 80% or more of the pathogen of interest, classification was 

accomplished with good accuracy. For any concentration below 80%, the discrimination 

capability dropped rapidly, reaching 50% for 50:50 mixtures. This result was duplicated 

with mixtures of E. coli and Enterobacter cloacae.51 While this seems discouraging, the 

reader must take into account the fact that infecting microorganisms must compete with 

the native fauna for resources to establish an infection, so these higher ratios may be more 

realistic. Another important result that followed from this was the investigation of serial 

dilutions of bacterial species. Rehse et al. showed that dilutions of M. smegmatis could still 

be accurately discriminated from other strains of M. smegmatis, indicating that multiple 

concentrations of bacteria could be identified and more importantly, small concentrations 

of bacteria could be identified.51  

Rehse et al. has also shown that the presence of solutes and minerals present in urine 

do not affect the classification of pathogens. S. epidermis was harvested from sterile urine 

and tested against S. aureus, S. saprophyticus, and S. epidermis harvested from water. DFA 

was able to classify the S. epidermis from urine with the S. epidermis from water 100% of 

the time.53 This addresses the question of the efficacy of LIBS in the presence of other 

bodily fluids and shows that point-of-care diagnosis of pathogens present in urine and 

potentially other sterile bodily fluids such as blood and cerebral spinal fluid is possible.  

Finally, excellent genus and strain level identification using chemometric algorithms 

has been shown. Rehse et al. showed genus level discrimination between spectra from 5 

different species that span 13 strains, including Escherichia, Enterobacter, Staphylococcus, 

Streptococcus, and Mycobacterium. Using DFA, the sensitivity and specificity for 

classification was obtained both for the 5-class test and the 13-class test. As well, external 

validation was used to construct truth tables.54 External validation means that the 

spectrum being used as a test, and those collected at the same time as it, were withheld or 

not used in the library that they are being tested against. The results of this are shown in 

Figure 2.4; sensitivities were approximately 85% and specificities of 95% and above were 
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observed. This model also showed that LIBS and chemometrics were capable of 

differentiating between two species that were highly similar. For Escherichia, 89.97% of 

the 299 spectra classified correctly, and 7.02% were classified incorrectly as Enterobacter, 

while the remaining spectra were incorrectly classified as the remaining species.53 Multari 

et al. also demonstrated strain level identification with E. coli, 3 similar strains of 

methicillin resistant Staphylococcus aureus (MRSA), and one unrelated strain of MRSA. 

They used partial least squares (PLS) algorithms with a flowchart architecture which put 

the spectra through a series of ‘yes’ or ‘no’ tests that tested spectra with progressively less 

variation than the last step. This methodology resulted in 100% classification accuracy. 55  

LIBS on viruses has been investigated previously, but little work has been done in this 

field. LIBS is a mass-dependent technique, and viral particles are approximately 109 times 

smaller (in volume) than the bacterial cell. As well, they lack the inorganic metals Mg, Ca, 

Na, and K that bacteria possess and that chemometric algorithms use for discrimination. 

The presence of these metals is what has provided strong signals from bacteria.56 However, 

some work was done to investigate LIBS detection for the MS-2 bacteriophage. A significant 

result from Multari et al. showed the discrimination of 4 strains of hantavirus that are 

responsible for a variety of infections.56 

There has been impressive progress in the field of LIBS on bacteria for both food 

industry and clinical use. LIBS can address the issue of speed of diagnosis as it takes only a 

few seconds to perform. LIBS can achieve accurate discrimination, regardless of the 

metabolic state or sterility of bacteria, making it more universally applicable and the 

handling of specimens safer.52 LIBS can also detect and diagnose non-culturable strains, 

which is a huge improvement to other techniques such as MALDI-TOF MS, culturing, and 

FISH that rely on culturing.50 LIBS could detect bacteria present in mixtures and also 

present in bodily fluids, which allows for better point-of-care diagnostics.32,34 LIBS systems 

and particularly LIBS handheld systems are relatively less costly than other techniques, 

and they will likely require less operator training and expertise since the results from 

chemometrics are readily interpretable. In summary, LIBS addresses many of the 

drawbacks of the other techniques used today and could represent a fast, cost effective, and 

accurate way to diagnose bacterial infections.  
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Figure 2.4: Discriminant function analysis (DFA) done on a 5-class genus level discrimination (a) and 13 class strain level 
(b). 699 spectra were used and plotted using the first 3 discriminant function scores. Figure adapted from ref [54]. 
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Chapter 3: Laser-Induced Breakdown Spectroscopy; Apparatus and 

Experimental Procedures 

3.1 Theory of LIBS 

Shortly after the development of the laser by Theodore Maiman in 1960, the first 

observation of laser-induced plasmas (LIP) was reported.57 LIPs are created when a laser is 

absorbed by a solid target causing vaporization and ionization of the material in a process 

known as ablation.58,59 This process will be described in more detail later. After the first 

observation of the LIP, the ablation and subsequent plasma formation was used by Debras-

Guedon and Liodec for spectrochemical analysis of surfaces in the first laser-induced 

breakdown spectroscopy (LIBS) experiments.57 The LIBS technique uses a pulsed laser 

with an intensity on the order of 109 W/cm2 to ablate a sample which can be solid, liquid, 

or gas. Intensities this high are required to form a plasma.58 The plasma consists of high-

temperature atoms, ions, neutral species, and molecules which emit light at characteristic 

frequencies. The light is collected by a spectrometer and analyzed to determine the 

sample’s elemental composition.57 An example of a spectrum collected in our laboratory is 

shown below in Figure 3.1. The spectrum is constructed by dispersing light from the optical 

emissions of atoms, ions, neutrals, and molecules.  

 

Figure 3.1: A typical E. coli spectrum collected using our LIBS apparatus. 
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The following sections of this chapter will describe the theory of LIBS and LIBS plasmas, 

including atomic transitions, optical emission, mechanism of plasma formation and 

collection, and plasma parameters. This chapter will also describe the experimental 

apparatus utilized in all the experiments including the laser, spectrometers and relevant 

optics. Bacteria physiology will be discussed as well as the protocols used to collect and 

prepare bacterial samples.  Finally, a discussion on the chemometric techniques used to 

classify bacterial species will be provided. 

3.2 Atomic Transitions 

A basic understanding of LIBS requires an understanding of the atomic transitions that 

produce optical emission. This section will introduce the basic processes responsible for 

radiative emission in a LIBS plasma. There are three types of atomic transitions that can 

occur to produce optical emission in isolated atoms: stimulated emission, stimulated 

absorption, and spontaneous emission.60 The latter process makes up most radiated 

photons in the LIBS plasma.  

Each atom has quantized energy levels that its electrons occupy. Valence electrons can 

either become excited and move to a higher energy orbital, or de-excited and drop to a 

lower energy orbital. The processes responsible for radiative excitation and de-excitation 

are absorption and emission of a photon, respectively. Other methods of energy transfer do 

occur within a plasma, such as collisional energy transfer, but these methods will not be 

considered here.  

Spontaneous emission occurs when a valence electron decays to a lower energy state by 

releasing a photon. The energy of the photon released is found by considering the energy 

difference between the two energy levels. Denoting the upper state j, with energy Ej, and 

the lower state i, with energy Ei, the spontaneous emission event between states j and i 

releases a photon with energy ΔE =  E 𝑗 – E 𝑖 = hν𝑗𝑖. The transition probability of 

spontaneous emission from state j to i per unit time is given by the Einstein coefficient, 

Aji.60  

A spectral line is the result of a transition between the discrete energy levels within a 

specific atom or ion. The energy difference between discrete states is different for every 
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element, so each atom emits photons at specific and unique energies and wavelengths 

(since 𝐸 =
ℎ𝑐

𝜆
). The measurement of spectral lines at specific wavelengths is therefore 

indicative of the presence of that element in the ablated sample.  

Along with the atoms and ions a plasma contains unbound electrons which can freely 

exist in an energy continuum. These free electrons contribute to other highly relevant 

forms of emission within the LIBS plasma, including the transition of electrons within the 

energy continuum (also known as free-free transitions), or between the continuous energy 

state and a bound or discrete state. Transition from a continuous energy state to a bound 

energy state is called recombination and occurs when an atom captures a free electron and 

releases a photon (also known as free-bound radiation). The free-free transitions within 

the continuum gives rise to Bremsstrahlung radiation. Bremsstrahlung occurs when a fast-

moving particle is decelerated by another charged particle, thereby losing kinetic energy. A 

photon with energy equivalent to the loss in kinetic energy is emitted in response.58  

Free-free and free-bound emission is not wavelength specific, therefore it gives no 

information about the composition of the analyte and is useless in a LIBS measurement. In 

fact, it can hinder elemental identification by obscuring small element-specific transitions. 

To minimize the amount of continuum emission, LIBS measurements are delayed in time 

until the plasma has cooled, and fewer free electrons are present.58 

3.3 Plasma Formation and Plasma Parameters  

This section will describe the basic steps of LIBS plasma formation and the parameters 

that effect plasma formation, including temperature and electron density. For a more 

complete understanding of plasma formation and parameters the chapter, “Physics and 

Dynamics of Plasma in Laser-Induced Breakdown Spectroscopy,” from the book, Laser-

Induced Breakdown Spectroscopy is suggested. As well, additional information can be 

found in the chapter, “Basics of LIBS Plasma,” in the Handbook of Laser-Induced 

Breakdown Spectroscopy.  
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3.3.1 Plasma Formation  

To understand plasma formation, first the phenomenon of laser-induced breakdown 

needs to be discussed. The case of laser-induced breakdown in gasses will be presented 

first followed by laser-induced breakdown in solids.  

There are two key steps to cause LIBS in gasses; free electrons must be present in the 

focal volume of the beam, and for ns pulses, laser irradiances must be between 1010-1012 

W/cm2 to generate sufficient electron and ion densities in gas plasmas. Free electrons can 

be generated in the focal volume by multiphoton effects caused by the first few photons of 

the pulse. Generation of sufficient electron or ion densities can be achieved through 

multiphoton ionization at high laser irradiances. In general, high-powered lasers are used 

in conjunction with focusing optics to achieve high laser irradiances large enough to cause 

breakdown and ablation. Multiphoton ionization occurs when multiple photons are 

absorbed simultaneously to liberate an electron:  

𝐴 + 𝑛ℎ𝑣 → 𝐴+ + 𝑒− (1) 

 

where A is the atom, n represents the number of photons, and e- is the electron. The free 

electrons are then accelerated by the electric field and collide with other atoms to ionize 

them, thereby creating more free electrons. Free electrons can also acquire energy through 

inverse bremsstrahlung. Free electrons can collide with atoms causing ionization if the free 

electrons contain more energy than the ionization energy of the atom, causing cascade 

ionization and electron multiplication.60,61 Electron multiplication occurs during the laser 

pulse which causes ionization of the gas and eventually breakdown. 62  

In solids, the process of breakdown is similar. Laser irradiances of 108-1010 W/cm2 are 

used. The leading edge of the laser pulse will rapidly heat, melt, then vaporize the target 

material, creating a cloud of atoms above the surface; this is known as ablation. Some of the 

remaining laser energy then heats the cloud of atoms and initiates plasma production 

through multiphoton ionizations and inverse bremsstrahlung.61 Once the plasma becomes 

weakly ionized, part of the laser beam will continue through to the target surface, while 

some of the laser beam is absorbed. As more of the laser beam is absorbed, the plasma 
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becomes opaque to the remainder of the beam causing plasma shielding. At this point the 

beam is no longer absorbed by the surface and ablation ceases. The plasma front will 

continue to grow along the laser beam. Plasma opacity and shielding occurs when a critical 

density of electrons is reached, given by  

𝑛𝑐~ (1021 𝜆2⁄ ) 𝑐𝑚3⁄ (2) 

where 𝜆 is the wavelength of the laser. After the remainder of the laser pulse is absorbed, 

the plasma will lose energy and decay.62 LIBS is shown in Figure 3.2.63 

 

Figure 3.2: Formation of a LIBS plasma. (a) Laser pulse is incident on target and absorbed by analyte. (b) Heating then 
vaporizes target casuing a cloud of atoms to be ejected above analyte. (c) The cloud of atoms absorbs the lagging end of 
the laser pulse, ionizing the ejected atoms and forming the LIP. (d) photons representative of the vaporized elements in 
the analyte are emitted as the plasma cools. Adapted from ref [63]. 

Although LIBS can be performed in a vacuum or within a liquid environment, in all the 

experiments described in this thesis, the plasma expands into an argon gas environment 

after the ablation ceases. Argon gas provides an ambient environment for expansion and 

increases the temperature and electron density of the plasma.64 Expansion of the plasma 

continues until a pressure equilibrium between the argon gas and the plasma is met. As the 

plasma expands into the surrounding argon its constituents evolve with time. At the 

earliest observable period, the ratio of electrons to other species is less than 10%. Having a 

ratio of electrons to ions being 10% or less is typical of a LIBS plasma.65 As the plasma 

begins to cool, recombination events occur reducing the number of ionized species. Neutral 

species are more abundant towards the outer edges of the plasma, whereas multiply 

ionized species are more abundant at the center. In our plasmas at typical observation 

times, only singly ionized species are observed. 
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After approximately 1 μs of time has passed, continuum emission has decayed 

substantially, and recombination causes more neutral species to form. At this point in time 

emission lines from ions and neutrals dominate the spectrum, and continuum emission 

contributes to the noise. Typically, measurement begins at approximately 1 μs since the 

signal to noise ratio for elemental emission lines is high.65 The waiting time between the 

ablation event and observation of light emitted by the plasma is called the gate delay (τd). 

The amount of time that the plasma is observed for is called the gate width (τw). The end of 

plasma lifetime is marked by the formation of molecules, which are rarely indicative of the 

molecules present in the analyte. The time evolution of a ns laser induced plasma is shown 

schematically in Figure 3.3 and is typically characterized by exponential decay at times 

later then 100-500 ns. The time progression of spectra from a plasma undergoing 

continuum emission to the emission of neutral lines is shown in Figure 3.4.  

 

Figure 3.3: Timing diagram of LIBS plasma evolution. Plasma observation occurs during the gate width (τw).  
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Figure 3.4: (a) Steel spectra taken at different times overlaid. The red spectrum was taken at a 𝜏𝑑 of 300 ns, the black 
spectrum was taken at a 𝜏𝑑 of 8 μs. The insets in the spectrum show a zoomed in view of the decaying ion lines and 
reduced background amplitude. (b) Steel spectrum taken at 𝜏𝑑 = 300 ns and 𝜏𝑑 = 8 μs overlaid, this view shows the 
spectra without absolute scaling. The lines at later times are thinner and more highly resolved, while the lines at earlier 
times are broader. 

 

3.3.2 Plasma Parameters  

The two parameters used to characterize a plasma are temperature and electron 

density. Temperature and electron density can only be determined when the plasma is in 

local thermodynamic equilibrium (LTE), and when it is optically thin. Local thermodynamic 
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equilibrium means that all species in the plasma must be at the same temperature. An 

optically thin plasma is one in which the emitted photons are not likely to be reabsorbed by 

the plasma.65  

The temperature of the plasma can be determined with a sufficient number of spectral 

lines by using the Boltzmann plot method.65 The emissivity Iji of the spectral line resulting 

in a transition from an upper-level j to lower level i can be given by:  

𝐼𝑗𝑖 =  
ℎ𝑐

4𝜋𝜆𝑗𝑖
𝐴𝑗𝑖𝐿

𝑁

𝑍
𝑔𝑗𝑒

−
𝐸𝑗

𝑘𝐵𝑇 (3)  

where λji is the wavelength, Aji is the transition probability, L is the length of the plasma, N 

is the total number density of species in the plasma, Z is the partition function of the 

species, gj and Ej are the statistical weight and energy of the upper level, kB is the 

Boltzmann constant, and T is the temperature of the plasma. Rearranging equation (1) can 

give an expression for the temperature   

ln (
𝐼𝑗𝑖𝜆𝑗𝑖

𝑔𝑗𝐴𝑗𝑖
) =  −

𝐸𝑗

𝑘𝐵𝑇
+ ln (

ℎ𝑐𝐿𝑁

4𝜋𝑍
) (4) 

Upon inspection, this equation has the form y = mx + b. Plotting equation (4) as a function 

of Ej yields a linear Boltzmann plot with slope m = −
1

𝑘𝐵𝑇
 and intercept ln (

ℎ𝑐𝐿𝑁

4𝜋𝑍
).65 The 

Boltzmann plot requires a large range of line intensities corresponding to different upper 

energy levels Ej from the same species to perform a linear regression but does not require 

the value of the intercept to extract the temperature. The temperature is not directly 

calculated in our LIBS bacteria experiments because there are not enough lines in the 

bacteria spectra that originate from different upper energy levels.  

The electron density of the plasma can be determined with the Saha-Boltzmann 

distribution or Stark broadened lines. The Saha-Boltzmann equation can be used to 

calculate the value of plasma electron density using the ratios of line intensities given by 

ionization states for a specific element. The Saha-Boltzmann equation is given as  
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𝑛𝑒 =  
2(2𝜋𝑚𝑒𝑘𝐵𝑇)
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𝐼𝑛𝑚
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𝐼𝐼𝜆𝑛𝑚

𝐼𝑗𝑖
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𝐸𝑖𝑜𝑛+𝐸𝑗

𝐼𝐼− 𝐸𝑛
𝐼

𝑘𝐵𝑇  (5) 

where I represents the lower ionization state of a line and II represents the higher 

ionization state of the same line. The rest mass of the electron is me, Eion is ionization 

potential of the elemental species, Ej and En represent two different upper energy levels j 

and n, respectively.65,66 The two different lower levels of the atom are represented by Ei 

and Em, respectively.67 Note that for this method the temperature is required, thus the 

electron density is not calculated by the Saha-Boltzmann method in this work.  

An alternative method for finding the electron density of the plasma is by analyzing 

Stark broadening. Stark broadening occurs when energy levels in an atom are perturbed by 

an electric field, caused by the presence of free electrons in a plasma. The effect of 

perturbation of energy levels is a shifting of the centre wavelength and a broadening of 

observed emission lines that are several times wider than the original peaks.6610 Broad 

lines therefore indicate a large electron density, with wider lines indicating greater 

electron density. 

The full width at half maximum (FWHM) of a Stark-broadened line can be found by using 

the below equation 

𝛥𝜆𝐹𝑊𝐻𝑀 =  
2𝑤𝑛𝑒

1016
(1 + 1.75𝐴 (

𝑛𝑒

1016
)) (1 −

3

4
𝑁𝐷

−
1
3 )  (6) 

where 𝛥𝜆𝐹𝑊𝐻𝑀 is the FWHM. A and w are given in the literature as the ion broadening 

parameter and electron impact parameter, respectively. 𝑁𝐷 refers to the number of 

particles in the Debye sphere and can be replaced with the constant 𝑁𝐷 = 1.72 ×

109 (
𝑇𝑒

3 2⁄

𝑛𝑒
1 2⁄ ). 𝑇𝑒 is the temperature of the electron.66 Equation 4 simplifies when the 

broadening due to ions is small: 

𝛥𝜆1
2

=  
2𝑤𝑛𝑒

1016
 (7) 
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The FWHM can thus be used to directly estimate the electron density if w is known from 

tabulated values. The lines usually used in LIBS to examine electron density are hydrogen 

lines, hydrogen-like metal lines, and heavy metal species because they show the most 

pronounced effects.66 Though we have calcium present in our spectra, we do not observe 

any Stark broadening due to the relatively low temperature and electron density of our 

plasmas at the time we observe them.  It is also difficult to observe Stark broadening under 

low temperature and electron density conditions because the spectral resolution of the 

width of each line is limited by the spectrometer.  Therefore, the electron density is not 

determined in this work.  

3.4 LIBS Experimental Setup  

Laser-induced breakdown spectroscopy requires a pulsed laser with sufficiently high 

energy, beam focusing optics, and a spectrometer to collect light from ablation. The first 

part of this section will describe each component of the experimental setup as well as its 

purpose. This section will also illustrate the path that the beam takes to reach the sample. 

The last part of this section discusses the collection of light by a spectrometer from sample 

ablation. The theory and structure of the echelle grating is examined, as well as the other 

components of the echelle spectrometer. The detection of light by an intensified charge 

coupled device and a brief overview on how these devices work is also discussed. Finally, a 

figure of the spectrometer output is provided and explained.  

3.4.1 Overview of LIBS Apparatus 

This work utilizes a 1064 nm Nd:YAG laser (Spectra Physics, LAB-150-10) with a pulse 

repetition rate of 10 Hz, a pulse duration of 10 ns, and a beam diameter of 9 mm. The beam 

is first directed into a half-wave plate and a polarizing beam-splitter cube to reduce the 

pulse energy to 180 mJ/pulse. Excess beam energy is directed into a beam dump. A 3x 

telescope beam expander then expands the beam diameter to three times its initial 

diameter. The telescope consists of an antireflection coated plano-convex (f = 18.5 cm, φ = 

7.62 cm) and plano-concave (f = -5 cm, φ = 2.54 cm) lens. The beam is then directed into 

an iris with 9 mm diameter to reduce the beam diameter to its initial size and to keep only 

the central part of the Gaussian beam. A periscope mirror with a highly reflective di-electric 
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coating directs the beam downward where it is transmitted through a beam splitter, and 

into a high power Nd:YAG MicroSpot focusing objective (OFR, LMH-20X-1064) to focus the 

light onto the sample. The beam splitter is present to allow a CCD camera to view the target 

positioning and ablation area on a monitor. The final energy of the pulse at the target is 8 

mJ.  This setup is shown in figure 3.5b.    

The sample to be ablated is mounted on a magnetic stage in a Plexiglas chamber that 

contains the microscope objective. The chamber sits on a translation stage so that it can be 

moved in the x, y, and z directions. The translation stage allows the sample to be translated 

through the laser focus for sampling in two dimensions and allows for adjustment of the 

lens-to-sample distance (LTSD).  The LTSD dictates where the sample is relative to the 

focus of the beam, and therefore the LIBS spectrum is very dependent upon the LTSD and 

the resulting change in spot size and laser intensity.  

Determination of the proper LTSD in the z direction is achieved by a helium-neon (He-

Ne) laser directed to the target by aluminium mirrors. The He-Ne laser appears as a bright 

spot on the monitor and is used to set the LTSD, or the height of the sample within the 

chamber. All samples in this work were mounted on a steel piece using double sided sticky 

tape. A schematic of the laser beam and optical system are shown in Figure 3.5.  
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Figure 3.5: Schematic of LIBS experimental setup: (a) top view of entire setup, and (b) side view of laser incident on 
target. 

3.4.2 Detection of Light From Plasma 

The light from the plasma is collected by two matching parabolic aluminium mirrors (f 

= 5.08 cm, φ = 3.81 cm) and directed into a 1 m steel-encased multimodal optical fibre (NA 

= 0.22, core φ = 600 μm). The mirrors focus the light onto the optical fibre and increase 

the light that can be inputted into the fibre. The light is then dispersed by an echelle 

spectrometer (ESA 3000, LLA Instruments, GmbH) and detected by an intensified charge-

coupled device (ICCD) camera. The spectrometer was controlled by ESAWIN v3.20 

software to change the width and delay times of the ICCD light collection.  This software 

also controlled the firing of the Nd:YAG laser Q-switch to provide nanosecond timing 

control. 

The echelle spectrometer contains an echelle grating which disperses the plasma light 

spatially by wavelength. Each wavelength is diffracted at a different angle which is 

described by the equation 
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𝑚𝜆 = 𝑑(sin 𝛼 + sin 𝛽) (8) 

where m is an integer describing the diffraction order, 𝜆 is the wavelength of incident light, 

d is the groove spacing, 𝛼 is the angle of incidence and 𝛽 is the angle of diffraction. It can be 

seen from the above equation that the angular spacing of an incident wavelength decreases 

as the diffraction order increases. It can also be proven from the above equation that light 

at different wavelengths and diffraction orders will overlap. A first order line of wavelength 

800 nm will overlap with a second order line of 400 nm. More generally, a first order line of 

wavelength λ will overlap with a second order line of wavelength λ/2. This trend continues 

for higher orders. To help spread the wavelengths and orders so that they are more easily 

distinguishable, a glass prism mounted in front of and perpendicular to the echelle grating 

is used to cross-disperse the light. The echelle grating separates the orders along a vertical 

axis and the wavelengths along a horizontal axis into a two-dimensional pattern.  The 

grating used in this experiment disperses light into orders m = 29 up to m = 119 and has a 

spectral coverage of 200-840 nm. Figure 3.6 shows the schematic of the ESA 3000 

spectrometer.68  
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Figure 3.6: Cartoon schematic of the echelle spectrometer components. Adapted from ref [68]. 

The now two-dimensional diffraction pattern is reflected back through the prism and is 

detected and recorded on a ICCD Kodak camera. The CCD camera is a chip that is 1 inch by 

1 inch (1064 pixels by 1064 pixels, pixel size of 24 μm2). This two-dimensional diffraction 

pattern is known as an echellogram and the output of the CCD camera recording an 

echellogram from a steel LIBS spectrum is shown in Figure 3.7 below. The data shown is a 

false colour image. The yellow regions on the image show areas where no light was seen by 

the camera, whereas the dark spots indicate areas that the CCD observed and recorded 

light. The CCD camera records incoming light on light-sensitive elements, called pixels, that 

are arranged on a semi-conductor material. Incoming photons produce free electrons and 

thus electron-hole pairs in each pixel. The number of electron holes is linearly proportional 

to the number of photons each pixel observed so the charge of each pixel is measured to 

determine a photon intensity. The CCD camera also contains an image intensifier which is 

composed of a microchannel plate (MCP) which multiplies the number of photoelectrons 
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and a phosphor screen to convert electrons back into photons before being detected by the 

CCD.  The image intensifier gain can be adjusted in the ESAWIN software to amplify weak 

signals.  The use of the image intensifier with the CCD camera is what makes this an ICCD. 

 

Figure 3.7: Echellogram of steel spectrum. Orders are given by green lines, each order contains a wavelength range. 

Diffraction orders in Figure 3.7 are represented by the horizontal green lines. The 

uppermost green line corresponds to the highest order m = 119 and the lowest green line 

corresponds to the lowest order m = 29. The highest order m = 119 consists of the 

shortest wavelengths and the smallest wavelength range, in this case from 201.023 to 

202.615 nm. The lowest order spans the longest wavelengths and possess the greatest 

wavelength range, from 816.875 to 838.393 nm. Therefore, the echelle spectrometer 

disperses UV wavelengths to the top of the CCD chip in this image and IR wavelengths to 

the bottom of the CCD chip. The green circle in Figure 3.7 shows the area of the CCD that is 
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illuminated and thus the range of wavelengths which can be measured.  No light is collected 

outside of that circular area. Gaps in the measured spectra correspond to the regions where 

light is dispersed that are outside of the circle. The spectrometer was optimized to provide 

resolution and continuity for elements that have strong emission lines in and near the UV 

region, which are regions of interest to this work and for the majority of LIBS studies.  

3.5 Bacteria Physiology and Sample Preparation  

This section will give an overview of bacterial cell biology, focusing specifically on 

membrane chemistry and pathology. This is not meant to be an in-depth review of bacterial 

biology, but rather it is meant to provide the LIBS practitioner who may be unfamiliar with 

the fundamental knowledge of bacterial microbiology with an introduction to the topic. 

This chapter contextualizes why we have chosen to study specific species and gives a 

background on how these species’ biology and how they impact human health. As well, the 

methods used for growing bacteria, sample preparation, and deposition of samples onto 

testing services is described here. More information on microbiological pathogenesis, 

diagnosis, and treatment can be found in the textbooks Mechanisms of Microbial Disease 

and Bacterial Pathogenesis: A Molecular Approach. Information on bacterial biology, 

culturing methods, and staining methods can be found in the undergraduate textbook 

Microbiology: Canadian Edition.  

3.5.1 Bacteria Physiology 

Bacteria are ubiquitous single-celled prokaryotic organisms that can cause disease. 

Bacteria lack membrane-bound organelles and a nucleus; however they still have DNA, 

ribosomes, and a plasma membrane. Most bacteria also contain an outer cell wall. Bacteria 

generally have three different shapes: cocci (round), bacilli (rod), or spirochete (spiral).  

Bacteria can be grouped into two main categories based on membrane physiology, 

determined by the Gram stain. The two categories are Gram-positive, which stain purple, 

and Gram negative, which stain pink. Gram staining generally involves two basic steps. The 

first step is staining cells with a crystal violet dye, which initially all cells will take up. A 

solvent is then applied which dissolves the lipid layer of Gram-negative bacteria, causing 

the cells to release the crystal violet stain. The second step is a red counterstain, typically a 
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weakly water-soluble safranin. The red stain does not disrupt the Gram-positive bacteria 

but does stain the Gram-negative bacteria, resulting in the characteristic pink colour.69  

A third lesser-known type of bacteria is the acid-fast bacteria; acid-fastness refers to the 

resistance of decolourization during an acid wash. The cell walls of acid-fast bacteria are 

different from the prior because they contain hydrocarbon chains that are woven 

throughout the cell wall.  

Bacteria cell walls (and the rest of the bacterial cell) also contain varying 

concentrations of calcium, magnesium, sodium, and carbon. The ions are present due to ion 

exchange at the surface and the neutrals are present in the peptidoglycan.71,70 These are the 

elements that we are primarily interested in for the detection and discrimination of 

bacteria. Table 3.1 shows the elements that we detect in the bacterial cell and the 

wavelengths of spectral lines for each element. Table 3.1 is located later in section 3.6.1 

where it is necessary for a discussion of the variables used by the chemometric algorithms. 

3.5.2 Bacterial Species Tested with LIBS 

Five species of bacteria were chosen so that some representation was achieved across 

genus, shape, and Gram type. The species tested include Escherichia coli, Pseudomonas 

aeruginosa, Staphylococcus epidermis, Mycobacterium smegmatis, and Enterobacter 

cloacae which span acid-fast, Gram positive, and Gram negative, and include cocci and 

bacilli shapes.  

E. coli is a motile Gram-negative rod. Non-pathogenic strains are commonly found in the 

intestines of warm-blooded animals and humans. These strains are beneficial because they 

produce vitamins, and because their large numbers help prevent other organisms from 

proliferating enough to cause infection. Harmful pathogenic strains can lead to health 

issues and are generally responsible for urinary tract infections (UTI), food borne 

infections, diarrhea, kidney failure, septicemia, pneumonia, and meningitis .71,72 E. coli is 

easy and quick to grow, making non-pathogenic forms an ideal organism to grow and study 

using LIBS.  
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S. aureus is a non-motile Gram-positive coccus. Non-pathogenic strains of S. aureus are 

commonly found on epithelial surfaces, including the skin, nostrils, intestines, and upper 

respiratory tract. Pathogenic strains can enter the bloodstream through breaches in the 

skin and can adhere to plastic surfaces which can ultimately lead to bloodstream infections 

associated with catheters. Other pathogenic S. aureus strains can cause respiratory 

infections, pneumonia, and skin infections.73,74 Pathogenic strains S. epidermis and S. 

aureus are also the leading cause of septicemia.74 Many strains of S. aureus have become 

resistant to antibiotics, including methicillin-resistant S. aureus (MRSA).73 There are no 

vaccines for MRSA and there are limited treatment options. A quick and targeted treatment 

is necessary, making a fast and accurate diagnosis imperative.  

P. aeruginosa is a motile Gram-negative rod that is ubiquitous in the environment. It 

exists in water and other wet surfaces, soil, plants, and artificial environments such as 

hospitals.73 Pathogenic P. aeruginosa is responsible for many nosocomial infections, as it 

can invade the body through breaches in the defense system, such as wounds and burns, 

making it an opportunistic bacterium. It is also particularly dangerous to those who have a 

weakened immune system, existing conditions, and diseases. It is responsible for eye 

infections arising from scratches on the cornea from contact lenses, burn infections on 

burn victims, and lung infections in patients with cystic fibrosis.74 P. aeruginosa is also 

resistant to many antibiotics.75  

M. smegmatis is an acid-fast, rod-shaped, bacteria and is non-pathogenic. It is found in 

water, soil, and plants and is an opportunistic organism, mainly infecting the 

immunocompromised. M. smegmatis can be cultured and grown quickly and requires only 

biosafety 1 level facilities, making it an ideal organism to work with in the laboratory. It is 

also ideal to use as a substitute for M. tuberculosis which is a much slower growing 

organism in culture; visible colonies often take a few days to form. The application of LIBS 

to M. tuberculosis and other Mycobacterium can thus be very useful in identifying and 

diagnosing this organism quickly. Mycobacterium can only be stained using acid-fast dyes 

because it has a waxy outer envelope which makes it resistant to the Gram stain.74  
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E. cloacae is a motile Gram-negative rod. Non-pathogenic E. cloacae exists in the human 

gut and on the skin, as well as on fruits and vegetables. Pathogenic strains can cause 

respiratory infections, urinary tract infections, and sepsis in immunocompromised 

patients.73,74 E. cloacae is a common cause of nosocomial infections as it can enter the body 

through any skin lesions and is transported easily through surgical equipment. The 

nosocomial infections that result from this are typically bacteremia, endocarditis, septic 

arthritis, osteomyelitis, and ophthalmic infections.74 E. cloacae also exhibit resistance to 

common antibiotics such as ampicillin and penicillin making them difficult to treat.75 E. 

cloacae are difficult to distinguish from other Gram-negative species and thus difficult to 

diagnose. Testing with LIBS was done on E. cloacae to test if the technique could accurately 

distinguish between E. cloacae and other Gram-negative species.  

3.5.3 Bacteria Sample Preparation  

The bacteria samples prepared and studied in this work were initially provided by Ms. 

Ingrid Churchill of the department of integrative biology at the University of Windsor. From 

the initial stock solutions, more bacteria were cultured by our lab group on tryptic soy agar 

(TSA) nutrient media plates. The TSA plates are a general-purpose culture medium that 

consists of soybean meal, casein, NaCl, K2HPO4, and dextrose. This media provides all the 

necessary nutrients needed to grow bacteria. To prepare the plates, 1 g of TSA powder is 

completely dissolved in an Erlenmeyer flask containing 25 mL of water. The flask opening 

is then covered by aluminium foil and autoclaved at a temperature of 121°C to ensure the 

mixture is sterilized. After removing the flask from the autoclave, it is left to cool for 30 

minutes before pouring into a petri dish. The solution is poured slowly to avoid any 

bubbles from forming and sets for 2 hours. All TSA plates were prepared by our lab group. 

Bacteria from stock solutions can be cultured on the surface of TSA nutrient media. 

Bacteria from the stock solutions were cultured by pipetting 100 μL of a specific bacterial 

species onto the surface and tilting the plate to allow the solution to spread across most of 

the plate. This step was repeated for each species of bacteria. Plates were incubated at 37°C 

for 24-72 hours. After incubation, a repeatable quantity of bacteria was harvested from 

each plate using a wooden toothpick and placed in labelled 10 mL centrifuge tubes 
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containing 5 mL of DI water. The initial concentration of each suspension made was 

determined by optical densitometry (absorbance). Absorbance measurements were also 

made of fractional dilutions of the stock solution. Fractional dilutions were also made from 

the stock solution by performing serial dilutions. The dilutions made were 1/5, 1/10, 1/50, 

1/100, and 1/500. Absorbance measurements were performed on these to confirm 

concentrations.  

Bacterial sample preparation was designed to mimic clinical collection of bacteria from 

surfaces in the body using swabs. First, 100 μL of bacterial solution is pipetted onto a small 

steel plate, shown in Figure 3.8a. The steel plate is heated on a hot plate at 200°C for two 

minutes and twenty seconds to remove excess moisture. Once the steel plate has cooled, 10 

μL of deionized water is pipetted onto the tip of a sterile swab. The dampened swab is then 

used to swab the bacterial film off the steel plate, shown in Figure 3.8b. The swab is placed 

in a centrifuge tube containing 1 mL of water and vortexed for 15 seconds to shake all the 

bacteria off the swab and into the water, shown in Figure 3.8c. The swab is removed from 

the centrifuge tube and discarded. Alternately, samples of water containing bacteria were 

pipetted directly into the centrifuge insert rather than being pipetted onto the steel plate. 

This circumvented the swabbing step and was developed as a deposition method to 

simplify the testing of fluid clinical samples such as blood and urine, discussed in Chapter 6 

of this thesis. 

 

Figure 3.8: Process of bacterial deposition (a) sample is pipetted onto metal plate and excess moisture is evaporated off 
(b) sample is swabbed off plate using a damp swab, and (c) swab is vortexed in 1 mL of water for 15 seconds to shake off 
cells. 

Solutions of bacteria that have been swabbed are deposited onto a 0.45 μm pore size 

nitrocellulose membrane filters that are 9.5 mm in diameter (HAWP04700, Millipore Inc.). 

The filter is held in place by a custom-fabricated centrifuge insert, and a custom-built 
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aluminium metal cone is placed on top of the filter to concentrate the bacteria to a spot of 1 

mm in diameter. The cone and centrifuge insert achieve rapid concentration of the bacteria 

during centrifugation and are made with easily obtainable materials allowing them to be 

readily implemented in the clinic.  

The drawing of the centrifuge pieces are shown in Figure 3.9. The insert was designed 

and 3D printed by a previous student in our lab group.  

 

Figure 3.9: Centrifuge insert design in cross section. Filter paper is placed on base of insert in (b). Body of insert in (a) is 
screwed onto base of insert. Figure adapted from ref [75]. 

The centrifuge insert was made to fit inside a standard 10 mL centrifuge tube with a 

hinged plastic cap, being small enough to allow the centrifuge tube to still be closed. Both 

components of the centrifuge tube are made of plastic. The diameter of the outside of the 

centrifuge tube is 14 mm. The bottom piece is 9.5 mm in diameter and holds the filter. 

There is a small hole in the center of the bottom piece which allows water and other fluids 

to exit the centrifuge tube; this is shown in Figure 3.9b. The longer top piece screws on to 

the piece holding the filter and contains a seal to hold the filter in place. The wider portion 

of the top piece is 17 mm in diameter and allows the centrifuge insert to sit on the lip of the 

centrifuge tube. The length of the assembled insert is 40 mm, and it can hold a total of 1.5 

mL of fluid.75  

(a) (b) 
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The metal cone is shown in Figure 3.10a. The cone was designed such that it would sit 

inside the centrifuge tube and press into the filter, shown in Figure 3.10b. The diameter of 

the hole at the base of the cone is 1 mm. During centrifugation, the liquid suspension 

containing bacteria passes through the hole at the base of the cone and is deposited onto 

the filter. The purpose of the metal cone is to rapidly concentrate bacterial cells on the filter 

to improve the limit of detection. With the addition of the metal cone, the limit of detection 

(LOD) was calculated to be 10,865 cells per laser shot which is an improvement by a factor 

of 10 compared to the LOD using only the centrifuge insert which was previously 

approximately 90,000 cells per laser ablation event.76 The LOD was calculated by 

constructing a calibration curve from several concentrations of bacterial suspensions. A 

colour map of the concentration of cells onto a filter using the centrifuge insert and metal 

cone is shown in Figure 3.11.  

 

Figure 3.10: (a) Metal cone for rapid concentration of bacteria, shown next to ruler to give approximate size. (b) 
Centrifuge insert shown before assembly. A filter is placed on the bottom piece of the centrifuge insert before it is 
assembled. (c) The assembled centrifuge insert with cone is placed in a centrifuge tube. 
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Figure 3.11: (a) Colour map of the concentration of cell deposition on filter after centrifugation through the centrifuge 
insert, and (b) colour map of the concentration of cell deposition on filter after centrifugation through the centrifuge 
insert and metal cone. Figures adapted from ref [75,76].  

The assembled centrifuge insert is placed in a clean centrifuge tube and the metal cone 

is placed into the top of the assembled centrifuge tube, as shown in Figure 3.8c. 1 mL of the 

water from the centrifuge tube containing the swab is pipetted into the cone. Alternately, 

samples of water containing bacteria were pipetted directly into the centrifuge insert 

rather than being pipetted onto the steel plate. This avoided the swabbing step completely 

and was done to simulate fluid clinical specimens, which is discussed further in Chapter 6 

(a)  

(b)  
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of this thesis.  The centrifuge tube is closed and placed in a centrifuge (PowerSpin BX, 

unico) with a counterweight. Samples are centrifuged at 5000 rpm, 2500g’s of force for 5 

minutes to pull the liquid suspension through the centrifuge insert. After centrifugation, the 

insert is taken out of the centrifuge tube and disassembled. The filter is removed from the 

bottom piece of the insert and placed onto a stainless-steel plate that has double sided 

sticky tape. 

Samples were ablated in an argon gas environment; argon flow was set to 20 standard 

cubic feet per hour (SCFH). The laser used for ablation is the aforementioned Nd:YAG 1064 

nm (Quanta Ray LAB-150-10, Spectra Physics) with 10 Hz repetition rate and 10 ns pulse. 

The gate width (τw) is set to 20 μs, and the gate delay (τd) is set to 2 μs for all bacterial 

experiments. The spacing between each laser shot is minimized to achieve the most 

amount of data per filter to increase the total amount of spectra in our library. The spacing 

between our laser shots is 0.15 mm. An example of a typical bacterial spectrum observed 

using such experimental parameters is shown in Figure 3.12. 

 

Figure 3.12: A typical spectrum of E. coli bacteria. All lines important for bacterial identification are labelled. 
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3.6 Overview of Chemometric Analysis 

Chemometric algorithms reduce the amount of data needed for an accurate 

discrimination. Initial work on chemometric analysis in conjunction with LIBS began in 

2003 and is discussed in greater detail in Chapter 2 section 2.2. Numerous chemometric 

methods have been explored over the years, beginning with linear correlation techniques 

to compare emission intensities. More advanced techniques have been developed and used, 

including linear regression models, chemometric algorithms, and neural networks.77 This 

section will focus on the basic principles of chemometric techniques, specifically on DFA, 

PLSDA, and artificial neural networks (ANN). This section will also discuss the data models 

and methods used by our group when using chemometric algorithms. For more 

information on the chemometric algorithms discussed, the reader is directed to the 

textbook Applied Chemometrics for Scientists.  

3.6.1 Data Models Used in Chemometric Algorithms  

Initial chemometric analyses done by our group used the measured intensities of 13 of 

the most intense emission lines normalized to the sum of all the measured intensities as 

independent variables. These 13 lines encompassed 5 elements of interest for bacterial 

targets: calcium, magnesium, sodium, phosphorus, and carbon. This was the simplest 

model we have used to date and is called the “lines” model. The work of Gottfried et al. 

showed that the ratios of line intensities and summed line intensities, as opposed to 

individual lines, showed improved discrimination ability.78 Based on this work, the original 

lines model was refined to form ratio model 1 (RM1). RM1 used the same 13 lines in 

multiple complex ratios to form 24 independent variables that included the 5 elements of 

interest: calcium, magnesium, sodium, phosphorus, and carbon. Later, RM1 was adapted to 

form RM2, which used the same 13 lines as previous models with an additional 67 complex 

ratios to form 80 independent variables.79 More recently, a third ratio model was 

developed with 19 lines to include all the lines seen in bacterial spectra, as opposed to the 

largest 13 lines we see. This was called ratio model 3 (RM3) and it contains 19 lines and 

145 simple ratios to make 164 independent variables.78 A table with a complete list of the 

lines used in RM3 and their respective variable names are given in Table 3.1. The details of 
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the development of these models and the chemometric results can be found in 

references.78,79,80 

Table 3.1: Emission lines used for discrimination and the respective variable associated with each. These emission lines 
and variable designations are used in RM3. 
 

Emission Line Variable Designation 

C 247.856 c 
P 213.618 p1 

P 214.914 p2 

P 253.398 p3 

P 253.56 p4 

P 255.326 p5 

P 255.491 p6 

Mg 279.079 mgii1 
Mg 279.553 mgii2 

Mg 279. 806 mgii3 

Mg 280.271 mgii4 

Mg 277.983 mgi1 

Mg 285.213 mgi2 

Ca 317.933 caii1 

Ca 393.366 caii2 

Ca 396.847 caii3 
Ca 422.673 cai1 

Na 588.995 na1 

Na 589.593 na2 

 

Some of the work in this thesis is done using RM3. More recent work has been done 

using a model I constructed based on the previous RM3, this model is called ratio model 2.5 

(RM2.5). It consists of 15 emission lines and 92 simple ratios, for a total of 107 

independent variables. Less lines were chosen to use in this model to avoid overfitting of 

the algorithms we use, and to eliminate emission lines that gave little to no information. 

Many of the lines that were removed from RM3 to create RM2.5 were phosphorus and 

magnesium lines that had consistently low or zero intensity. A table with a complete list of 

all lines used in RM2.5 is shown in Table 3.2. A complete list of the RM3 and RM2.5 ratios 

that are used in this research can be found in Table A.2 in Appendix A.   
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My work has been conducted using three algorithms: DFA, PLSDA, and ANN. These 

algorithms used precompiled data that has been collected over time for detection and 

classification of bacterial species. We call the precompiled data the spectral library. The 

library is organized in a ratio model Excel sheet, shown in Figure 3.13. The data is 

organized this way because these chemometric algorithms require the data to be passed in 

the form of two matrices. One of these matrices is the x-block, which is row vectors 

representing the data model. The other is the y-block, which is a single column vector 

holding information on the identity of the sample (the class). The file names for each 

spectrum are on the far left, they are the label for the data point. The assigned class of the 

data point is given in the class column. The emission lines used in the analysis are in the top 

row, in this case the 15 elemental emission lines for RM2.5 are shown. The first of 92 

simple ratios are shown outlined in purple to the far right.  

Table 3.2: Emission lines and the respective variable designation associated with each. These emission lines and variable 
designations are used in RM2.5. 
 

Emission Line Variable Designation 

C 247.856 c 
P 213.618 p1 

P 214.914 p2 

P 253.56 p4 

Mg 279.079 mgii1 

Mg 279.553 mgii2 

Mg 279. 806 mgii3 

Mg 280.271 mgii4 

Mg 277.983 mgi1 

Ca 317.933 caii1 

Ca 393.366 caii2 

Ca 396.847 caii3 

Ca 422.673 cai1 
Na 588.995 na1 

Na 589.593 na2 
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Figure 3.13: Example of RM2.5 Excel sheet used for chemometric analysis. The data labels are outlined in green, the 
designated class is outlined in blue (y-block vector), the 15 emission lines used are outlined in red, and the first row of the 
92 simple ratios is outlined in purple. The 15 emission lines in red and the ratios in purple represent the x-block. 

The data library in the Excel sheet is used to form a model in either PLSDA or DFA. 

Internal validation models are formed when the class for all data points entered is known. 

The model can be tested using external validation, which is done by removing subgroups of 

the library data and feeding them to the model with no known class. Subgroups of data can 

include whole filters, dilutions, species, and strains. The performance of the model with this 

inputted data can then be recorded and is an indication of how well the model can classify 

unknown spectra. After classification with internal and external validation, the sensitivity 

and specificity of the model is recorded, along with the sensitivity of the externally 

validated group. These results are often summarized in truth tables. Truth tables contain 

percentage values of true positive, true negative, false positive, and false negative results. 

To optimize a clinical test, the true positives and true negatives must be maximized while 

the false positives and false negatives are minimized. False positives can cause undue 

stress for a patient and increase the burden on the health care system, while false negatives 

cause a potentially dangerous condition to be overlooked. To optimize LIBS as a rapid 

point-of-care diagnostic tool, these parameters need to be met.  

3.6.2 Discriminant Function Analysis (DFA)  

Discriminant function analysis is a statistical procedure that determines the differences 

between groups and finds the fewest number of dimensions needed to determine the 

difference accurately and reliably between groups. In essence, DFA focuses on maximizing 

the separability between known classes while minimizing scatter within each class. DFA 

can be performed on N classes, but here the simplest case of a 2-class test will be 

considered. DFA uses information from both classes to project data onto a new axis that 
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maximizes the separation of the classes; in the case of a 2-class system the new axis would 

be a line. More mathematically, based on the initial inputted data, DFA gives a discriminant 

score based on the closeness of an unknown row vector to class A or B. The discriminant 

score is given by equation 9:  

𝐷𝐴𝐵 = (�̅�𝐴 −  �̅�𝐵) ∙ 𝑆−1 ∙ 𝑋𝑇 −
1

2
(�̅�𝐴 −  �̅�𝐵) ∙ 𝑆−1 ∙ (�̅�𝐴 + �̅�𝐵) (9) 

where �̅�𝐴 and �̅�𝐵 are the average vectors for groups A and B, X is the unknown group being 

classified, and S represents the pooled variance-covariance matrix for the groups.80 The 

first term in the equation determines a score value, the second term of the equation 

determines if the score value is positive or negative. In the case of a 2-class test, a positive 

value would indicate that X is closer to class A, while a negative score for X puts it closer to 

class B. The variance-covariance matrix S handles outlier data by scaling the score based on 

the variance within each group. This helps to consider points in group A or B that are 

farther from the majority of the data to classify correctly.80 

In expanding this model to N groups, only N-1 scores are needed for classification of an 

unknown group. This results in an N-1 dimensional space where the unknown group sits in 

between other known groups. The minimum distance found between the unknown group 

and another class indicates which group it most likely belongs to.80 DFA will always classify 

the unknown group with a known group; for example, consider the case of deionized water 

as an unknown group inputted to a 3-class test between P. aeruginosa, E. coli, and S. aureus. 

DFA will not classify deionized water as its own group and instead match it with the group 

that has the least variation with the unknown data.  

In DFA, discriminant functions are given scores in decreasing order to their relevance to 

the discrimination. Discriminant function 1 (DF1) will therefore include the largest part of 

the variance between groups, discriminant function 2 (DF2) will contain less variance, and 

so on to discriminant function N (DFN) which will contain the least amount of variance. 

The more discriminant functions used corresponds to finer detail, but often the most 

information can be elucidated from the first few discriminant functions. In Figure 3.14, an 
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example discriminant function plot is shown for a 5-class bacteria test. In all the analyses 

described in this thesis, IBM SPSS Statistics v.21 was used to perform DFA. 

 

Figure 3.14: Example output of discriminant function analysis using IBM SPSS Statistics. This model consists of 5 bacterial 
species. 

To conduct DFA, the library must contain at least the same number of independent 

variables as the model to avoid overfitting. For optimal classification, there should be more 

data points than variables, best practices call for 10 times more data than independent 

variables. For the RM3, there should be at least 164 data points, and 92 data points for the 

RM2.5. DFA also assumes a Gaussian distribution of data scattered about an “average” 

spectrum, so for best possible results the data inputted should be Gaussian. Our bacteria 

data is not Gaussian in nature. There is high variability in the data that exists more as an 

equal spread of intensities than a Gaussian distribution. Figures of histograms that show 

the total measured intensity (the sum of all the measured line intensities) of some filters of 

bacteria are included for reference in Figure 3.15. These histograms show that our data is 

not typically Gaussian and doesn’t have a consistent statistical distribution. 
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Figure 3.15: Histograms of data acquired from filters of S. aureus (left) and E. coli (right). The S. aureus distribution 
resembles a bimodal distribution. The E. coli distribution resembles a left shifted Gaussian distribution with a 
discontinuity at higher intensities. 

3.6.3 Partial Least-Squares Discriminant Analysis (PLSDA) 

PLSDA is a multivariate variable reduction technique that finds the maximum variance 

between groups and can be used for classification and analysis of spectral data. PLSDA 

cosntructs latent variables (LV’s) out of the independent variables given by the ratio 

models. The LV’s can then be used as predictor variables to construct a calibration curve 

based on the spectral data or to perform discrimination. Using LV’s, PLSDA can calculate a 

predictor score for a member of a data set; the method of class prediction by PLSDA is 

different from DFA. DFA compares predictor scores to multiple classes simultaneously, 

while PLSDA compares predictor scores once per class. The predictor score is a +1, -1, or 0, 

and represents a ‘yes’ or ‘no’ answer for the data point in question.80 A Bayesian line 

representing a threshold between the two classes is generated using Bayesian statistics. If 

an unknown sample is entered into the algorithm, it is tested once against each class 

present in the model, given a predictor value, and will either fall above or below the class 

threshold. Above the Bayesian line indicates a positive result, below the Bayesion line 

indicates a negative result. It follows then that a feature of PLSDA that is not present in DFA 

is the potential for a null result.  PLSDA can therefore indicate that the unknown data is a 

species the algorithm is not familiar with, as opposed to DFA which forces the unknown 

data to commit to a class. This would be useful in the event that a new antibiotic resistant 

strain had formed, or if a sample was contaminated with another species of bacteria. 
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Shown in Figure 3.16 is an example of a two class discrimination between E. coli and 

ultrapure water. The PLSDA program used for this work is PLS_toolbox v.8.7.1 combined 

with Matlab 2016b v.9.1 (Eigenvector research, Inc.).   

 

Figure 3.16: PLSDA 2-class discrimination plot between E. coli and ultrapure water. A data set of E. coli has been removed 
from the model and entered as unclassified data to test the robustness of the model. 

PLSDA, as with DFA, requires attention to avoid overfitting. This is done in the same 

way as DFA, by ensuring that the number of independent variables is equal to or does not 

exceed the number of inputted data points. Overfitting can lead to higher rates of false 

positives. Misclassified spectra can potentially be avoided by adjusting the number of LV’s 

for classification. In the PLSDA program used for this work, the LV’s can be adjusted 

manually or can be assigned automatically by the program. This however does not always 

work, and the best course of action is acquiring more data for an optimal classification 

result. Throughout this thesis, a mixture of automatic and manual assignments of LV’s were 

used.  

3.6.4 Artificial Neural Networks  

Artificial Neural Networks (ANN) are based on the structure of the brain. They create a 

non-linear model to establish a relationship or pattern between an input and an output. 

Relationships are created through supervised learning, which requires training data that 

has a known output value.81  

Bayesian cut line 

Ultrapure water 

data 

Known E. coli 

data 

Unknown 

data (E. coli)  
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The structure of ANN typically consists of an input layer with input nodes, an output 

layer with output nodes, and one or more hidden layers with hidden nodes. The input layer 

takes information given to the system and the number of input nodes corresponds to the 

number of inputs. The hidden layers are the layers between the input and output nodes and 

this is where most of the computation takes place in the algorithm. The hidden layer takes 

values from the input nodes and uses these values to produce another value that’s passed 

on to the next layer. The output layer is the outputted values of the algorithm. The output 

nodes we use are the bacterial classes. Each layer is connected to the next or previous 

layers by weights and nodes from the same layer cannot be connected. The weights that 

connect each node represent the strength or importance of a specific input.82  

ANN algorithms have two primary structures, feed forward and feed back. Only feed 

forward algorithms were used in this work, therefore only feed forward algorithms will be 

discussed. The feed forward method constrains data to only move in the forward direction 

through the algorithm, from the input nodes, to hidden layers, to output nodes. Feed 

forward algorithms are primarily used for classification and pattern recognition 

purposes.81 A schematic diagram of what a typical feed forward algorithm looks like is 

shown in Figure 3.17. The way this algorithm works is information is received at the input 

nodes in the form of a vector. Then each input is multiplied by a corresponding weight. 

Each product of this operation is added up to give a weighted sum. The weighted sum 

passes through an activation function which ensures that the output is non-linear. This 

process is how information passes from one layer to the next. During the first iteration, 

random values are assigned to each weight and the values of these weights are modified for 

each iteration to produce a predicted output close to the known output. The algorithm will 

stop modifying the weights when the error between the input and output reaches a 

minimum.  
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Figure 3.17: Typical artificial neural network feed-forward algorithm schematic. 

3.6.5 Sensitivity, Specificity, and Classification Error 

When using a clinical test to diagnose an infection or disease in a patient, the accuracy 

of the clinical test is highly important. It must be able to correctly identify the disease, and 

also be able to correctly determine if the disease is not present. This is the concept of a true 

positive and a true negative. The rate of true positives and true negatives can be measured 

by finding the sensitivity and specificity of a test. Chemometric algorithms calculate 

sensitivities and specificities when performing a discrimination to give the user an idea of 

the accuracy of the test.83 

The sensitivity is the proportion of samples that result in a positive test result and are 

genuinly positive. The sensitivity also depends on the number of false negatives, which are 

also known as type II errors. False negatives occur when the test returns a negative result 

when it is actually positive. Sensitivities are often reported as percentages. The formula for 

the sensitivity is described by the following equation:  

𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (10) 

Where 𝑇𝑃 is true positive, and 𝐹𝑁 is false negative. The optimal medical test would have a 

sensitivity, or true positive rate, of 100%. This means that the medical test would diagnose 
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100% of all cases of disease. Any sensitivity lower than 100% would mean that some cases 

of disease were missed. Though catching 100% of cases is desirable, it comes at a cost. In 

the case of 100% sensitivity the test would likely be so sensitive that it reports positive 

results in people not carrying the disease or infection. To balance this, a quantity called the 

specificity is required.84  

The counterpart to the sensitivity is the specificity, which is the true negative rate of the 

test. This is the proportion of the samples that result in a negative test result that are 

genuinly negative. False positives occur when the test returns a positive result when there 

is no disease present, this is known as a type I error. Specificities are also often reported as 

percentages, and the specificity is described as the following:  

𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (11) 

Where 𝑇𝑁 is true negative, and 𝐹𝑃 is false positive. An optimal medical test would have a 

specificity of 100%, meaning that no one is misdiagnosed. Values of specificity lower than 

100% would mean false positives occur. False positives are problematic for the healthcare 

system, as they could cause unnecessary procedures, medications, and undue stress on the 

patient. However, as with sensitivity, 100% specificity can be problematic as well. Having a 

perfectly specific test could result in all members of the population testing negative for a 

disease even if they do have it.  

For an optimal medical test, the sensitivity and specificity should be optimized to the 

highest values they can be, without compromising the accuracy of one value for the other. 

Ideally, the sensitivity and specificity for a medical test should be 100%, but there is no 

medical test that can currently achieve this level of accuracy. Rather, the focus is on 

achieving a balance between the two values.  To summarize the overall perforance of a 

medical test, classification accuracy is the metric used, which is defined as the fraction of 

predictions a model or test got right to the total number of predictions. This can be 

summarized as:  

𝑪𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒄𝒂𝒕𝒊𝒐𝒏 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(11) 
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Chapter 4: Discrimination of E. coli From Sterile Water 

LIBS is often touted as being a fast diagnostic technique with minimal to no sample 

preparation. However, the reality of LIBS on bacteria is that detecting bacteria with 

minimal to no sample preparation requires a ‘solid’ or pelletized bacterial colony. These 

solid pellets of bacteria do not represent what a clinician would sample from the body, and 

over represents the number of bacteria that would be present in a clinical sample. To 

achieve the high numbers of bacteria in solid pellets, culturing for 24-78 hours would be 

required.  

Other groups have attempted methods to easily detect trace numbers of cells. One such 

method which has proven to be very sensitive is serologically tagging cells with unique 

elemental nanoparticles. The immediate drawback of this is that a priori knowledge of the 

identity of the cells is required to correctly tag them, or they would have to be tested 

against all known immunoassays in parallel. Another approach was to deposit a small 

number of cells on inorganic substrates that do not exhibit the same lines as bacterial 

specimens, such as aluminium or steel disks. A drawback to this approach was the lack of 

porosity of the substrates; if any liquid is present with the cells an additional overnight 

evaporation step would be required to accurately identify them. As well this technique has 

only been shown to be effective for sampling small volumes of liquid, between 5 to 10 μL.85  

Our group has addressed the problem of sample preparation time with disposable 

nitrocellulose filters. These filters are porous and allow significantly larger volumes of 

bacterial suspensions to pass when centrifuged. Addition of a concentration cone placed on 

the filter concentrates bacteria and has lowered the limit of detection of Escherichia coli to 

approximately 10,000 CFU’s, from a previous 50,000 CFU’s.86 Being able to reliably achieve 

high signal from bacterial specimens when compared to the background signal is crucial for 

LIBS-based pathogen identification. Therefore, much of the work in this chapter focuses on 

efforts to decrease the level of background signal in our spectra from filter and water so 

that the signal from bacterial specimens is comparatively higher. This chapter also focuses 

on enhancing detection of bacteria by optimizing chemometric algorithms for 

discrimination between bacteria and water.  
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4.1 Calibration Curve and E. coli Spectral Library  

For this study, LIBS data was acquired for various concentrations of E. coli, ‘blank’ 

nitrocellulose filters, and ‘sterile’ water nitrocellulose filters. The blank nitrocellulose 

filters are filters with nothing deposited on them. The sterile water filters are nitrocellulose 

filters with sterile water deposited on them. 20 to 30 spectra were obtained from each 

filter, and the data spans two years. To quantify the LIBS signal, normalized spectral 

intensities were graphed. The results of this study are shown in Figure 4.1. 

 

 

Figure 4.1: LIBS bacterial curve of growth constructed from serial dilutions of E. coli (**represents a 24-hour drying 
period after deposition). 

The graph plots the ratio of the sum of all non-carbon normalized intensities to the 

normalized carbon intensity for each spectrum. Bacterial spectra contain strong emission 

lines from calcium, magnesium, sodium, and phosphorus, as opposed to blank filter spectra 

which contain only strong emission from carbon. Bacterial spectra therefore maximize the 
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numerator and minimize the denominator of the vertical scale in Figure 4.1. The blank 

filter spectra have the lowest ratio, at approximately 0 since they contain only carbon. 

Deionized water, represented by the light and dark blue, contained some contamination 

resulting in ratios between 1 and 2. Increased intensity above the deionized water show 

the presence of bacteria, with the general trend of increasing intensity for increasing 

concentration of bacteria.  

While Figure 4.1 signal intensity trends upwards with increasing bacterial 

concentration, it can be observed that there is a large amount of variability between single-

shot bacterial spectra. We have attributed the large variance in the data in part to the 

interaction of the LIBS apparatus with a non-uniform surface. LIBS ablation produces the 

most reproducible data on solid uniform surfaces; this is shown clearly by the blank filter 

data which have the smallest amount of variability. In contrast, bacterial depositions 

resemble a non-uniform film, with bubbles, cracks, and gaps. It is this reason that LIBS 

ablation repeatability on a bacterial target is poorer than the uniform filter surface.85 At 

times the bacterial film ablates well, leading to a maximum value of approximately 6 in 

Figure 4.1. When the bacterial film does not ablate well, we see an intensity that is on par 

with deionized water. This variability in the data makes detecting bacteria on a background 

of water very difficult. The graph essentially leads to 2 important research questions: how 

can the background signal be as close to zero as possible, and how can the repeatability of 

the non-zero bacterial spectra be improved. Overcoming the similarity between water and 

low intensity single-shot spectra of bacteria is the primary focus of this chapter.   

It should also be noted here that although the increasing concentrations of bacteria 

followed a general upwards trend in ratio, there was no consistent linear curve of growth.  

This can be explained by the bacterial suspensions being a true suspension rather than a 

solution. A solution contains evenly dispersed solvent and can be characterized by a linear 

curve of growth. In suspension, bacteria tend to clump together or form strings, making the 

solution more heterogenous and rendering a true solution difficult.87  
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4.2 Lowering the Background Signal 

This section details several methods for lowering the background signal and improving 

repeatability. Different waters for bacterial storage and sample preparation were 

investigated, and vigorous cleaning steps were also tested to further reduce background 

signal of the water. Methods of outlier rejection were also studied to curb the issues of filter 

reproducibility.  

4.2.1 Improving Cleaning Procedures for Background Reduction 

I address the first question of reducing the background signal by investigating cleaning 

procedures on pieces used for deposition of bacteria onto nitrocellulose filter. This study 

was done by myself and colleague Sydney Sleiman. Deposition procedure was previously 

discussed in Chapter 3 section 3.5.3. For this study we tested several different cleaning 

procedures on the metal plate, the metal cone, and the swab. The results on the metal plate 

and swab and swab will then be discussed first, followed by the metal cone, thereby 

following the chronological order in which the tests were conducted.  

The metal plate and the metal cone were cleaned using either bleach and water, or 

ultrasonicating in acetone and methanol for 5 minutes each. We chose to ultrasonicate 

because it is a more vigorous cleaning procedure than using bleach and water. We used 

‘uncleaned’ pieces as our control, where we defined uncleaned as using pieces without 

cleaning after previous use for bacterial deposition. Deionized water was deposited onto 

nitrocellulose filter for each cleaning procedure. We wanted to achieve a low background 

to detect any contamination while also having fluid running through the cone to ensure 

that we were properly simulating deposition of bacteria on the nitrocellulose surface. The 

swab was cleaned by vortexing it in deionized water before using it to pick up the bacteria 

to shake off any potential contamination. Each cleaning procedure was performed once per 

deposition on only one metal piece at a time.  

First the metal plate was tested. Spectra of the uncleaned metal plate, metal plate 

cleaned in bleach water, and metal plate ultrasonicated in acetone and methanol for 5 

minutes are shown in Figure 4.2. Figure 4.3 shows a bar graph comparing the normalized 

intensities of the 3 cleaning methods with error bars. As suspected, the uncleaned metal 
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plate spectrum showed higher contamination; specifically higher contamination was seen 

for magnesium and calcium. There was however very little difference between cleaning in 

bleach water and cleaning with ultrasonication. As per Figure 4.3, the carbon line and all 

metal lines are within error of each other, and no marked improvement is seen. The same is 

true for the spectra; there is no marked improvement between our original cleaning 

procedure with bleach and water and the new procedure of ultrasonication. This led us to 

conclude that the metal plate was not a major source of the contamination we see in our 

deionized water samples.  

 

 

Figure 4.2: Spectra comparing different metal plate cleaning procedures; (a) shows an overlaid spectra of uncleaned 
metal plate (red), metal plate cleaned with bleach and water (black), and metal plate cleaned with ultrasonication 
(green). (b) Comparison of magnesium lines for 3 cleaning methods, cleaning reduces magnesium line intensity. (c) 
Comparison of calcium lines for 3 cleaning methods, cleaning reduces the calcium line intensity. (d) Comparison of 
sodium lines for 3 cleaning methods, cleaning reduces sodium line intensity.   
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Figure 4.3: Bar graph comparing elemental intensities for 3 cleaning procedures. Cleaning appeared to reduce intensities 
of lines contributing to the background, although most intensity reductions are within error.  

 

Pre-cleaning of the swab that is used to collect bacteria was tested. We also tested the 

effect of the metal cone and swab together on potential contamination. The results of this 

are given in Figures 4.4 and 4.5. Depositing deionized water onto filter without the metal 

cone showed very similar signal between pre-cleaned swab and uncleaned swab. This is 

evident by the similarity between the red and black spectra in Figure 4.4, and the similarity 

between the grey and purple bars in Figure 4.5, leading to the conclusion that pre-cleaning 

does not substantially effect background signal. However, using the metal cone to deposit 

the sample shows consistently higher signal than the case where no metal cone was used. 

Additionally, the spectra acquired with the metal cone were virtually identical in intensity. 

These observations led to 2 conclusions; one being that the swab is fairly sterile and pre-

cleaning makes no difference. The second conclusion suggested that the major source of 

contamination likely came from the metal cone. Therefore, rigorous cleaning of the metal 

cone was investigated to reduce this background signal.  



75 
 

 

Figure 4.4: (a) Spectrum of swab cleaning procedures. Green spectra: pre-cleaned swab, water deposited through cone.  
Blue spectra: uncleaned swab, water deposited through cone.  Black spectra: pre-cleaned swab, cone not used.  Red 
spectra: uncleaned swab, cone not used.  It is evident that the swabs used with the metal cone produced higher signal due 
to the concentration of the fluid on the filter and contamination of the water by the cone. (b) Close-up of magnesium line.  
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Figure 4.5: Bar graph comparing the elemental intensities for 2 cleaning procedures and 2 deposition methods. The 
samples deposited with the metal cone have significantly higher intensity than those deposited without cone. However, 
pre-cleaning of the swab makes no statistical difference for most lines. 

For the metal cone, the same cleaning and deposition procedures were used as the 

metal plate. The resulting spectra of these 3 cleaning methods are shown in Figure 4.6 and 

a bar graph comparing the normalized intensity of our most important lines is shown in 

Figure 4.7. When analyzing the spectrum, the ultrasonication reduces the sodium line and 

reduces the calcium line, while the magnesium line remains relatively the same. This is 

supported by the graph in Figure 4.6 where it is clear that the sodium line has been 

significantly reduced, the calcium line has been reduced within error, and the magnesium 

line is relatively the same. This observation makes sense since the cone acts as a 

concentration step, so if it is concentrating bacteria, it may also be concentrating 

contamination. Based on the reduction of the sodium line and slight reduction of calcium, it 

was concluded that the cone was a source of contamination and it was recommended that 

the metal cone be ultrasonicated in acetone for 5 minutes followed by methanol for 5 

minutes for all bacterial sample preparation. All other cleaning and deposition methods 

remained the same as before.  
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Figure 4.6: Spectra comparing different metal cone cleaning procedures; (a) shows an overlaid spectra of uncleaned metal 
cone (green), metal cone cleaned with bleach and water (black), and metal cone cleaned with ultrasonication (red). (b) 
Comparison of magnesium lines for 3 cleaning methods, cleaning does not appear to reduce magnesium line intensity. (c) 
Comparison of calcium lines for 3 cleaning methods, cleaning reduces the calcium line intensity. (d) Comparison of 
sodium lines for 3 cleaning methods, cleaning reduces sodium line intensity. 

 

Figure 4.7: Bar graph comparing elemental intensities of 3 cleaning methods for the metal cone. Cleaning appeared to 
significantly reduce the intensity of the sodium line. The calcium line intensity appears to be gradually reduced for each 
cleaning method within error. The magnesium line intensity is relatively the same across all methods.  
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4.2.2 Investigation of Filter Media to Lower the Background Signal  

Along with cleaning procedures, other filter media were investigated to see if any other 

porous filter would offer a lower carbon signal. The filter we use currently, a Millipore 

nitrocellulose filter, has a very high carbon signal, which can interfere with the 

measurement of carbon emission from the bacteria. The intensity of the carbon line also 

prevents the use of higher spectrometer amplification values since the light from the 

carbon could damage it. The filter contains traces of other elements important to bacterial 

detection as well including calcium, magnesium, and sodium, but these are in such small 

amounts that they do not interfere with bacterial detection. Two other types of filter media 

were investigated: Millipore Durapore filters (GVWP01300, Millipore Inc.) and Millipore 

glass microfiber filters (1825-090, Whatman). The spectral intensity of each of these filters 

was analyzed to determine which filter offered the lowest background signal and solved 

the problem with the high carbon intensity. A semi-log plot comparing these intensities is 

shown in Figure 4.8 and a figure comparing the filters after laser ablation is shown in 

Figure 4.9.  

 
Figure 4.8: Semi-log plot of line intensities for nitrocellulose (green), Durapore (dark blue), and glass microfiber (light 
blue) filters. 
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Figure 4.9: Images of (a) nitrocellulose, (b) Durapore, and (c) glass microfiber filters after ablation. Laser ablation on the 
Durapore filter in (b) causes scorching and destruction of testing surface on the glass microfiber filter in (c). 

Figure 4.8 shows that the Durapore filter has lower levels of sodium and calcium, 

however it has higher levels of carbon than the nitrocellulose filter. Since the carbon line is 

the main problem with the filter background signal, Durapore filters will not help the 

background signal. The glass microfiber filter has the lowest intensity of carbon of the 

three, however it has much higher intensities of sodium, magnesium, and calcium lines 

which will heavily interfere with bacterial lines. As well, ablation of the glass microfiber 

filter causes destruction of the testing surface which is shown in Figure 4.9c. The 

destruction of the testing surface creates a textured and more topographically complex 

surface which is unideal for LIBS. It was concluded that the nitrocellulose filter was the 

most ideal filter medium for testing bacterial specimens and all tests have continued to use 

nitrocellulose filters. 

4.2.3 Investigating Water to Reduce Background Signal 

After reducing the background signal with more aggressive cleaning procedures and 

investigating other filter media, the next step was to find a type of water that achieved the 

lowest background signal possible. Blank nitrocellulose filter gives the lowest background 

signal that we can obtain with the LIBS apparatus. A more realistic control is water 

deposited on nitrocellulose filter since bacteria are suspended in and prepared with 

deionized water. Therefore, our aim is to use the water that causes the lowest level of 

background signal. Several kinds of water were investigated with the goal of lowering the 

background signal present in LIBS spectra and to improve classification between bacteria 

and sterile water. 

We tested distilled water, deionized water, and tap water. Tap water was collected from 

the sink in Essex Hall 390-2. A jug of distilled water was purchased from a store, and 
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deionized water was collected from the first-year chemistry labs on the first floor of Essex 

Hall. All three water samples were prepared the same way that bacterial samples were 

prepared, previously described in section 3.5.3. Tap water was used as a positive control, to 

ensure that unfiltered water gave the highest spectral signal, the most lines, or some 

combination of the two. Tap water contained all the same lines as our bacterial species 

with much higher intensities than other water types and of comparable intensity to the 

bacterial lines, confirming our suspicions. A spectrum of tap water is shown in Figure 

4.10a; note the intense calcium line at 393 nm and the high magnesium lines around 279 

nm. These lines would heavily interfere with the bacterial signal. The distilled water 

showed a marked improvement over the tap water, but still exhibited some intense lines, 

most notably the calcium line at 393 nm and the magnesium line at 279 nm, shown in 

Figure 4.10b. The deionized water, shown in Figure 4.10c, is similar to the distilled water 

but with one improvement; though the calcium line is still high, the magnesium line is 

much smaller. Deionized water however is still unideal because it is not very close to the 

more optimal blank filter spectrum, shown in Figure 4.10d, it is the water that provides the 

least amount of background signal.  

A spectrum of the tap, distilled, and deionized water for easier comparison is shown in 

Figure 4.10e. All three spectra are overlaid on one another to show the drastic difference 

between tap and the other two waters. The overlay also shows the subtle differences 

between the distilled water in black and DI water in green. One of the major differences 

mentioned previously being the larger presence of the magnesium 279 line in distilled 

water. Otherwise there are approximately equal amounts of calcium and sodium in 

deionized and distilled.  

Based on this conclusion, deionized water was used as the medium for bacterial 

suspensions and was used as the medium for all sample preparations from the period of 

2019 to 2021.  
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Figure 4.10: (a) A typical tap water spectrum. Several lines can be observed at high intensity, making this medium unideal 
when working with bacteria. (b) A typical distilled water spectrum. Calcium, magnesium, and sodium lines are clearly 
visible. (c) A typical deionized water spectrum. Magnesium lines are visible but small, calcium and sodium lines are larger 
and visible. (d) A typical blank filter spectrum, shown for comparison. Ideally, water spectra would be this low. (e) Water 
spectra overlaid with blank filter for comparison. 

Though deionized water produced a low background signal, it was still not ideal as 

some of the lines present in water were the same as the bacterial lines and had the same 

intensity as low intensity bacterial spectra. Based on this and the observation that 

deionized water did not achieve reliable discrimination against other bacteria, I pursued 

using ultrapure water to address these concerns. Ultrapure water is water that reaches 
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very stringent levels of purity and has all possible contaminants removed, leading to high 

levels of resistance in the mega ohm region. To study the ultrapure water, I chose to use a 

new sample preparation procedure developed with the purpose of studying the separation 

of bodily fluids and bacterial cells. For this procedure the cone is cleaned by ultrasonication 

in acetone and methanol, the centrifuge inserts and tubes are cleaned in bleach-water 

solution. The filter and centrifuge insert are prepared normally (see section 3.5.3), and the 

cone is placed immediately into the centrifuge tube. 1 mL of ultrapure water was pipetted 

through the cone and the centrifuge tube was centrifuged at the same settings as those in 

section 3.5.3. Several filters of ultrapure water were analyzed this way. A typical ultrapure 

water spectrum that we see is shown in Figure 4.11a. From this spectrum it is apparent 

that ultrapure water offers a huge improvement over the other types of water. This is also 

seen in Figure 4.11b, where an ultrapure water spectrum is compared with a deionized 

water and blank filter spectra. It is clear from this that ultrapure water offers a consistently 

low signal that is almost identical to blank filter. It is also apparent from the scatter plot in 

Figure 4.12 that compared to the blank filter data, the ultrapure water has both a lower 

average intensity, given by the solid purple line, and a smaller amount of variance, given by 

the dashed purple line. Not only does ultrapure water achieve a background signal 

consistently as low as blank filter, it also achieves a reproducible background comparable 

to that of blank filter. Based on these findings, it was recommended that ultrapure water be 

used in sample prep and in bacterial suspensions.  
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Figure 4.11: Comparison between ultrapure water spectrum and deionized water spectrum. (a) A typical ultrapure water 
spectrum, intensities of calcium, magnesium, and sodium lines are low. (b) Overlaid spectra of ultrapure and deionized 
water for comparison. Deionized water clearly has higher calcium, magnesium, and sodium emission. (c) Comparison of 
magnesium line intensity between the water types, magnesium emission is reduced with ultrapure water. (d) Comparison 
of calcium line intensity between water types, calcium emission is reduced with ultrapure water. (e) Comparison of 
sodium line emission between water types, sodium emission is reduced with ultrapure water. 
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Figure 4.12: Graphical comparison of deionized water (blue), blank filter (black), and ultrapure water (purple). The 
average intensity of the ultrapure water (solid purple line) is lower than both the blank filter (solid black line) and 
deionized water (solid blue line). The dashed lines show the standard deviation of each species. Ultrapure water has a 
smaller standard of deviation than blank filter, deionzied water has the largest standard deviation. 

4.3 Reducing the Scatter in Bacterial Data by Removing Outliers 

Referring back to Figure 4.1, the scatter in the bacterial data ranges from as low as 

blank filter, to much higher. This variation posed some problems with the discrimination 

between species using PLSDA and DFA; poor separation along with low sensitivity and 

specificity were observed consistently as shown in Figure 4.13. In order to improve the 

discrimination, I investigated several outlier rejection schemes to remove the lowest 

intensity data. Outlier rejection is not a new topic in LIBS; it has been investigated 

extensively and has been implemented with great success.88,89 LIBS is a process that 

depends on the laser-matter interactions and the homogeneity of the material, therefore it 

is sometimes necessary to remove outliers from the data, yet it is always necessary to 

retain data with sufficient variance to allow the construction of statistically robust 

chemometric models.85,89 This fluctuation of the laser-matter interaction quality is 

especially applicable to the bacteria surface, as it contains many inhomogeneities, including 

cracks and bubbles that exist on the same scale as the laser beam. In the case of our 

bacteria, some spectra are not indicative of what is on the surface if they appear empty or 
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lower in intensity than previous spectra. This obviates the need for some outlier rejection 

scheme.  

Several groups have investigated outlier rejection in conjunction with LIBS and 

chemometric analysis in the past, and some have implemented it successfully. El Haddad et 

al. have advocated for removal of outliers to improve classification results.90 Sahoo et al. 

have studied outlier rejection prior to classification and found an increase in the accuracy 

of classification.91 Cisewski et al. and Yueh et al. have also applied outlier rejection as a 

preprocessing step for classification of spore and tissues resulting in successful 

classification.92,93 Implementing outlier rejection as a preprocessing step has the advantage 

of minimizing the effect of poor data on classification results. It has been noted by several 

of these authors that because chemometrics rely on high numbers of data for accurate 

results, removing any input data could potentially result in a decrease in classification 

accuracy.6 However, this can be circumvented by collecting more data.  

I investigated two main methods of outlier rejection. The first method I investigated 

was defining a predetermined threshold based on the deionized water intensity average. 

To find a threshold, emission lines for a single spectrum were first summed together, 

resulting in a total spectral intensity. The average of all individual spectral intensities was 

taken to determine the average total spectral intensity of water. The standard deviation of 

the average total spectral intensity was also found. Both the average and standard 

deviation of the water were plotted, the result is shown in Figure 4.1. Initially, it was 

planned that all bacterial spectra below the water average plus 3 standard deviations 

would be removed. Upon inspection of Figure 4.1 however, this would result in rejection of 

most of the data, thus it was decided to remove only those data points below water plus 1 

standard deviation. 
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Figure 4.13: Discrimination between 5 species showing poor separation. (a) DFA discrimination between 5 species of 
bacteria, there is substantial overlap between groups. (b) PLSDA discrimination between 5 species of bacteria. E. coli is 
shown in red, S. aureus in green, P. aeruginosa in dark blue, E. cloacae in light blue, and M. smegmatis in pink. In each test, 
each class is given a predictor score of 1 and the rest are given a score of 0. The Bayesian line defines the threshold 
between the specific bacteria and all other bacteria. There is little to no separation between groups. 

Outlier rejection was tested on both ‘raw’ intensity data and normalized intensity data 

for various concentrations of E. coli and M. smegmatis. Raw intensity data refers to data 

(b) 

(a) 
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that has not been normalized in any way and represents the brightness of the observed 

emission line. For both raw and normalized intensities, the total spectral intensity for each 

spectrum were compared to the water average plus one standard deviation. If a spectrum 

had lower raw or normalized intensity, it was removed from the data set. All data that 

passed the threshold test were included in a PLSDA analysis. All PLSDA analysis was 

performed using the MATLAB-based PLS_Toolbox (v.8.6.2 Eigenvector, Inc.). A 

discrimination between all concentrations of E. coli and M. smegmatis and between only 

1/5 concentrations without exclusion of data was performed first to establish a baseline 

performance, this is shown in Figure 4.14a and 4.14b. In the PLSDA analyses shown in 

Figures 4.14 though 4.18, E. coli data is shown in red and M. smegmatis data is shown in 

green. Unclassified data to be tested is shown at the right as gray points. PLSDA visually 

differentiates between classes by the Bayesian cut line, shown by the red dashed line in 

Figure 4.14.  Data was then excluded from these sets based on the predefined threshold 

and analyzed in PLSDA, this is shown in Figure 4.14c and 4.14d. A summary of the 

discrimination results are given in Table 4.1. For the discrimination between 1/5 dilutions, 

only 10 data points were excluded, 4 from E. coli and 6 from M. smegmatis. The 

discrimination with the exclusion of data performed well, but the exclusion caused the 

sensitivity to drop from 0.975 to 0.944. The specificities remained the same, at 1.000. 

Addition of the water threshold for data exclusion showed no marked improvement on the 

most concentrated bacterial dilutions.  

For discrimination between all concentrations of bacteria, the initial sensitivity and 

specificity was 0.855 and 0.772, respectively. The data excluded based on the water 

threshold resulted in 58 spectra of E. coli being removed, and 161 spectra of M. smegmatis 

being removed. This resulted in an extremely unbalanced weighting between the two 

species, which is visually represented by Figure 4.14d. This unbalance reduced the 

sensitivity from 0.855 to 0.678. The specificity improved by a small amount, but the 

improvement was not large enough to warrant a change in the way we process our data. 

This imbalance of data could also be expected to occur with other species that often 

produced low intensity data, such as P. aeruginosa. Therefore, it was concluded that 

establishing an external threshold for outlier rejection created an unbalanced data set with 
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no increase in discrimination capability. It was decided based on this poor performance 

that no external validation of this model would be pursued. On the basis of this conclusion, 

an outlier rejection scheme that was internal to the species or the data set was investigated 

next.   
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Figure 4.14: PLSDA discrimination for the water threshold analysis. (a) A discrimination without the exclusion of any 
data between E. coli and M. smegmatis. (b) A discrimination between 1/5 concentrations of E. coli and M. smegmatis 
without the exclusion of data. (c) Discrimination after the exclusion of data between 1/5 concentrations of E. coli and M. 
smegmatis. (d) Discrimination after the exclusion of data between all concentrations of E. coli and M. smegmatis. 

 
 
 

  

(a) 

(b) 

(c) 

(d) 
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Table 4.1: Summary of results from the outlier rejection study. 

 Discrimination Total Number of 
Data Files Included 

Sensitivity (CV) Specificity (CV) 

Without 
Exclusion of 
Data  

All E. coli vs All 
Myco 

419 0.855 0.772 

E. coli 1/5 vs Myco 
1/5 

80 0.975 1.000 

With 
Exclusion of 
Data 

All E. coli vs All 
Myco 

200 0.678  0.790  

E. coli 1/5 vs Myco 
1/5 

70 0.944 1.000 

 

To establish an outlier rejection scheme internal to the individual filter data sets, 

histograms were made for each filter data set. Histograms were constructed using 

OriginPro 8 software. The number of bins for each histogram was automatically chosen by 

the software. Histograms of E. coli and M. smegmatis are shown in Figure 4.15.  

 
Figure 4.15: Histograms of (a) E. coli 1/5, (b) E. coli 1/10, (c) M. smegmatis 1/5, and (d) M. smegmatis 1/10. 
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The histograms were analyzed to establish any trends that would suggest the best way 

to remove data. It was found that higher concentrations of bacteria, namely 1/5 

concentrations, exhibited shapes closer to a Gaussian curve. Lower concentrations showed 

more left-shifted distributions, often times with the largest number of data points being in 

the lowest bin. From these figures, it is clear that shots with lower intensity happen more 

frequently than those with larger intensity, however the larger intensity spectra are 

important to our analysis as they contain the most signal. All the spectra in the bin 

containing the weakest intensities were taken to represent the ‘empty shots’ as seen in 

Figure 4.1. These empty shots were removed from the library and a discrimination 

between 1/5 dilutions of E. coli and M. smegmatis was performed in PLSDA. These 

dilutions were chosen because 1/5 has the best quality data with the highest intensity 

spectra and therefore classifies more accurately than other dilutions. 1/5 dilution was also 

chosen because removing the bin containing the weakest intensities posed a problem for 

any dilutions of M. smegmatis lower than 1/5; for smaller dilutions, most of the spectra fell 

in the bin containing the weakest intensities. Using any dilution of M. smegmatis smaller 

than 1/5 would have resulted in an imbalance in the data. The results of the discrimination 

between 1/5 dilutions with and without data exclusion are shown in Figure 4.16 and the 

results of the sensitivity and specificity in Table 4.2. The exclusion of data improved the 

classification between 1/5 dilutions of E. coli and M. smegmatis. 
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Figure 4.16: Discrimination between 1/5 dilutions of E. coli and M. smegmatis (a) without and (b) with data exclusion. 

The PLSDA model constructed with 1/5 dilution and an exclusion of data was tested 

with several filters using external validation. First, a filter of 1/5 M. smegmatis was 

removed from the model and entered unclassified for an external validation test. As 

expected, 100% of the unclassified points classified as M. smegmatis. Next, a filter of 1/10 

E. coli with no exclusion of data was tested in the model. The results of this test are shown 

in Figure 4.17a. The sensitivity of the 1/10 E. coli was 0.700, as only 14 of 20 points 

classified correctly. The specificity of this filter could not be calculated, as this is testing the 

rate of true positives that occur in the unclassified data set. True negatives in this set would 

simply be the number of E. coli spectra correctly misclassifying as M. smegmatis, which in 

this case is the same number of spectra that are true positives. Therefore, specificity for 

these external validation tests is redundant. The specificity was then compared to a PLSDA 

model built with 1/5 dilutions and no exclusion of data. The same E. coli 1/10 filter was 

entered unclassified into a PLSDA model with no exclusion of data and the result of this 

classification is shown in Figure 4.17b. 17 of 20 points classified correctly resulting in a 

sensitivity of 0.850. The library that had no data exclusion based on histograms performed 

better.  

 

(a) 

(b) 
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Figure 4.17: External validation of 1/10 E. coli dilution in a model constructed from 1/5 dilutions of E. coli and M. 
smegmatis. (a) The external validation of E. coli 1/10 dilution in a library with data exclusion based on histograms. (b) 
The external validation of E. coli 1/10 dilution in a library where no data has been excluded.  

The same steps as above were repeated for the external validation using a filter of M. 

smegmatis 1/10 dilution. The results of this external validation are found in Figure 4.18. 

The performance of the discrimination in the library with data exclusion based on 

histograms showed 12 of 20 points correctly classified, resulting in a sensitivity of 0.600. 

However, the performance of the discrimination in the library that had no data exclusion 

was worse, with only 3 of 20 points classifying correctly resulting in a sensitivity of 0.15.  

 

 

 

 

(a) 

(b) 



94 
 

 

 
Figure 4.18: External validation of 1/10 M. smegmatis dilution in a model constructed from 1/5 dilutions of E. coli and M. 
smegmatis. (a) The external validation of M. smegmatis 1/10 dilution in a library with data exclusion based on 
histograms. (b) The external validation of M. smegmatis 1/10 dilution in a library where no data has been excluded. 

Table 4.2: Comparison of sensitivity and specificity with no exclusion of data and with exclusion of data. Exclusion of data 
resulted in higher sensitivity and no change in specificity.  

 Sensitivity (CV) Specificity (CV) 

Without Exclusion of Data 0.975 1.000 

With Exclusion of Data 1.000 1.000 

 

The results of these classifications show that outlier rejection based on histograms is 

not beneficial in all cases. It worsened the discrimination when testing with E. coli 1/10 but 

improved the discrimination when testing with M. smegmatis 1/10. As well, outlier 

rejection based on histograms also poses a data imbalance problem when imposed on 

species that have consistently low intensities. Finally, the time it takes to make each 

histogram and manually remove the data does not constitute the minute gain seen for some 

discriminations. For these reasons, outlier rejection of each filter based on histograms was 

rejected as a viable method to improve discrimination and decrease scatter.  

Other methods to decrease this scatter have been addressed by our group in the past. 

One of these methods, pursued by Sydney Sleiman, was to use tween 20 on the bacterial 

suspensions. Tween 20 is a non-ionic detergent which is used to separate bacterial cells 

(a) 

(b) 
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from one another in clumps. Tween 20 is an amphipathic substance, containing a 

hydrophobic carbon tail and hydrophilic head group. Depending on the head group, the 

detergent can be anionic, cationic, non-ionic, or zwitterionic.94 Tween 20 was investigated 

with the goal of making the bacteria more evenly distributed in solution, and thereby 

making the surface of the bacterial film on filter more even and the shot-to-shot 

reproducibility of bacteria higher. Tween 20 was added to S. epidermidis samples during 

sample preparation. Filters of S. epidermidis with no Tween 20 were used as a comparison. 

Each sample was shot using the LIBS setup and subsequently analyzed with a scanning 

electron microscope (SEM) operated by Sharon Lackie at the Great Lakes Institute for 

Environmental Research (GLIER). The SEM images of S. epidermidis with Tween 20 and 

without Tween 20 are shown in Figure 4.19. Included in this figure are a variation of back-

scattered electron images and secondary electron images. These types of images were 

chosen because they show the topography of the sample best.  

Analyzing these figures shows a more uniform deposition for the surfaces with Tween. 

At the 300.0 and 10.0 μm scale, the surfaces with tween are much flatter and do not posses 

cracks in the surface as the samples with no Tween do. At the 5.0 μm scale, it is clear that 

the Tween sample is flatter than the no Tween sample. However, examining this image 

shows that bubbles and holes in the film are still present and it is not completely uniform. 

These bubbles and holes are less apparent in the 300.0 and 10.0 μm images, nonetheless 

they are present when the images are examined closely. The data for the Tween 

experiments showed that no improved reproducibility was achieved by applying Tween 20, 

likely due to the persistent presence of bubbles in the surface of the film. As well, similar 

intensities were obtained for spectra regardless of the presence of tween. However, the 

application of Tween to reduce variability is still an area for possible future work.  
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Figure 4.19: SEM images of S. epidermidis with (a) no Tween at 300.0 μm, (b) Tween at 300.0 μm, (c) no Tween at 10.0 
μm, (d) Tween at 10.0 μm, (e) no Tween at 5.0 μm, and (f) Tween at 5.0 μm. The deposition of S. epidermidis on the filters 
with Tween is much smoother and more uniform than filters with no Tween, however some bubbles still exist in the 
bacterial film, evidenced in (f). 

 

 

(a) (b) 

(c) (d) 

(e) (f) 
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4.4 Detection of E. coli From Sterile Deionized Water 

Using the previous results on deionized water, a study was conducted to see if E. coli 

could reliably and accurately be detected against deionized water. To do this, a MATLAB 

program called PLSDA was used to perform all discriminations between E. coli data at all 

dilutions and all deionized water data. 14 E. coli filters and 7 water filters, comprising 320 

data shots and 139 data shots, respectively, were analyzed. Using 5 latent variables and 10-

split venetian blinds cross-validation, a PLSDA model of single-shot E. coli and water was 

constructed with a sensitivity and specificity of 0.93 and 0.95, respectively. Next, external 

validation was conducted by removing one filter at a time and entering these filters back 

into the model unclassified. This resulted in 21 externally validated tests of the model. The 

sensitivity of each filter of E. coli was calculated by counting the number of spectra that 

correctly classified as E. coli. The specificity of each filter of water was calculated by 

counting the number of spectra that classified as water as opposed to E. coli, or the true 

negative rate. The average sensitivity of the single-shots on the 14 E. coli filters was 0.87, 

and the average specificity of the single-shots on the 7 water filters was 0.72. For E. coli, 7 

filters had a true positive rate of 100%, and one filter had a true positive rate of only 33%. 

For water, 2 filters had 100% shots correctly classify as not E. coli, while the worst 

performing filter has only 35% correctly classify as not E. coli. An example of one of these 

external validations is shown in Figure 4.20. The red data points are the deionized water; 

the green points are the E. coli spectra. The grey points are the filter that was entered 

unclassified into the model. In this case, 100% of these points classified correctly. 

 

Figure 4.20: Example of an external validation for E. coli and water. Adapted from ref [85]. 
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Though some filters resulted in high classification accuracy, others exhibited extremely 

low classification accuracy. This can be attributed to the high variability in the spectra as 

seen in Figure 4.1. To compensate for this, it was decided that the spectra from each filter 

would be summed to create one measurement per filter. This approach was motivated by 

the high variability and by the fact that clinically, only one diagnosis is required instead of 

20 to 30. To accomplish this, two methods were investigated for summing the spectra. The 

first was using the “add-all” feature in Esawin, the second method was using Excel to sum 

individual line intensities.  

The add-all function in Esawin functions as an average for spectra. In Esawin, the raw 

pixel intensities are added up for each individual spectrum to produce one spectrum. For 

each filter this is an average of 20-30 spectra. The effect of the add-all spectrum is to 

increase the signal to noise ratio so that smaller spectral features become more prominent, 

this is shown in Figure 4.21. In this figure it is apparent that the magnesium line in the add-

all spectrum is bigger than the magnesium line in the single-shot spectrum. 21 add-all 

spectra were created for each of the 21 filters and an external validation was performed for 

each filter. The results for this test showed that 13 of the 14 E. coli filters correctly 

classified as E. coli, and 6 of the 7 water filters correctly classified as water. The sensitivity 

and specificity were therefore 0.93 and 0.86, respectively. Figure 4.22 shows a sample of 

one of these external validations.  
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Figure 4.21: Esawin "add-all" spectrum (black) overlayed on a single-shot spectrum (red). The add-all spectrum reduces 
the noise in the spectrum and increases intensity of spectral features important to bacterial discrimination. This 
increased signal is shown by the close up of the magnesium 279 nm line where the add-all is higher in intensity than the 
single-shot spectrum. 

 

Figure 4.22: A PLSDA plot showing the classification of add-all spectra. The sterile DI Water is shown in red, the E. coli is 
shown in green. The grey point is an add-all filter of E. coli entered into the PLSDA plot without any class information. 

With the Excel method, the 19 emission lines and their respective intensities for the 20-

30 spectra per filter were first extracted from the Esawin software. The peak intensities 

were summed across the 20-30 spectra for each line, then the summed lines were 

normalized to the total spectral power of that summed spectrum, as usual. The complex 

ratios in RM3 were then calculated using the summed spectrum. The summed spectrum 

produced by Excel is similar to the Esawin “add-all” function, but not exactly the same. The 

difference observed between these two methods warranted both to be tested in PLSDA. 

The PLSDA results for the spectra summed in Excel showed 14 of 14 filters correctly 

200.000 258.000 316.000 374.000 432.000 490.000 548.000 606.000 664.000 722.000 780.000

8263

6610

4958

3305

1653

0

“Add-all” Spectrum 

Single Shot Spectrum 

279.374 279.409 279.444 279.479 279.514 279.549 279.584 279.618 279.653 279.688 279.723

990

790

590

391

191

-8



100 
 

classified as E. coli and 7 of 7 water filters correctly classified as water. The sensitivity and 

specificity of this technique is therefore 1.000 and 1.000, respectively. The performance of 

the Excel summation is better than the Esawin add-all performance, leading us to conclude 

that any preprocessing step involving summation of shots across a filter should be done 

through Excel as opposed to Esawin.85  

Though this method has shown improvement on classification, there is a problem with 

the small amounts of data being inputted into the algorithms. Ideally, the amount of spectra 

should be equal to the number of independent variables for the best results. We are 

attempting to address this currently and future work will focus on collecting enough data 

to meet this benchmark.  

A more recent study inspired by the work on ultrapure water and the reduction of 

background signal focused on the same problem of discriminating between bacteria and 

water. For this study, a PLSDA model was constructed from 320 single-shot E. coli spectra 

and 123 single-shot ultrapure water spectra. The E. coli data included spanned all dilutions 

from 1/5 to 1/500 and resulted in a total of 14 filters of E. coli. The total number of water 

filters was 4; this is smaller than the previous test involving deionized water because we 

have been working with ultrapure water for less time and therefore have a smaller library. 

The model is shown in Figure 4.22 and has a sensitivity and specificity of 1.000 and 1.000, 

respectively. This is an improvement over the previous model, with perfect sensitivity and 

specificity.  
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Figure 4.23: PLSDA model of all dilutions of E. coli and ultrapure water. The sensitivity and specificity of the model is 
1.000 and 1.000. 

External validation was also performed on this model using the same method as the 

previous test with deionized water. One filter of E. coli was removed from the model at a 

time and entered unclassified, the sensitivity of each fitler was calculated. The same was 

done for each ultrapure water filter, then the specificity of each filter was calculated. A 

sample of some of the results is shown in Figure 4.23 and Figure 4.24. 13 of the 14 E. coli 

filters had a sensitivity of 100%, with 1 of the filters having a sensitivity of 96.7%. This 

gives an average sensitivity of 99.7%.  

 

Figure 4.24: Discrimination between all dilutions of E. coli (red) and ultrapure water (green). One E. coli 1/5 dilution 
filter was entered unclassified into the model, which is shown in dark grey. 
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4 of the 4 water filters classified with 100% specificity, an example of one of the 

external validations of water is given in Figure 4.25. In some cases, the sensitivity of the 

model was less than 100%, but was never lower than 99.4%. The average specificity of the 

ultrapure water is therefore 100%.  

 

Figure 4.25: Discrimination between all dilutions of E. coli (red) and ultrapure water (green). One ultrapure water filter 
was entered unclassified into the model, which is shown in dark grey. 

Initial studies were performed on classification of E. coli and ultrapure water add-all 

spectra. A total of 21 E. coli filters and 4 ultrapure water filters were used in the 

classification. More E. coli filters were used for this study because more data had been 

collected over time. A PLSDA model was built using these add-all filters, shown in Figure 

4.26, and resulted in a sensitivity and specificity of 100% and 100%, respectively. External 

validation was performed on each filter in the same way as the previous studies. The 

results showed that 21 of 21 E. coli filters classified correctly, and 4 of 4 ultrapure water 

filters classified correctly. The average sensitivity and specificity of this technique is 

therefore 100%. These initial studies however may not be entirely representative of our 

ability to detect add-all spectra of bacteria because the data pool is small and imbalanced. 

The imbalance of the data is clearly seen in Figure 4.26, where the green E. coli spectra 

heavily outweigh the red ultrapure water spectra. More ultrapure water data is 

recommended to determine if this high accuracy of classification is true.   
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Figure 4.26: PLSDA classification between add-all ultrapure water spectra (red) and add-all E. coli spectra of all dilutions 
(green). The sensitivity and specificity of the model is 100%, but the model is unbalanced due to the lack of ultrapure 
water data. 

These results for both the sensitivity and specificity using ultrapure water are an 

improvement over the results using deionized water. The single-shot classification 

performed as well as the classification with averaged spectra using Esawin “add-all”, and 

slightly worse than the classification using Excel averaged spectra. However, both the 

method of averaging spectra and using ultrapure water allows us to detect the presence of 

bacteria with 100% sensitivity and specificity. As well initial results on the use of add-all 

ultrapure water spectra show the same trend of detection with 100% accuracy. The use of 

averaging spectra and the use of ultrapure water will therefore be used for all future 

studies involving the preparation and detection of bacteria.  

This chapter detailed my attempts to reduce the scatter in the data and reduce the 

background intensity of spectra with no bacteria. It was concluded that washing of the cone 

with acetone followed by methanol reduced the background intensity of the spectra. The 

effect of the water was investigated, which showed that DI and distilled water resulted in 

about the same intensity of spectra, while ultrapure megohmic water showed reduced 

intensity of spectra. The reduction of line intensity in water improved detection of bacteria. 

Multiple substrates were investigated and it was found that nitrocellulose was the best 

substrate for our purposes. Other filters were investigated because of the high intensity 

carbon line of the nitrocellulose filter, which prohibited us from turning up the 
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amplification on the spectrometer to increase the intensity of other lines important to 

classification. However, these other filters showed both a high carbon line and increased 

intensities for magnesium, calcium, and sodium. Therefore, it was concluded that these 

filters were unideal for deposition with bacteria and nitrocellulose was continued to be 

used. Outlier rejection was investigated and showed no improvement. The addition of 

single-shot spectra to average out the low intensity spectra was investigated and was found 

to greatly improve the classification accuracy in PLSDA for detection of bacteria in sterile 

water. Originally, single-shot spectra classified with a sensitivity of 87 % and a specificity of 

72 %. Addition of single-shot spectra improved the sensitivity and specificity to 100 % 

each.  
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Chapter 5: Classification of Bacteria by Species – Diagnosing Bacterial 

Infections 

The accuracy of a DFA test performed on 5 species of bacteria has previously been very 

high; sensitivities and specificities as high as 91% and 97% have been reported by Rehse et 

al.95 However, these high numbers can be attributed to ablation of high numbers of cells on 

background-free nutrient-free agar. This is impractical for clinical use because many 

infections will not present with such high numbers of cells. As well, the nutrient-free agar 

background requires extra sample preparation that would add to diagnostic time. While 

this work demonstrated that bacterial species could be reliably and accurately 

discriminated, discrimination capability of spectra resulting from lower numbers of cells 

and with non-zero background must be investigated.  

Dylan Malenfant showed that bacterial spectra could still be discriminated reliably and 

accurately when ablated on a filter medium. 30 μL of high concentrations of bacterial cells 

were deposited using a well-plate onto filter, shown in Figure 5.1, and ablated.96 When the 

spectra were analyzed with DFA, there was a visible separation between groups and an 

average sensitivity and specificity of 98% and 99%, respectively. The DFA plot is shown in 

Figure 5.2.96,97  

 

Figure 5.1: (a) Well-plate used for deposition. 30 μL of bacterial suspension is deposited into each well and left to dry. (b) 
After drying the well-plate is removed from the filter. Three pads of bacteria are left behind. Adapted from ref [96,97]. 
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The need for a more clinically relevant number of cells raises two questions: can the 

cells be detected, and can the cells be classified? Alexandra Paulick addressed the first 

question by designing a metal cone meant to concentrate small numbers of bacteria into a 

region with diameter 1 mm.98 The results of this work, as addressed in Chapter 3, showed 

that they can be identified. We are now attempting to accurately classify fewer cells using 

DFA and ANN.  

5.1 Classification of Bacteria Using Discriminant Function Analysis 

In this work, several methods were used to optimize the classification of the DFA, 

including reducing the number of ratios in the ratio model, subtracting the contributions of 

the filter from the spectrum of bacterial, reducing the number of bacterial species used in 

classification, and using the ‘add-all’ method discussed in Chapter 4. The methodology and 

results of each method will be discussed below.  

 

1: E. coli 

2: S. epidermidis 
3: M. smegmatis 

4: P. aeruginosa 

Group centroid 

Figure 5.2: DFA plot resulting from bacterial spectra collected using the well-plate deposition method, adapted from ref 
[97]. 
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5.1.1 Results of the 5-Class Test 

A 5-class test was attempted in DFA to test the performance of the low numbers of cells 

concentrated with the metal cone on the nitrocellulose filter, which created a non-zero 

background. 892 individual spectra were loaded into IBM SPSS Statistics using RM2.5 for a 

DFA analysis. The five species tested were E. coli, S. aureus, E. cloacae, P. aeruginosa and M. 

smegmatis. The number of spectra pertaining to each species was 400, 80, 113, 80, and 

189, respectively. Few spectra were collected for some species because data acquisition of 

these species began later than others. The results of the DFA test show unideal sensitivity 

and specificity for clinical application. The sensitivities and specificities for each species are 

listed in Table 5.1 on page 111.  

While some of the specificities are quite high, many of the sensitivities are low. As 

mentioned previously, an ideal medical test has a sensitivity and specificity of 100%. 

Several approaches were used to improve the DFA. Many of these approaches assumed that 

the carbon line from the nitrocellulose filter was not helpful in discrimination because it 

did not originate from the bacteria. First, we attempted to change the way the data was 

entered into DFA.  

All the ratio model test used normalized data as the x-block vector. This means the data 

is normalized by dividing the sum of all 15 lines by the carbon line. We normalize by the 

carbon line because the carbon line is a consistent feature in the bacterial spectra. The 

carbon line in our spectra has a relative standard deviation (RSD) of approximately 5%, 

making it highly reproducible and reliable. Instead of using normalized data in the x-block 

vector, unnormalized ‘raw’ data was used instead. The results for the sensitivities and 

specificities for each species are in Table 5.2 on page 111. This model performed worse 

than the 5-class model using normalized data; sensitivities were far lower and 

classification errors were higher in most cases.  

The next strategy adopted to remove the influence of the carbon line was subtracting 

the spectrum of the filter from bacterial spectra. To do this, an average value of each of the 

15 lines was calculated for all filter spectra in our library. The average from each blank 

filter line was then subtracted from each single bacterial spectrum line. The average and 
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the new bacteria spectrum were both calculated using unnormalized data. The 

unnormalized result was entered in the RM2.5 sheet and used in DFA. The results were 

again much poorer than the original model using normalized data and are shown in Table 

5.3 on page 111. The same subtraction process was repeated, and the result was 

normalized to determine if normalized data without the contribution from the filter would 

improve the discrimination. These results are shown in Table 5.4 on page 111 and were 

comparable to the original discrimination and the discrimination with the removal of filter 

contribution. Removal of the contributions from the filter therefore do not improve 

discrimination results between species.  
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Table 5.1: Results of DFA using RM2.5 with normalized data of 5 species. 

Table 5.2: Results of DFA using RM2.5 with unnormalized data of 5 species. 

Table 5.3: Results of DFA using RM2.5 with unnormalized data and subtracting contribution of filter from 5 species. 

Table 5.4: Results of DFA using RM2.5 with normalized data and subtracting contribution of filter from 5 species. 

Table 5.5: 10-fold CV in DFA results using RM2.5 with normalized data of 5 species.99 

 

RM2.5 With Normalized Data 

 E. coli S. aureus E. cloacae P. aeruginosa M. smegmatis 

Sensitivity 58.8 % 68.3 % 58.8 % 48.7 % 75.0 % 

Specificity 76.8 % 90.2 % 94.2 % 91.2 % 93.4 % 

Classification Error 32.2 % 20.8 % 23.5 % 30.1 % 15.8 % 

RM2.5 With Unnormalized Data 

 E. coli S. aureus E. cloacae P. aeruginosa M. smegmatis 

Sensitivity 50.3 % 56.3 % 47.8 % 67.5 % 60.3 % 

Specificity 81.2 % 91.2 % 91.7 % 90.8 % 84.5 % 

Classification Error 34.3 % 26.3 % 30.2 % 20.9 % 27.6 % 

RM2.5 With Unnormalized Data and Subtracting Filter 

 E. coli S. aureus E. cloacae P. aeruginosa M. smegmatis 

Sensitivity 60.0 % 44.4 % 38.8 % 38.1 % 61.3 % 

Specificity 87.9 % 86.6 % 89.3 % 90.0 % 85.9 % 

Classification Error 26.1 % 34.5 % 36.0 % 36.0 % 26.4 % 

RM2.5 With Normalized Data and Subtracting Filter 

 E. coli S. aureus E. cloacae P. aeruginosa M. smegmatis 

Sensitivity 50.8 % 51.3 % 38.9 % 56.3 % 60.3 % 

Specificity 76.2 % 87.5 % 92.8 % 91.0 % 87.7 % 

Classification Error 36.5 % 30.6 % 34.1 % 26.4 % 26.0 % 

RM2.5 Using 10-Fold CV 

 E. coli S. aureus E. cloacae P. aeruginosa M. smegmatis 

Sensitivity 48.7 % 57.5 % 41.5 % 50.0 % 48.1 % 

Specificity 75.9 % 87.3 % 92.2 % 90.2 % 85.2 % 

Classification Error 37.6 % 27.5 % 33.0 % 29.8 % 33.2 % 
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After the attempt to remove the carbon line did not improve results, a 10-fold cross 

validation (CV) was conducted in DFA. This process separates the dataset into 10 groups, 9 

are used for training set and the tenth is used for validation. The test is performed 10 times 

until all groups are used for validation and the sensitivity and specificity are calculated. The 

results for this test are shown in Figure 5.3 and Table 5.4.99 The 10-fold CV performed 

worse than all other tests, and the 3D plot of the discriminant analysis shows poor 

separation between groups.  

 

Figure 5.3: 10-fold CV in DFA on 5 species of bacteria. 

Poor DFA sensitivity, specificity, and overall performance can likely be attributed to 

low numbers of spectra compared to the number of independent variables in the RM2.5. 

The RM2.5 contains 92 independent variables, and only 862 spectra were analyzed. It is 

recommended that for accurate statistics there should be at least 10 times the amount of 

data present in the model as there are independent variables. As well, classification 

accuracy can be degraded by imbalanced data sets. More spectra will need to be collected 
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to ensure that the dataset is balanced before attempting any future discrimination between 

5 species.  

5.1.2 Results of the 3-Class Test 

A DFA discrimination was performed between only 3 classes of bacteria as an attempt 

to reduce the complexity of the model. It was theorized that reducing the complexity of the 

model may lead to improved performance. The 3 species of bacteria that were chosen for 

this model were E. coli, S. aureus, and E. cloacae. These species were chosen because they 

exhibited reliably high intensity compared to M. smegmatis and P. aeruginosa, as shown in 

Figure 5.4.99 Figure 5.4 shows the same information as Figure 4.1 but includes all species. 

The figure demonstrates that P. aeruginosa (orange) had consistently low intensity spectra, 

most of which was consistent with sterile water. M. smegmatis did not have as many high 

intensity spectra as E. coli, S. aureus, and E. cloacae. Therefore, P. aeruginosa and M. 

smegmatis were removed from the DFA analysis.  

 

Figure 5.4: Scatter plot of individual bacterial spectral. The ratio of all non-carbon normalized intensities to the 
normalized carbon intensity is plotted against the spectrum number. Colours represent the different bacterial species; 
shapes represent individual filters of data. The average filter and water spectral intensity is given by the black and blue 
line, respectively. The ratios at the top represent concentrations of bacterial suspensions, with ‘full’ indicating stock 
solution. Adapted from ref [99].  
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An RM2.5 model was constructed using 1731 single-shot normalized spectra with 569 

E. coli spectra, 598 E. cloacae spectra, and 564 S. aureus spectra. This represents a 

relatively well-balanced data set which should return the most accurate results and 

statistics. The RM2.5 was entered in DFA, the results of the sensitivity and specificity are 

given in Table 5.6 and the resulting discriminant function plot is given in Figure 5.5. The 

sensitivity and specificity results for the 3-class test are comparable to the previous results 

using 5 species, and thus are still low. The results from the 10-fold CV on 3 classes are 

shown in Table 5.7. The 10-fold CV only offers a very small improvement over these results, 

not a large enough improvement to be clinically useful.  

 

Figure 5.5: DFA of normalized data without 10-fold CV. 

 
Table 5.6: Results of DFA using RM2.5 with normalized data of 3 species. 

 

RM2.5 With Normalized Data 

 E. coli S. aureus E. cloacae 

Sensitivity 70.00% 60.00 % 60.00 % 

Specificity 71.51 % 80.00 % 92.04 % 

Classification Error 28.40 % 25.60 % 24.70 % 
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Table 5.7: Results of 10-fold CV DFA using RM2.5 with normalized data of 3 species. 

 

Based on the previous recommendation from Chapter 4, the discrimination of the ‘add-

all’ spectra were investigated. The method used to add spectra was the Excel summation 

method previously found to be the highest performing method in PLSDA. All 30 spectra 

from each filter were summed into one value for each of the 15 lines, and after summation 

each line was normalized to the carbon line. There were 58 filters total, thus 58 normalized 

data points were used in the RM2.5. The distribution of species was once again well-

balanced, with 19 filters of E. coli, 19 filters of S. aureus, and 20 filters of E. cloacae. This 

discrimination performed worse than the previous 3-class test, with the results given in 

Table 5.8 and the discriminant function plot given in Figure 5.6.  

 

Figure 5.6: Discrimination between ‘add-all’ of 3 species. 

RM2.5 With Normalized Data (10-Fold CV) 

 E. coli S. aureus E. cloacae 

Sensitivity 73.28 % 64.93 % 60.10 % 

Specificity 71.78 % 84.93 % 92.53 % 

Classification Error 27.47 % 25.07 % 23.68 % 
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Table 5.8: Results of discrimination between 3 species by summing single-shot spectra.  

 

This result was counterintuitive based on previous results in the PLSDA, but it may be 

explained by examining the structure matrix, the tolerance test, and the tests of equality of 

group means outputted by the DFA. The structure matrix shows how each predictor 

variable is correlated with the discriminant functions. The higher the number, the more 

highly correlated it is to a specific discriminant function; this is how the DFA decides which 

predictor variable to use in each function. The tolerance test determines which variables 

can remain in the regression equation. The test of equality of group means determines 

which independent variables will contribute to the model. After comparing these three 

parameters between the single-shot discrimination to the add-all discrimination, more 

independent variables were rejected from use in the add-all model than in the single-shot 

model. In the single-shot model, 49.53% of variables were rejected from the model, while 

in the add-all, 81.30% of variables were rejected from being used in the model. Another 

discrimination was attempted by removing the variables that were unused in the original 

add-all discrimination, however there was no improvement in the result. This suggested 

that the data was too poor to be discriminated in DFA, limiting the algorithm’s 

performance.  

The poor performance of DFA led us to develop and investigate a new classification 

algorithm, an artificial neural network (ANN). A general description of how ANN works and 

the parameters used in this experiment are covered in greater detail in Chapter 3, section 

3.6.5.  

 

RM2.5 With Normalized Summed Data 

 E. coli S. aureus E. cloacae 

Sensitivity 50.00% 60.00 % 50.00 % 

Specificity 74.35 % 70.00 % 87.18 % 

Classification Error 39.10 % 35.80 % 30.10 % 
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5.2 Classification of Bacteria Using Artificial Neural Networks  

An analysis using ANN was done to compare the performance of ANN to DFA. The same 

3 species as in the DFA were used. Our ANN algorithm was initially developed in Python by 

Alayna Tieu and uses the libraries Pandas, Numpy, Tensorflow, keras, and Scikit-Learn. A 

brief description of how ANN algorithms work is given in Chapter 3.6.5. The ANN algorithm 

developed consisted of 92 input nodes, corresponding to the number of independent 

variables in the RM2.5 sheet. The algorithm consisted of 1 hidden layer where the number 

of nodes in this layer was optimized for each run using an optimization algorithm to 

optimize the number of epochs, written by Alayna Tieu, prior to using the ANN. The output 

nodes correspond to the number of classes being identified, which is set by the user. Other 

ANN parameters to optimize are the epochs, the batch size, number of hidden nodes, and 

the patience. An epoch is one iteration through the entire data set.100 Our epoch number 

was optimized for each data set. The batch size is the number of items or nodes that are 

updated together during a given epoch. Our batch size was 32, which means that 32 nodes 

were updated per epoch. The patience determines when the ANN stops, it is meant to 

minimize the loss, the loss being the difference between an expected outcome and a current 

outcome.100 The patience was optimized for each data set tested in the ANN.  

Before the data is classified with ANN, the program randomly splits the data up into a 

training set and a testing set. The testing set was created by removing 20% of the data from 

the training set. Typically, the larger the training set the better the performance.  

The resulting average sensitivity and specificity of the 3 bacterial species using the ANN 

optimize algorithm as well as the ANN were 64.62% and 82.29%, respectively. These 

values were calculated by running the ANN multiple times and using the sensitivity and 

specificity obtained from each run to compute the average sensitivity and specificity. The 

average was calculated because the ANN produces slightly different results each time it 

runs since it randomizes the files chosen for the test set. Overall, the performance of the 

ANN were highly similar to the results of DFA, and therefore the ANN still does not provide 

highly accurate results. The results are summarized below in Table 5.9.  
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To improve on these results, optimization of other parameters was investigated. A new 

ANN optimization algorithm was developed by Grace Johnson and August Baughan to 

optimize the patience and number of hidden nodes. This algorithm outputs the average 

sensitivity and specificity for each value of patience and number of hidden nodes into a 

spreadsheet. The user then chooses the patience and hidden nodes that correspond to the 

highest values of sensitivity and specificity, which are inputted into the ANN algorithm. For 

the 3 species, the ANN was run multiple times and an average sensitivity and specificity for 

each species was calculated. The average overall sensitivity and specificity was 66.78% and 

83.36%, respectively. These results are shown in Table 5.10. The new optimization 

algorithm offered no improvement over the previous algorithm.  

As with DFA, an add-all analysis was attempted in ANN as well based on the previous 

success in PLSDA. All 30 spectra from each filter were added to produce one spectrum per 

filter. The method used to create the add-all filters was the Excel method previously 

discussed. The results for the classification of 3 species is summarized below in Table 5.11. 

The average sensitivity and specificity of this method is 47.22% and 73.61%, respectively. 

The add-all approach performed worse than the single-spectra approach in ANN and 

performed worse than the add-all approach in DFA.  

 

 

 

 

 

 

 

 

 



119 
 

Table 5.9: Results of 3 species after optimization of epochs, followed by ANN analysis. 

 

Table 5.10: Results of 3 species after optimization of patience and hidden nodes, followed by ANN analysis. 

 

Table 5.11: Results of 3 species after add-all operation in Excel and optimization of patience and hidden nodes, followed 
by ANN analysis. 

  

5.2.1 Data Reduction Using Principal Component Analysis 

Based on other research in the field of LIBS, preprocessing of data before using ANN 

was attempted. Some researchers have reported on improved results when conducting a 

principal component analysis (PCA) analysis on data and using the principal component 

scores as independent variables in ANN.101,102 The number of principle component scores 

retained from the PCA will therefore be the new number of input nodes in the ANN 

algorithm. PCA is a multivariate method that reduces the inputted data to a set of principal 

component (PC) scores and is often used for pattern recognition.103 A PCA algorithm was 

ANN With RM2.5 Normalized Data 

 E. coli S. aureus E. cloacae 

Sensitivity 63.33 % 66.09 % 64.44 % 

Specificity 75.14 % 84.44 % 87.29 % 

Classification Error 30.76 % 24.73 % 24.13 % 

ANN With RM2.5 Normalized Data 

 E. coli S. aureus E. cloacae 

Sensitivity 60.14 % 69.78 % 70.42 % 

Specificity 82.38 % 84.06 % 83.64 % 

Classification Error 28.74 % 23.08 % 22.97 % 

ANN With Add-All RM2.5 Normalized Data 

 E. coli S. aureus E. cloacae 

Sensitivity 33.33 % 69.78 % 70.42 % 

Specificity 62.50 % 84.06 % 83.64 % 

Classification Error 52.08 % 33.33 % 33.33 % 
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developed by Emma Blanchette and Grace Johnson in python using the libraries 

sklearn.decomposition, pandas, numpy, and mpl_toolkits. PCA scores were created for the 

RM2.5 data and 4 PC scores were kept. 4 PC scores were chosen because they encompassed 

93% of the variance in the data. The ANN optimize algorithm developed by Grace Johnson 

and August Baughan was run using the 4 PC scores outputted by the PCA algorithm. The 

results of this test are summarized in Table 5.12 on page 122. The average sensitivity and 

specificity was 33.33% and 66.67%, respectively. PCA was attempted again with more PC 

scores kept to capture more of the variance in the data. 10 PC scores were kept, which 

captured 99.58% of the variance. The results of this were more favourable, but still offered 

no improvement over previous DFA and ANN results. The average sensitivity and 

specificity for this test was 66.46% and 83.34%, respectively. The results are summarized 

in Table 5.13 on page 122.  

These results led us to conclude that we were likely at the limit with what 15 lines and 

their ratios could classify. Based on this conclusion, we decided to approach classification 

of species using a full spectrum as opposed to hand-picking 15 lines. This approach has 

been used in the past by other groups successfully.  

Full spectrum analysis was done by extracting the raw intensity from each channel in 

the Esawin software into an Excel sheet. The data ranged from 200.915 nm to 779.915 nm.  

This results in 53,434 data points for each filter. The full spectrum data was fed to PCA and 

10 PC scores were kept. The 10 PC scores were used in the ANN optimize algorithm to 

optimize patience and number of hidden nodes. Based on this algorithm a patience value 

and number of hidden nodes were chosen for the ANN. The results of this ANN analysis are 

shown in Table 5.14, page 122. The average sensitivity and specificity for this test was 

94.18% and 97.02%, respectively. The average and individual sensitivities and specificities 

are higher than all previous tests between bacterial species.  

These experiments were expanded upon by investigating mean-centering, a common 

data-preprocessing methods used in conjunction with PCA. Before performing PCA on the 

full-spectrum data, each variable was mean-centered. This was done by calculating the 

mean of the data across each wavelength and subtracting the mean from each data point of 
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the same wavelength. This was done for all 53,434 channels. 10 PC’s were constructed from 

the mean-centered data. The 10 PC scores were used in the ANN optimization algorithm, 

and the ANN analysis resulted in similar sensitivity and specificity without preprocessing 

of data, likely within error of the previous scores. These results are summarized in Table 

5.15 on page 122. Mean-centering provided good results, but no better than the results 

without the use of pre-processing. Due to the high computation requirements with no 

improvement observed, mean-centering is not recommended for this application. To verify 

that the algorithm was not fitting noise and instead looking at the important features of the 

spectra, classes from 1 to 3 were assigned randomly to each bacterial spectrum to 

purposely make the test fail. The test results showed random classification and poor 

performance, verifying that the algorithm is not fitting the noise. An example of this test is 

shown below in Table 5.16 on page 123, and this test was performed for all future PCA-

ANN tests to confirm that the algorithm was not fitting the noise.  
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Table 5.12: Results of 3 species after reduction to 4 PC scores in PCA and optimization of patience and hidden nodes, 
followed by ANN analysis. 

 

Table 5.13: Results of 3 species after reduction to 10 PC scores in PCA and optimization of patience and hidden nodes, 
followed by ANN analysis. 

 

Table 5.14: Results of full-spectrum analysis of 3 species after reduction to 10 PC scores in PCA and optimization of 
patience and hidden nodes, followed by ANN analysis. 

 

Table 5.15: Results of mean-centering full-spectrum data before reduction to 10 PC scores in PCA and optimization of 
patience and hidden nodes, followed by ANN analysis. 

PCA-ANN With RM2.5 Data, 4 PC Scores 

 E. coli S. aureus E. cloacae 

Sensitivity 100 % 0 % 0 % 

Specificity 0 % 100 % 100 % 

Classification Error 50.00 % 50.00 % 50.00 % 

PCA-ANN With RM2.5 Data, 10 PC Scores 

 E. coli S. aureus E. cloacae 

Sensitivity 58.82 % 62.50 % 78.07 % 

Specificity 86.70 % 85.65 % 77.67 % 

Classification Error 27.24 % 25.92 % 22.13 % 

PCA-ANN With Full Spectrum Data 

 E. coli S. aureus E. cloacae 

Sensitivity 98.04 % 93.27 % 91.23 % 

Specificity 97.71 % 97.22 % 96.12 % 

Classification Error 2.13 % 4.28 % 6.33 % 

PCA-ANN With Full Spectrum Data: Mean Centering 

 E. coli S. aureus E. cloacae 

Sensitivity 99.00 % 94.23 % 90.35 % 

Specificity 96.78 % 98.14 % 96.60 % 

Classification Error 2.11 % 3.18 % 6.53 % 
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Table 5.16: Results of class randomization to test if the PCA-ANN algorithm was fitting noise or fitting important features 
in the data. 

 

Further investigation was done to confirm that 10 PC scores was optimal for both full-

spectrum and the mean-centered full-spectrum. It was observed that less than 10 PC’s 

resulted in lower sensitivity and specificity for both cases. It was also observed that greater 

than 10 PC’s results in lower sensitivity and specificity for both cases. One exception to this 

case was the use of 20 PCs. In both cases, 20 PC’s performed similarly to 10 PC’s. It is 

therefore recommended that full spectrum analysis continue to be reduced to 10 PC scores 

with PCA, followed by analysis with ANN, with no pre-processing. 10 was chosen over 20 to 

avoid overfitting. These findings are summarized in Table 5.17 and Table 5.18.  

  

PCA-ANN With Full Spectrum Data: Randomized Classes 

 E. coli S. aureus E. cloacae 

Sensitivity 36.19 % 51.38 % 2.83 % 

Specificity 55.81 % 44.55 % 94.86 % 

Classification Error 54.00 % 52.04 % 51.16 % 
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Table 5.17: Results for PCA-ANN with full spectrum analysis. ANN optimization and classification algorithm is run with 
5,8,10,12,15, and 20 PC's to demonstrate that 10 PC’s is the optimal number. 

  E. coli S. aureus E. cloacae 

5
 P

C
 S

co
re

s Sensitivity  75.00 % 82.69 % 92.98 % 

Specificity 98.17 % 96.79 % 80.29 % 

Classification Error 13.41 % 10.26 % 13.36 % 

8
 P

C
 S

co
re

s Sensitivity  91.18 % 87.50 % 98.25 % 

Specificity 98.62 % 98.15 % 91.75 % 

Classification Error 5.10 % 7.17 % 5.00 % 

1
0

 P
C

 S
co

re
s Sensitivity  98.04 % 93.27 % 91.23 % 

Specificity 97.71 % 97.22 % 96.12 % 

Classification Error 2.13 % 4.28 % 6.33 % 

1
2

 P
C

 S
co

re
s Sensitivity  91.18 % 92.31 % 91.23 % 

Specificity 98.62 % 94.44 % 94.17 % 

Classification Error 5.10 % 6.63 % 7.30 % 

1
5

 P
C

 S
co

re
s Sensitivity  93.14 % 89.42 % 92.98 % 

Specificity 97.71 % 98.15 % 91.75 % 

Classification Error 4.58 % 6.22 % 7.64 % 

2
0

 P
C

 S
co

re
s Sensitivity  98.04 %   97.12 % 91.23 % 

Specificity 95.87 % 98.15 % 99.03 % 

Classification Error 3.05 % 2.36 % 4.87 % 
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Table 5.18: Results for mean-centering of data before application of PCA-ANN on full spectrum data. ANN optimization 
and classification algorithm is run with 5,8,10,12,15, and 20 PC's to demonstrate that 10 PC’s is the optimal number. 

  E. coli S. aureus E. cloacae 

5
 P

C
 S

co
re

s Sensitivity  95.10 % 84.61 % 68.42 % 

Specificity 89.91 % 89.35 % 94.17 % 

Classification Error 7.46 % 13.02 % 18.71 % 

8
 P

C
 S

co
re

s Sensitivity  90.20 % 88.46 % 92.98 % 

Specificity 96.79 % 96.30 % 92.72 % 

Classification Error 6.51 % 7.62 % 7.15 % 

1
0

 P
C

 S
co

re
s Sensitivity  99.00 % 94.23 % 90.35 % 

Specificity 96.78 % 98.14 % 96.60 % 

Classification Error 2.09 % 3.81 % 6.53 % 

1
2

 P
C

 S
co

re
s Sensitivity  97.06 %  98.08 % 84.21 % 

Specificity 97.71 % 93.52 % 98.06 % 

Classification Error 2.62 %  4.2 % 8.87 % 

1
5

 P
C

 S
co

re
s Sensitivity  96.08 % 95.19 % 89.47 % 

Specificity 97.71 % 95.37 % 97.09 % 

Classification Error 3.105 % 4.72 % 6.72 % 

2
0

 P
C

 S
co

re
s Sensitivity  96.08 % 97.12 % 91.23 % 

Specificity 97.71 % 97.22 % 97.09 % 

Classification Error 3.105 % 2.83 %  5.84 % 

 

The improvement of PCA-ANN over DFA can be attributed to ANN’s nonlinearity. PLDSA 

and DFA are linear models and are typically used when the relationship between 

predictors in the x-block and responses in the y-block is linear. In nonlinear models, the 

predictors influence the response indirectly, or in a nonlinear way.104 An easy way to test if 
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the data is linear or non-linear is to determine if the classes are linearly separable using a 

scatter plot.105 To test if our data was better suited to a non-linear model, a scatter plot was 

created comparing 2 independent variables between 3 classes of bacteria, E. coli, S. aureus, 

and E. cloacae. If the data is linear, the classes should be separable by a line. This scatter 

plot is shown in Figure 5.7. It is clear when viewing the scatter plot that the classes cannot 

be separated by drawing a straight line. This data was analyzed after ANN was applied to 

the data to provide additional support for the recommendation that a nonlinear 

classification method such as ANN continue to be used for classification instead of DFA. 

 

Figure 5.7: Scatter plot showing the separation of two different variables for 3 species of bacteria.  

The improvement in classification due to reduction of data using PCA on full spectrum 

data can likely be attributed to PCA’s ability to find differences between classes, and more 

importantly, what contributes most to these differences. As well, PCA reduces 

dimensionality which avoids any redundancy and highlights the data that is most useful for 

discriminating between species.106 

All tests using PCA-ANN on full spectrum data were externally validated by splitting the 

data set into 2 parts; 80% of the data was used to build the library, 20% was tested against 

this library. When conducting an external validation in ANN using the method described 
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above, the data points are removed at random, therefore it is highly unlikely that an entire 

filter will be removed simultaneously, resulting in spectra that are always similar to those 

removed. While there is shot-to-shot variability within a filter, there is also substantial 

variability between filters. This motivated the next external validation test of removing 

entire filters and testing them against the model. This test is also clinically relevant, since a 

patient’s bacterial sample will likely not exist in the model prior to them being tested.  

A 2-class test was performed between E. coli and S. aureus. These species were chosen 

for the 2-class test because they are the simplest case. These species do not often get 

confused for each other in our classification algorithms, whereas E. cloacae tends to be 

confused for both E. coli and S. aureus, and M. smegmatis is never confused with any of 

these species. Whole filters were removed and tested against the model. The sensitivity 

was calculated for each filter based on how many spectra classified correctly. The average 

sensitivity of the E. coli filters is 85.43%, and the average sensitivity for S. aureus is 

77.07%. Some filters of E. coli and S. aureus had 0% of shots classify correctly, so these 

filters were removed from the model. After removing these filters, the model was retested 

with the remaining filters to try and improve performance. Removing filters that 

performed poorly in the analysis greatly improved the average sensitivity for each species, 

which were calculated to be 93.76% for E. coli and 85.20% for S. aureus respectively. The 

improvement of this classification points to the removal of poorly performing filters to 

improve classification results. A summary of these results and the sensitivity for each 

individual filter classification is provided in Table 5.19 and 5.20.  
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Table 5.19: Sensitivity for each individual filter externally validated against the training model for the species E. coli. 

E. coli Predicted  
Sample # E. coli  S. aureus Sensitivity  
1 0 29 0 
2 27 3 0.9 
3 0 30 0 
4 30 0 1 
5 30 0 1 
6 30 0 1 
7 30 0 1 
8 22 8 0.733333333 
9 30 0 1 
10 30 0 1 
11 30 0 1 
12 30 0 1 
13 30 0 1 
14 30 0 1 
15 30 0 1 
16 30 0 1 
17 25 4 0.862068966 
Sum 434 74 0.8543307 
 

Table 5.20: Sensitivity for each individual filter externally validated against the training model for the species S. aureus.  

S. aureus Predicted  
Sample # E. coli  S. aureus Sensitivity  
1 18 12 0.4 
2 25 0 0 
3 0 30 1 
4 9 6 0.4 
5 30 0 0 
6 0 30 1 
7 0 30 1 
8 0 30 1 
9 0 30 1 
10 0 30 1 
11 4 26 0.866666667 
12 25 5 0.166666667 
13 0 29 1 
14 0 30 1 
15 0 30 1 
16 0 30 1 
17 8 22 0.733333333 
18 0 30 1 
Sum 119 400 0.7707129 
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To further test the PCA-ANN model’s robustness, a 3-class test was performed between 

E. coli, S. aureus, and E. cloacae. The average sensitivity of E. coli, S. aureus, and E. cloacae 

are 77.95%, 64.73%, 32.16%. All 3 species did not perform as well as the previous external 

test. This was unsurprising as E. cloacae tends to classify as other species, most often S. 

aureus. The results for individual filters are summarized in Tables 5.21, 5.22, and 5.23. 

Upon inspections of the results, one can notice that samples 3 to 10, E. cloacae filters, 

performed much better than the rest of the E. cloacae filters. These filters were investigated 

further, which showed that these filters had abnormally high total spectral intensities when 

compared to all other data from the same species. Based on this finding, most of these 

samples were removed from the analysis and replaced with new data that was more 

representative of E. cloacae spectra. These results are summarized in Tables 5.24, 5.25, and 

5.26. The average sensitivity of E. coli, S. aureus, and E. cloacae in this test are 71.06%, 

61.27%, 65.18%. There is an improvement in E. cloacae sensitivity, but the sensitivity for E. 

coli and S. aureus decreases.  

 

Table 5.21: Sensitivity for each filter that was externally validated against the training model for E. coli. 

E. coli Predicted  
Sample # E. coli  S. aureus E. cloacae Sensitivity  
1 0 27 2 0 
2 20 10 0 66.66666667 
3 0 24 6 0 
4 28 2 0 93.33333333 
5 30 0 0 100 
6 21 8 1 70 
7 29 1 0 96.66666667 
8 30 0 0 100 
9 12 1 17 40 
10 19 11 0 63.33333333 
11 25 5 0 83.33333333 
12 29 1 0 96.66666667 
13 26 4 0 86.66666667 
14 8 22 0 26.66666667 
15 26 1 3 86.66666667 
16 29 1 0 96.66666667 
17 29 0 0 100 
Sum 382 67 29 0.8507795 
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Table 5.22: Sensitivity for each filter that was externally validated against the training model for S. aureus. 

S. aureus Predicted  
Sample # E. coli  S. aureus E. cloacae Sensitivity  
1 0 30 0 100 
2 13 12 0 48 
3 0 29 1 96.66667 
4 3 2 10 13.33333 
5 30 0 0 0 
6 0 30 0 100 
7 0 30 0 100 
8 0 30 0 100 
9 0 29 1 96.66667 
10 0 29 1 96.66667 
11 3 24 3 80 
12 0 1 29 3.333333 
13 1 22 6 75.86207 
14 0 1 29 3.333333 
15 0 30 0 100 
16 0 29 1 96.66667 
17 11 7 12 23.33333 
18 2 1 27 3.333333 
Sum 63 336 120 64.73988 
 
Table 5.23: Sensitivity for each filter that was externally validated against the training model for E. cloacae. 

E. cloacae Predicted  
Sample # E. coli  S. aureus E. cloacae Sensitivity  
1 0 30 0 0 
2 0 30 0 0 
3 1 29 0 0 
4 0 4 26 86.66667 
5 0 7 23 76.66667 
6 0 2 28 93.33333 
7 0 30 0 0 
8 0 1 28 96.55172 
9 0 6 24 80 
10 0 1 29 96.66667 
11 0 29 1 3.333333 
12 21 7 2 6.666667 
13 12 18 0 0 
14 8 12 10 33.33333 
15 0 19 11 36.66667 
16 30 0 0 0 
17 0 29 1 3.333333 
18 24 6 0 0 
19 17 13 0 0 
Sum 113 273 183 32.16169 
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Table 5.24: Sensitivity of each filter after external validation against the training model for each E. coli filter.  

E. coli Predicted  
Sample # E. coli  S. aureus E. cloacae Sensitivity  
1 0 27 2 0 
2 20 10 0 66.66666667 
3 0 24 6 0 
4 28 2 0 93.33333333 
5 30 0 0 100 
6 21 8 1 70 
7 29 1 0 96.66666667 
8 30 0 0 100 
9 12 1 17 40 
10 19 11 0 63.33333333 
11 25 5 0 83.33333333 
12 29 1 0 96.66666667 
13 26 4 0 86.66666667 
14 8 22 0 26.66666667 
15 26 1 3 86.66666667 
16 29 1 0 96.66666667 
17 29 0 0 100 
Sum 361 118 29 71.06299213 
 
Table 5.25: Sensitivity for each filter after external validation against the training model for each S. aureus filter. 

S. aureus Predicted  

Sample # E. coli  S. aureus E. cloacae Sensitivity  

1 1 4 25 13.333333 

2 12 13 0 52 

3 0 30 0 100 

4 2 11 2 73.333333 

5 30 0 0 0 

6 0 30 0 100 

7 0 30 0 100 
8 0 30 0 100 

9 0 25 5 83.333333 

10 0 26 4 86.666667 

11 7 18 5 60 

12 0 1 29 3.3333333 

13 28 1 0 3.4482759 

14 0 6 24 20 

15 0 30 0 100 

16 0 30 0 100 

17 0 26 4 86.666667 

18 1 7 22 23.333333 

Sum 81 318 120 61.271676 
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Table 5.26: Sensitivity of each filter after external validation against the training model for each E. cloacae filter. 

E. cloacae Predicted  
Sample # E. coli  S. aureus E. cloacae Sensitivity  
1 0 0 30 100 
2 0 0 30 100 
3 0 13 17 56.666667 
4 0 16 14 46.666667 
5 0 26 4 13.333333 
6 15 0 15 50 
7 1 0 29 96.666667 
8 7 20 3 10 
9 0 13 17 56.666667 
10 26 4 0 0 
11 1 11 18 60 
12 22 0 8 26.666667 
13 7 0 23 76.666667 
14 3 0 27 90 
15 0 0 30 100 
16 1 0 29 96.666667 
17 2 0 28 93.333333 
18 0 0 30 100 
Sum 85 103 352 65.185185 

 

When comparing the results of the 3-class test to the previous 2-class test, it was noted 

that E. cloacae markedly decreased the sensitivity of the E. coli and S. aureus. To test if E. 

cloacae posed an issue for classification or was too difficult to classify with the other 2 

species, we replaced E. cloacae with M. smegmatis for a 3-class test. Performance in the 

external validation test was markedly better for E. coli and S. aureus compared to the other 

3-class test with E. cloacae, with average sensitivities of 84.44% and 77.26%. M. smegmatis 

achieved an average sensitivity of 99.76%. In this test, M. smegmatis was rarely confused 

with the other species, and the most common error was E. coli being confused for S. aureus 

and vice-versa. M. smegmatis represents the easiest case of classification, while E. cloacae 

appears to be the hardest to classify accurately. The reasons for this are likely due to the 

biochemical differences observed in each cell. M. smegmatis regularly has higher intensity 

magnesium peaks than calcium peaks, whereas E. cloacae mimics the biochemistry of E. 

coli and S. aureus, having higher intensity calcium peaks than magnesium peaks. We can 

therefore differentiate between more diverse species with higher accuracy than species 

more closely related. The results for individual filters are summarized in the below tables.  



133 
 

Table 5.27: Sensitivity of each filter that was externally validated against the training model for E. coli.  

E. coli Predicted  
Sample # E. coli  S. aureus M. smegmatis Sensitivity  
1 0 29 0 0 
2 24 6 0 80 
3 0 30 0 0 
4 23 7 0 76.666667 
5 30 0 0 100 
6 28 2 0 93.333333 
7 30 0 0 100 
8 30 0 0 100 
9 30 0 0 100 
10 30 0 0 100 
11 30 0 0 100 
12 30 0 0 100 
13 30 0 0 100 
14 30 0 0 100 
15 29 1 0 96.666667 
16 30 0 0 100 
17 25 4 0 86.206897 
Sum 429 79 0 84.448819 
 
Table 5.28: Sensitivity of each filter that was externally validated against the training model for S. aureus. 

S. aureus Predicted  
Sample # E. coli  S. aureus M. smegmatis Sensitivity  
1 0 30 0 100 
2 13 0 12 0 
3 0 30 0 100 
4 3 12 0 80 
5 30 0 0 0 
6 0 30 0 100 
7 0 24 6 80 
8 0 30 0 100 
9 0 30 0 100 
10 0 30 0 100 
11 3 27 0 90 
12 29 1 0 3.3333333 
13 0 29 0 100 
14 0 30 0 100 
15 0 29 1 96.666667 
16 0 30 0 100 
17 19 11 0 36.666667 
18 2 28 0 93.333333 
Sum 99 401 19 77.263969 
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Table 5.29: Sensitivity of each filter that was externally validated against the training model for E. cloacae. 

M. smegmatis Predicted  
Sample # E. coli  S. aureus M. smegmatis Sensitivity  
1 0 0 30 100 
2 0 0 30 100 
3 0 0 30 100 
4 0 0 30 100 
5 0 0 30 100 
6 0 0 30 100 
7 0 0 30 100 
8 0 0 30 100 
9 0 1 29 96.666667 
10 0 0 30 100 
11 0 0 30 100 
12 0 0 30 100 
13 0 0 29 100 
14 0 0 30 100 
Sum 0 1 418 99.761337 
 

As with the previous 2 and 3-class tests, filters of E. coli and S. aureus that classified at 

0% were removed from the 3-class analysis with M. smegmatis. Before removing these 

filters from the classification, we confirmed that they were the same filters that had 

previously failed in the 2-class test. Our results are shown in Tables 5.30 and 5.31 for E. coli 

and S. aureus. The M. smegmatis results remained the same and are shown in Table 5.29 

above.  The average sensitivity of the externally tested E. coli filters increased to 97.10%, 

and the average sensitivity of the externally tested S. aureus filters increased to 95.79%.  
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Table 5.30: Sensitivity for each filter that was externally tested against the model for the species E. coli after filters that 
completely misclassified were removed.  

E. coli Predicted  
Sample # E. coli  S. aureus M. smegmatis Sensitivity  
1 30 0 0 100 
2 30 0 0 100 
3 28 2 0 93.33333 
4 24 6 0 80 
5 30 0 0 100 
6 30 0 0 100 
7 30 0 0 100 
8 30 0 0 100 
9 30 0 0 100 
10 30 0 0 100 
11 30 0 0 100 
12 30 0 0 100 
13 30 0 0 100 
14 28 2 0 93.33333 
15 26 2 1 89.65517 
Sum 436 12 1 97.10468 
 

Table 5.31: Sensitivity for each filter that was externally tested against the model for the species S. aureus after filters that 
completely misclassified were removed.  

S. aureus Predicted  
Sample # E. coli  S. aureus M. smegmatis Sensitivity  
1 7 23 0 76.66667 
2 0 30 0 100 
3 0 15 0 100 
4 0 30 0 100 
5 0 25 5 83.33333 
6 0 30 0 100 
7 0 30 0 100 
8 0 30 0 100 
9 3 27 0 90 
10 0 28 1 96.55172 
11 0 30 0 100 
12 0 29 1 96.66667 
13 0 30 0 100 
14 0 30 0 100 
Sum 10 387 7 95.79208 
 

While the result that more diverse species are easier to discriminate is unsurprising, 

advancements have been made discriminating between more closely related species. The 

overall sensitivity and specificity for closely related species was improved using full 
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spectrum analysis in PCA-ANN. Some improvements on the discrimination between E. 

cloacae , E. coli, and S. aureus need to be made. Most notably, the inter-filter reliability is 

low and should be addressed to improve reproducibility between filters. The above 

classifications where filters that classified poorly were removed indicated that our data 

tends to fail by filter. Increasing this reproducibility should improve the self-consistency 

within the database for each species and eliminate the need to remove poorly performing 

filters from training and testing sets. We have proposed to do this with a new design for a 

concentration piece, since the cone does not produce samples that are reliably the same. 

5.3 Conclusions and Recommendations for Future Work 

When using DFA to classify bacterial species, accuracy is low and not clinically relevant. 

No improvements were observed when preprocessing the data or eliminating data, 

therefore, DFA will no longer be investigated for the current sample preparation method. 

Using ANN with 15 lines and optimized numbers of epochs, patience, and hidden nodes 

also made some improvement. However, reduction of full-spectrum data by PCA followed 

by ANN increased values of sensitivity and specificity for all species. This method will be 

further investigated with lower concentrations of bacterial suspensions to determine if any 

improvement can be made on past results. It is recommended that PCA-ANN on full 

spectrum data continue to be used. This method will also be further investigated with 

external validation by removing whole filters. Methods of filter rejection need to be 

investigated to improve results of external validation in PCA-ANN. 

For future studies, DFA could still be useful; it works faster than ANN and requires less 

computation power. A problem commonly experienced with our spectra is low signal of 

important lines such as phosphorus, and one common issue with LIBS is the shot-to-shot 

variability; both likely contribute to the wide spread of data around a group centroid and 

consequently poor discrimination as seen in the DFA plots. To increase overall signal 

intensity and reduce the shot-to-shot variability, we have been investigating deposition of 

silver nanoparticles onto bacterial targets to give a more consistent and enhanced signal. It 

is hypothesized that based on previous work on enhancement of LIBS spectra with silver 

and gold nanoparticles that we will be able to enhance the important lines present in our 

spectra and reduce the shot-to-shot variability.107 A review of nanoparticle-enhanced LIBS 
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(NELIBS) is out of scope for this thesis. For more information on nanoparticle-enhanced 

LIBS, the reader is directed to the review listed in reference 106.  

Finally, a review of our deposition method is needed. The current method of deposition 

using the cone placed inside the centrifuge insert occasionally leaks and causes bacterial 

deposition to be different between filters. As well, not all bacteria is caught on the filter as 

previously thought using the current deposition method. This finding will be covered in 

greater detail in Chapter 7. A new design for a concentration device has been proposed to 

increase inter-filter reliability and will be investigated in the future.   
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Chapter 6: Detection of Bacterial Pathogens in Clinical Fluids 

Hospital acquired infections, or nosocomial infections, affect millions of people a year 

and are often antibiotic resistant infections.  Nosocomial infections often result from open 

surgical sites, catheters, or intubation with a ventilator. Because of this the most common 

infections are urinary tract infections (UTI), surgical infections, blood-stream infections 

(septicemia), and lower respiratory infections (pneumonia). These infections form because 

catheters and other equipment that are intravenous provide a site for bacteria to enter the 

body and a surface for bacteria to colonize and form a biofilm. Nosocomial infections are 

one of the leading causes of death. Hospitals must screen patients before releasing them for 

any nosocomial infection.108 

Up to 80% of urinary tract infections are associated with a bladder catheter, and thus 

are a nosocomial infection.108 Urinary tract infections are second in incidence only to 

respiratory infections, thus are extremely common and often antibiotics are sought to treat 

them. Diagnosis of a UTI relies on culturing urine, which must be performed shortly after 

acquiring the sample to avoid growth of other organisms. Culture is often time consuming, 

costly, and does not detect all bacteria as some cannot be cultured on nutrient-free 

media.109 As well, the prevailing understanding until very recently was that urine is a 

completely sterile fluid. Recent studies have called this into question stating that female 

patients contain bacterial colonies in the bladder.110 This increases the need for a highly 

sensitive and specific test for diagnosing the species present in the urine. This new 

information also increases the need for previous work done on the detection of bacteria in 

mixed cultures.111 Many nosocomial UTI’s develop from antibiotic resistant bacteria.108  

A highly relevant and dangerous nosocomial infection is sepsis, or a bacterial blood 

infection. Sepsis is often caused by wounds (surgically induced or otherwise), and 

intravenous tubes or catheters. Sepsis is not always caused by bacteria, it can also be 

caused by fungi, viruses, or bowel leakage, but many cases are bacterial. The most common 

types of bacteria causing sepsis infections are gram negative enteric rods. Gram negative 

enteric rods cause approximately 300000 cases of sepsis per year where nearly one third 

of those infected die. Sepsis affects every organ in the body and if not caught quickly can 
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cause multi-organ failure. However, sepsis is highly difficult to diagnose and often presents 

differently for many patients. A blood culture is required for diagnosis, but not all blood 

cultures will produce a positive test result. Antibiotics are the preferred treatment, but 

even with the best treatment the mortality for patients who have reached shock is no 

better than 50%.112 

In this chapter, I propose that LIBS could be used as a point-of-care technique directly 

on these sterile fluids to test for bacterial infections. The speed and specificity of LIBS will 

aid in delivering targeted treatment to patients experiencing potentially life-threatening 

nosocomial infections and should reduce the use of broad-spectrum drug in treating non-

nosocomial UTI’s. As well, the use of LIBS for screening patients before they leave the 

hospital will improve efficiency of patient discharge. Screening patients requires culturing, 

which uses up valuable time and resources, including hospital beds.  

6.1 LIBS on Sterile Urine 

Sterile urine was provided to the Rehse lab by the pathology lab at the Windsor 

Regional Hospital Ouellette campus. Samples were provided by Lucy DiPietro and Dr. 

Mohamed El-Fakharany. Only urine specimens that had already been tested negative for 

bacterial infection were provided in these preliminary experiments. Sterile urine was 

sampled and characterized with the LIBS system to understand how the spectrum of urine 

will affect the spectrum of bacteria. Several different urine samples from different patients 

were characterized to account for biochemical differences between samples.  

Very little work has been done using LIBS on the analysis of urine. Some authors have 

investigated the use of LIBS to investigate the chemical composition of urinary and gall 

stones in order to understand their formation and pathogenesis.113,114,115Mohaidat et al. 

investigated the possibility of clinical application by discriminating between 

Staphylococcus species in urine, which was described in Chapter 2.116 

To test urine samples, the deposition technique was changed from the previous swab 

technique to represent how this technology may be used in the clinic. In this deposition, the 

centrifuge piece was assembled with a 0.45 μm filter and plastic cone. Urine was vortexed 

before deposition in the centrifuge piece. 100 μL of urine was deposited directly into the 
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cone. The sample was centrifuged at 5000 RPM’s for 5 minutes to deposit the urine on the 

filter. After centrifugation, the filter was removed from the centrifuge insert and mounted 

on a steel piece with double sided sticky tape. All the same LIBS parameters that were used 

previously to sample bacteria were used to sample urine.  

Urine spectra from sterile urine cultures 1 and 3 are shown below in Figure 6.1. These 

spectra show that urine contains sodium, magnesium, carbon, and calcium. This is not 

surprising since the kidneys regulate salt content in the body and contain several ions and 

molecules, which includes sodium, calcium, and magnesium.117 The urine cultures 

presented in Figure 6.1 come from two different patients. It is apparent that there are 

differences between these spectra; the sodium lines in Figure 6.1b are higher than the 

sodium lines in Figure 6.1a. As well, the magnesium lines are higher in Figure 6.1a than in 

Figure 6.1b. These differences in spectra highlight the large variety that exists between 

patients and their physiologic systems. Urine spectra from several urine samples showed 

relatively high sodium in comparison to other lines, and low amounts of calcium, 

magnesium, and phosphorus relative to other bacterial spectra. While the urine contributes 

to a non-zero background, the lines in the urine spectrum that interfere with the bacterial 

spectra are lower in intensity and are present in a different ratio with respect to the 

sodium lines. Therefore, it is expected that the urine will not interfere significantly with 

bacterial detection and diagnosis.  

It should be noted that the spectra from the urine sample, while representative of the 

differences between patients, may not be entirely representative of a fresh urine sample. 

Our urine samples are stored in a fridge at 4°C and are kept and used for several months, 

solute can coagulate over this period of time or settle out of solution, perhaps making the 

line intensities smaller than what would be seen in fresh urine. However, it is difficult to 

continually obtain fresh samples and store them, so the urine is vortexed before sampling 

to ensure some solute is mixed in.  
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Figure 6.1: (a) Spectrum from sterile urine culture #3. The sodium and magnesium lines are visible. (b) Spectrum from 
sterile urine sample #1. The sodium and calcium lines are visible, and the sodium line is notably larger compared to 
spectrum (a). These urine samples highlight the variance between patients. 

6.1.1 Detection of Bacteria in Sterile Urine 

To determine if bacteria could be detected in sterile urine, the urine samples were 

‘spiked’ with bacteria. This was accomplished by pipetting bacteria and urine into the same 

cone to create a solution of bacteria and urine. The centrifuge piece was assembled 

including filter and cone. 100 μL of a 1/5 bacterial suspension was pipetted into the cone. 

Then, 100 μL of a sterile urine sample was pipetted into the same cone. This effectively 

creates a mixture of bacteria in urine. The apparatus was centrifuged at 5000 RPM’s for 5 

minutes. Once centrifugation is complete the filter was removed and mounted on a steel 
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piece with double-sided sticky tape. All of the same settings were used when sampling with 

the LIBS apparatus.  

The experimental procedure is simple and does not attempt to remove the bacteria 

from the urine. This is done for ease of use in the clinical setting, as less steps will require 

less time for diagnosis.  

Figure 6.2 shows a spectrum of bacteria deposited in urine with a spectrum of urine 

overlaid to show the difference between the two. Calcium lines in bacteria are higher than 

that of urine, magnesium lines are relatively the same size, and sodium lines of bacteria are 

smaller than urine. Most notably, the phosphorus line in bacteria is higher than in urine, 

which indicates that bacteria are present. It is apparent from this spectrum that bacteria 

deposited in urine and urine are qualitatively different.  

 

Figure 6.2: Overlaid spectra of urine (red) and bacteria in urine (black). The calcium lines are larger in the bacteria mixed 
with urine than in urine alone. The sodium lines are larger in urine. The magnesium lines of both the bacteria mixed with 
urine and urine alone are relatively the same. The phosphorus line of the bacteria mixed with urine is present, the 
phosphorus line in urine alone is absent; this is a major indicator of bacteria.  

For the detection of bacteria in urine, PLSDA was used to build a model and test 

individual filters. RM2.5 was used to build the model in PLSDA. The model consisted of 240 

total urine spectra which were listed as class 1, and 180 total bacteria in urine spectra that 

were listed as class 2. The bacteria spectra consisted of the species S. aureus, E. coli, and E. 

cloacae. Each species had two filters and 60 total single-shot spectra. The sensitivity and 
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specificity of the model in PLSDA without external validation is 100% and 100%, 

respectively. External validation was performed on the model by removing one filter at a 

time by entering it without any class information. This was performed for each filter of 

bacteria mixed with urine. The resulting sensitivity of each filter was calcualted, and the 

sensitivities of each filter was averaged to obtain an overall result. The same process was 

repeated for the urine filters to find the individual filters specificity and overall specificity. 

The average sensitvity for the bacteria in urine is 98.90%. The average specificity of the 

urine is 100%. This result is significant; it shows that PLSDA can detect the presence of any 

of the given bacterial species in urine when compared with urine that does not contain any 

bacteria. The results for individual fitlers is given in Table 6.1, and an example of an 

external validation in PLSDA is given in Figure 6.3.  
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Table 6.1: Sensitivity for each externally validated bacteria mixed with urine filter, specificity for each urine filter. 

Externally Validated Filter Sensitivity Specificity 

S. aureus 1/5 + Sterile Urine Filter #1 100% -- 

S. aureus 1/5 + Sterile Urine Filter #2 100% -- 

S. aureus 1/5 + Sterile Urine Filter #3 96.67%  

S. aureus 1/5 + Sterile Urine Filter #4 100% -- 

E. coli 1/5 + Sterile Urine Filter #1 100%  

E. coli 1/5 + Sterile Urine Filter #2 100% -- 

E. coli 1/5 + Sterile Urine Filter #3 100%  

E. coli 1/5 + Sterile Urine Filter #4 100%  

E. cloacae 1/5 + Sterile Urine Filter #1 93.33% -- 

E. cloacae 1/5 + Sterile Urine Filter #2 90.00% -- 

E. cloacae 1/5 + Sterile Urine Filter #3 100%  

E. cloacae 1/5 + Sterile Urine Filter #4 100%  

Sterile Urine Filter #1 -- 100% 

Sterile Urine Filter #2 -- 96.67% 

Sterile Urine Filter #3 -- 93.33% 

Sterile Urine Filter #4 -- 100% 

Sterile Urine Filter #5 -- 93.10% 

Sterile Urine Filter #6 -- 100% 

Sterile Urine Filter #7 -- 100% 

Sterile Urine Filter #8 -- 100% 
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Figure 6.3: An example of an external validation in PLSDA. In this test, a filter of E. coli in urine was tested against the 
model. 

6.1.2 Diagnosis of Bacteria in Sterile Urine 

A DFA analysis was done using RM2.5 to determine if the 3 species of bacteria mixed 

with urine could be reliably classified separately. A total of 3 S. aureus filters with 90 

single-shot spectra, 4 E. coli filters with 120 single-shot spectra, and 4 E. cloacae filters with 

120 single-shot spectra were used. The results from the cross-validation in DFA are 

reported below in Table 6.2, and the DFA plot is shown in Figure 6.4. The specificity for all 

three species is high. The sensitivity for S. aureus is low compared to E. coli and E. cloacae.   

Table 6.2: DFA results on 3 species in urine using RM2.5 

 

RM2.5 With Normalized Data  

 S. aureus E. coli  E. cloacae 

Sensitivity 70.00 % 71.67 % 76.67 % 

Specificity 86.67 % 86.67 % 85.83 % 

Classification Error 9.58 % 5.65 % 3.27 % 
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Figure 6.4: DFA plot between 3 species of bacteria mixed with urine.  

To improve the sensitivity and specificity of the bacteria in urine, PCA-ANN on full 

spectrum data was investigated next. PCA was performed on 3 S. aureus filters with 120 

single-shot spectra, 4 E. coli filters with 120 single-shot spectra, and 4 E. cloacae filters with 

120 single-shot spectra. These were the same spectra as were used to obtain Figure 6.4. 10 

PC scores were kept as it was previously determined in Chapter 5 that 10 was the optimal 

number of PC’s. ANN on the 10 PCA scores yielded a higher sensitivity and specificity for all 

3 species. The classification error also decreased markedly. The results are shown in Table 

6.3. 

Table 6.3: Results of PCA-ANN on full spectrum data of bacteria mixed with urine. 

 

PCA-ANN With Full Spectrum Data 

 S. aureus E. coli  E. cloacae 

Sensitivity 100 % 100 % 91.67 % 

Specificity 100 % 95.83 % 100 % 

Classification Error 0.00 % 2.09 % 4.17 % 
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The model built to classify species with PCA-ANN can successfully and reliably 

discriminate between bacterial species. To further test the ANN, external tests were 

performed by splitting the data set into testing and training sets. As mentioned previously, 

our ANN algorithm program can randomly split data into training and testing sets to build 

our model. However, a clinician or operator will need to input the new data collected as 

testing data when it is collected from the patient. This was simulated by manually splitting 

our data into training and testing data after PCA scores are generated. Each filter was 

externally validated against the model and a sensitivity was calculated. The results are 

shown in Table 6.4, Table 6.5, and Table 6.6. There average sensitivity of E. coli, S. aureus, 

and E. cloacae are 75.83 %, 90.00 %, and 66.67 %, respectively. Since the model is already 

very small, removing these filters would be removing 25% of the data used for modelling; 

more data is needed to take this approach. However, removal of poorly performing filters 

should be investigated in the future after more data is collected based on the previous 

success demonstrated in Chapter 5. 
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Table 6.4: Sensitivity of each E. coli filter removed from the model to be externally validated.  

E. coli Predicted  
Sample # S. aureus  E. coli E. cloacae Sensitivity  
1 0 28 2 93.333333 
2 2 8 20 26.666667 
3 0 25 5 83.333333 
4 0 30 0 100 
Sum 2 91 27 75.833333 
 

Table 6.5: Sensitivity of each S. aureus filter removed from the model to be externally validated.  

S. aureus Predicted  
Sample # S. aureus  E. coli E. cloacae Sensitivity  
1 30 0 0 100 
2 18 12 0 60 
3 30 0 0 100 
4 30 0 0 100 
Sum 108 12 0 90 
 

Table 6.6: Sensitivity of each E. cloacae filter removed from the model to be externally validated.  

E. cloacae Predicted  
Sample # S. aureus  E. coli E. cloacae Sensitivity  
1 1 4 25 83.333333 
2 0 1 29 96.666667 
3 0 7 23 76.666667 
4 27 0 3 10 
Sum 28 12 80 66.666667 
 

6.2 LIBS on Sterile Blood 

Sterile blood was provided to the Rehse lab by the pathology lab at the Windsor 

Regional Hospital Ouellette campus. Samples were provided by Lucy DiPietro and Dr. 

Mohamed El-Fakharany. Only blood specimens that had already been tested negative for 

bacterial infection were provided in these preliminary experiments. Blood specimens 

contained the anticoagulant sodium polyanetholesulfonate (SPS). Sterile blood was 

sampled and characterized with the LIBS system in the same manner as sterile urine to 

understand how the spectrum of blood will affect the spectrum of bacteria. Several 

different blood samples were characterized to account for the difference between several 

patients’ physiology. To test sterile blood samples, the deposition procedure for urine was 

used.  
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Blood spectra from sterile blood cultures 4 and 6 are shown in Figure 6.5. These spectra 

show that blood, as with urine, contains sodium, magnesium, carbon, phosphate, and 

calcium. Most of these ions and minerals enter the bloodstream after digestion through the 

duodenum. Sodium is required in the blood to maintain osmotic pressure and is filtered 

through the kidneys into the urine. Sodium levels are regulated through the hormone 

aldosterone. Calcium is present in the blood due to bone desorption and resorption. The 

amount of calcium in the bone or blood is regulated through the hormones parathyroid 

hormone, calcitriol, and calcitonin. Phosphorus is present because the ion phosphate is 

used to build bones and teeth.118 Most magnesium in the body is found in bones and cells, 

but some small amounts can be present in the blood.119 The blood cultures presented in 

Figure 6.5 come from two different patients. It is apparent that there are differences 

between these spectra; the sodium lines in Figure 6.5a have higher intensity than the 

sodium lines in Figure 6.5b. The calcium lines in these two spectra are approximately the 

same intensity. The magnesium line in Figure 6.5a has a higher intensity than in 6.5b. As 

with the urine spectra, the differences between these spectra highlight the large variety 

that exists between patients and their physiologic systems. All other blood spectra showed 

relatively the same pattern of a more intense sodium line compared to all other lines, and 

also showed low amounts of calcium, magnesium, and phosphorus relative to other 

bacterial spectra. While the blood contributes to a non-zero background, the lines in the 

blood spectrum that interfere with the bacterial spectra are lower in intensity and are 

present in a different ratio than those in bacterial spectra. Therefore, it is expected that the 

blood will not interfere significantly with bacterial detection and diagnosis. 

LIBS on blood was first performed by Melikechi et al. to characterize the blood 

spectrum. These studies were carried out on frozen whole blood samples from mice in a 

helium environment. They observed several iron and carbon peaks due to the hemoglobin, 

as well as calcium, magnesium, sodium, oxygen, potassium, nitrogen, and hydrogen, 

however no concentrations were calculated.120 Most studies that use LIBS to study blood 

aim to detect and identify cancer markers. Markushin et al. used tag femtosecond LIBS in 

2015 to detect cancer biomarkers in the blood to improve early detection of cancers. They 

determined that they could measure 0.01 U/mL of the cancer biomarker CA-125.121 Chen et 
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al. also used LIBS on whole blood to detect lymphoma, a cancer of the blood that affects the 

immune system, at early stages of the cancer in order to provide earlier diagnosis and 

treatment. They observed strong ion lines like calcium, sodium, and potassium, in the blood 

and weak lines of iron and magnesium. Using PCA, linear discriminant analysis (LDA), and 

k-nearest neighbours (kNN) classifications, they discriminated between samples from 

healthy patients and patients with lymphoma, finding that the algorithms performed with 

99.7% accuracy and provided a diagnosis in 9 minutes. Discrimination between stages of 

lymphoma was attempted but unsuccessful.122 Chen et al. also used LIBS to discriminate 

between lymphoma and multiple myeloma using whole blood samples. They observed that 

discrimination between 2 cancers was most accurate using kNN models, resulting in a 

sensitivity of 97.0% and a specificity of 95.6%.123 Work on the diagnosis of melanoma using 

femtosecond LIBS on blood and tissue in mice was also done by Gaudiuso et al. in 2018. 

They attempted to diagnose cancer through direct analysis of spectra and by chemometric 

algorithms. They found that chemometric algorithms provided the most reliable results for 

detection of melanoma, with the Gradient Boosting performing best at 96.3% accuracy.124 

Blood serum was tested with LIBS for electrolyte concentration by Emara et al. to further 

characterize cancers. The presence or absence of electrolytes in the blood can provide a 

fuller picture of the disease, specifically the detection of hypokalemia, which can indicate 

later stage cancers. They found a significant difference in concentrations of potassium in 

the blood serum for healthy patients, patients with stage I colorectal cancer, and patients 

with stage II colorectal cancer.125 

The body of work on detecting and diagnosing pathogens or illness present in the blood 

is smaller than the previously mentioned body of work on detection of cancer biomarkers 

in the blood. Omar Al-Jeffery et al. used laser-induced fluorescence (LIF) and LIBS for rapid 

detection of rubidium in blood to rapidly identify performance enhancing drugs. They were 

able to successfully detect trace levels of rubidium nitride at levels of 0.3%.126 Gaudiuso et 

al. also investigated rapid diagnosis of gulf war illness using LIBS on blood samples. They 

were able to detect gulf war illness with a sensitivity of 100% and a specificity of 83.3%. 

However, these results came from a small scale study with few samples, so the authors 

have commented that more work needs to be done.127 Finally, some work has been done on 
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detection of pathogens in blood by Wayua et al. and Multari et al. Wayua et al. focused on 

using LIBS on blood for detection of malaria. They used peak-free LIBS to detect the 

changes in concentrations of biometals that occur when infections are present in the body. 

They were able to show proof-of-concept of the predictive ability of ANN and PLS to 

determine the concentrations of Cu, Fe, and Zn. ANN provided accuracies of 73%, 68%, and 

99%, respectively, while PLS provided accuracies of 70%. 68%, and 95%, respectively.128 

Multari et al. investigated the feasibility of detecting bacterial, viral, and parasite pathogens 

in the blood using LIBS. Using PLSDA and a decision tree algorithm, they were able to 

discriminate between the different types of biological pathogens with 96.6% accuracy and 

were able to detect blood containing pathogens 100% of the time.129 

It should be noted that while these blood samples likely represent the diversity in 

patients, it is likely not entirely representative of what a fresh blood sample may look like. 

Blood samples are collected and stored in a fridge at 4°C for a period of a few months. 

Prolonged storage can cause in vitro hemolysis, meaning that there will be less blood cells 

present in a sample that has been stored for some period of time as opposed to a sample 

that’s been collected more recently.130 As well, in vitro hemolysis is also a problem in the 

clinic and can be caused by improperly collected samples, storage, and handling. This is 

particularly a problem in emergency departments where blood is collected quickly.131 

Before the blood can be given to our lab it must undergo a blood culture to ensure it is 

negative, which typically lasts 5 days. At the point that we receive the blood it is a week old 

and is likely already undergone some hemolysis. Blood can contain between 2 and 4 million 

cells per mL, and because of the extended time between collection of the blood sample and 

its use in the lab, it is unclear how many cells our samples contain. As well, the goal of 

clinical application is to sample the blood immediately after it has been drawn. The blood 

obtained from the pathology lab contains an anticoagulant to prevent the blood from 

clotting so it can be sampled and stored for extended periods of time. It is unclear how the 

absence of the anticoagulant will affect the spectra of the blood. The absence of the 

anticoagulant may decrease the level of sodium we observe in our spectra since the 

compound contains sodium. A possible solution to these issues is to separate the blood 

cells from the bacterial cells entirely, which will be covered in greater detail in Chapter 7. 
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Figure 6.5: (a) Spectrum from negative blood culture 4. The sodium line has high intensity, and the calcium and 
magnesium lines are visible. (b) Spectrum from negative blood culture 6. The sodium line has a lower intensity compared 
to (a). The calcium line is visible.  

6.2.1 Detection of Bacteria in Sterile Blood 

For the detection of bacteria in blood, the blood samples were ‘spiked’ with bacterial 

suspensions using the same procedure as the urine. 100 μL of blood was pipetted into the 

plastic cone and centrifuge insert, followed by 100 μL of a 1/5 bacterial dilution, creating a 

mixture of bacteria and blood and therefore simulating a blood infection. The sample was 
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centrifuged at 5000 RPMs for 5 minutes. The filter was removed from the centrifuge insert 

and mounted on a steel piece with double sided sticky tape. To sample the bacteria and 

blood mixture, the same settings were used on the LIBS system as all previous bacterial 

samples.  

This experimental procedure is simple and relies heavily on the difference between 

bacteria and blood. This methodology proved successful for us, but future work can be 

done to separate the blood cells from the bacterial cells for a more complex discrimination 

using a process called dual centrifugation.  

A comparison between a blood spectrum and a bacteria mixed with blood spectrum is 

shown in Figure 6.6. Calcium, magnesium, and phosphorus lines in bacteria mixed with 

blood are higher than blood, and sodium lines of bacteria are smaller than blood. Most 

notably, the phosphorus line in bacteria is higher than in blood, which is an indicator that 

bacteria are present. It is apparent from this spectrum that bacteria mixed with blood and 

blood alone are qualitatively different. 

 

Figure 6.6: Overlaid spectrum of bacteria mixed with blood (red) and blood (black). The calcium, magnesium, and 
phosphorus line intensities are higher in the bacteria mixed with blood than in blood alone. The sodium line has a higher 
intensity in the blood alone than in the bacteria mixed with blood. The phosphorus line has a higher intensity in the 
bacteria mixed with blood than in blood alone.  

For the detection of bacteria in blood, PLSDA was used along with RM2.5 to determine if 

spectra of bacteria mixed with blood were unique enough to classify separately from blood 
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alone. For this task 3 species mixed with blood, E. coli, E. cloacae, and S. aureus, were tested 

against blood alone. The blood class includes 206 individual spectra and 7 filters. For each 

species, there were 150 individual spectra of E. cloacae, 150 individual spectra of E. coli, 

150 individual spectra of S. aureus, and 120 individual spectra of P. aeruginosa. The fourth 

species P. aeruginosa was added to the model because it is also a very relevant nosocomial 

pathogen. There are approximately 32000 cases of P. aeruginosa infections per year. These 

cases are typically caused by open wounds from surgery, ventilators, and catheters. There 

are approximately 2700 deaths per year from these infections.132 A model was built using 

these single shot spectra and RM2.5, and the sensitivity and specificity of the model is 

99.50% and 97.20%, respectively. The model was externally validated by removing one 

filter at a time from the model and re-entering it without any class information. This 

process was done for all filters containing blood mixed with bacteria. A sensitivity was 

calculated for each blood mixed with bacteria filter, and a specificity for each blood filter. 

The sensitivity and specificity is given for each filter in Table 6.7. An average sensitivity and 

specificity was calculated to be 96.31% and 98.57%, respectively. As with the PLSDA tests 

on urine, this result is significant because it suggests that any bacteria can be detected in 

this otherwise sterile fluid. Our technique is therefore sensitive to bacteria present in 

patient blood. An example of the external validation performed on a filter is shown in 

Figure 6.7 below. 

 

Figure 6.7: An example of external validation with PLSDA. In this test, a filter of P. aeruginosa in blood is entered into the 
model without any class information. In this example, each spectrum classifies correctly as bacteria.  
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Table 6.7: Sensitivity for each externally validated bacteria mixed with blood filters, specificity for each blood filter. 

Externally Validated Filter Sensitivity Specificity 

E. cloacae 1/5 + Sterile Blood Filter #1 96.67 % -- 

E. cloacae 1/5 + Sterile Blood Filter #2 100 % -- 

E. cloacae 1/5 + Sterile Blood Filter #3 100 % -- 

E. cloacae 1/5 + Sterile Blood Filter #4 100 % -- 

E. cloacae 1/5 + Sterile Blood Filter #5 100 % -- 

E. coli 1/5 + Sterile Blood Filter #1 100 % -- 

E. coli 1/5 + Sterile Blood Filter #2 100 % -- 

E. coli 1/5 + Sterile Blood Filter #3 100 % -- 

E. coli 1/5 + Sterile Blood Filter #4 80.00 % -- 

E. coli 1/5 + Sterile Blood Filter #5 100 % -- 

S. aureus 1/5 + Sterile Blood Filter #1 90.00 % -- 

S. aureus 1/5 + Sterile Blood Filter #2 100 % -- 

S. aureus 1/5 + Sterile Blood Filter #3 100 % -- 

S. aureus 1/5 + Sterile Blood Filter #4 96.67 % -- 

S. aureus 1/5 + Sterile Blood Filter #5 100 % -- 

P. aeruginosa 1/5 + Sterile Blood Filter #1 90.00 % -- 

P. aeruginosa 1/5 + Sterile Blood Filter #2 83.33 % -- 

P. aeruginosa 1/5 + Sterile Blood Filter #3 93.33 % -- 

P. aeruginosa 1/5 + Sterile Blood Filter #4 100 % -- 

Sterile Blood Filter #1 -- 93.33 % 

Sterile Blood Filter #2 -- 96.67 % 

Sterile Blood Filter #3 -- 100 % 

Sterile Blood Filter #4 -- 100 % 

Sterile Blood Filter #5 -- 100 % 

Sterile Blood Filter #6 -- 100 % 

Sterile Blood Filter #7 -- 100 % 
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6.2.2 Diagnosis of Bacteria in Sterile Blood 

To determine if bacteria species present in blood could be distinguished from one 

another, a DFA analysis was done using RM2.5 on the 4 species of bacteria. 5 filters of E. 

cloacae, 5 filters of E. coli, 5 filters of S. aureus, and 4 filters of P. aeruginosa were tested in 

this model. Each class had 150 individual spectra. The results of the cross-validation 

between the 4 species are reported below in Table 6.8, and the DFA plot is shown in Figure 

6.8.  

Table 6.8: DFA results on 4 species mixed with blood using the RM2.5.  

 

 

Figure 6.8: Classification of 4 species shown in DFA plot.  

The sensitivity and specificity of E. cloacae, E. coli, and S. aureus are lower than P. 

aeruginosa, this is evident when examining the DFA plot. P. aeruginosa is clearly very 

RM2.5 With Normalized Data  

 E. cloacae E. coli  S. aureus P. aeruginosa 

Sensitivity 78.00 % 74.67 % 84.00 % 98.67 % 

Specificity 92.00 % 93.56 % 92.89 % 100 % 

Classification Error 15.00 % 15.89 % 11.56 % 0.66 % 
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different from the other 3 species; it can be differentiated from them along discriminant 

function 1. The other 3 species are spread along discriminant function 2. The large spread 

along discriminant function 1 indicates most of the variance in the model is from the 

difference between P. aeruginosa and the other 3 species, and that there is lesser variance 

between the 3 species. While DFA can very clearly differentiate between P. aeruginosa and 

other bacteria, our method needs to be able to reliably detect and diagnose many other 

types of bacteria since the gram-negative enteric rods are also highly relevant to 

nosocomial blood infections.   

To improve the differentiation between species, PCA-ANN was performed on full 

spectrum data of all the filters containing blood mixed with bacteria. 10 PC scores were 

generated using the PCA algorithm for each individual spectrum. These PC scores were 

used in the ANN algorithm.  The number of hidden nodes used was 170 and the patience 

was 35. As with previous tests these numbers were chosen based on the ANN optimization 

algorithm. The results of this analysis are shown in Table 6.9. All filters classified perfectly 

in this test, so this model can successfully classify between different species present in 

blood with high accuracy. This model was therefore successful in reliably classifying 

species present in blood.  

Table 6.9: Results of full-spectrum analysis in PCA-ANN.  

 

External validation of the model was tested again by removing whole filters from the 

model and inputting them without any class information. Filters from all 4 classes were 

tested using this external validation method, and the results are summarized in Tables 

6.10, 6.11, 6.12, and 6.13. The average sensitivity for E. coli, S. aureus, E. cloacae, and P. 

aeruginosa are 80.67%, 65.33%, 92.67%, and 92.50%, respectively. Lower average 

sensitivity can be again largely attributed to filters that completely fail. Since the model is 

already very small, removing these filters would be removing 20% of the data used for 

PCA-ANN With Full Spectrum Data 

 S. aureus E. coli  E. cloacae P. aeruginosa 

Sensitivity 100 % 100 % 100 % 100 % 

Specificity 100 % 100 % 100 % 100 % 

Classification Error 0.00 % 0.00 % 0.00 % 0.00 % 
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modelling; more data is needed to take this approach. Based on previous success, removal 

of poorly performing filters should be explored in the future. 

 
Table 6.10: Sensitivity results for E. coli filters removed from the model to be externally validated. 

E. coli Predicted  
Sample # S. aureus  E. coli E. cloacae P. aeruginosa Sensitivity  
1 0 30 0 0 1 
2 16 14 0 0 0.4666667 
3 0 30 0 0 1 
4 1 17 0 12 0.5666667 
5 0 30 0 0 1 

Sum 17 121 0 12 0.8066667 
 

Table 6.11: Sensitivity results for S. aureus filters removed from the model to be externally validated. 

S. aureus Predicted  
Sample # S. aureus  E. coli E. cloacae P. aeruginosa Sensitivity  
1 30 0 0 0 1 
2 1 0 29 0 0.0333333 
3 30 0 0 0 1 
4 30 0 0 0 1 

5 7 23 0 29 0.2333333 
Sum 98 23 29 0 0.6533333 
 

Table 6.12: Sensitivity results for E. cloacae filters removed from the model to be externally validated. 

E. cloacae Predicted  
Sample # S. aureus  E. coli E. cloacae P. aeruginosa Sensitivity  
1 0 0 30 0 1 
2 9 0 21 0 0.7 
3 0 0 29 1 0.9666667 
4 0 0 30 0 1 
5 0 1 29 0 0.9666667 

Sum 9 1 139 1 0.926667 
 

Table 6.13: Sensitivity results for P. aeruginosa filters removed from the model to be externally validated. 

P. aeruginosa Predicted  
Sample # S. aureus  E. coli E. cloacae P. aeruginosa Sensitivity  
1 0 1 0 29 0.9666667 
2 8 0 0 22 0.7333333 
3 0 0 0 30 1 
4 0 0 0 30 1 
Sum 8 1 0 111 0.925 
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The improved PCA-ANN performance over the DFA performance for both urine and 

blood can likely be explained by the non-linearity of the ANN model.133 As stated in Chapter 

5, DFA functions best on data that has a linear relationship between predictor variables and 

the resulting scores. Shown in Figure 6.9 is a similar plot that was shown in Chapter 5; a 

comparison between 2 independent variables is shown to demonstrate the lack of linear 

separation between the 3 classes. The non-linear nature of this data indicates that ANN will 

be better suited to classification in DFA. Figure 6.10 shows the same comparison between 2 

independent variables. However, in this figure, there is a clear separation between P. 

aeruginosa and all other classes. This corroborates the finding that DFA can reliably 

discriminate between P. aeruginosa and all other species of bacteria. This clear separation 

is a good example of linearly separable data. Figure 6.11 shows a 3-class comparison with 

the blood and bacteria data to further demonstrate the need for ANN when discriminating 

between blood samples. While DFA works well on P. aeruginosa, ANN is needed for E. coli, 

E. cloacae, and S. aureus. As with the data in Chapter 5, PCA coupled with ANN also 

improves performance because PCA can find what contributes the most to differences 

between classes. PCA also reduces dimensionality which avoids redundancy in data.134 

 

Figure 6.9: Scatter plot comparing independent variables phosphorus 213.618 nm and calcium 393.366 nm for all 
bacteria in urine data. There is no visible separation between classes.  
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Figure 6.10: Scatter plot comparing independent variables phosphorus 213.618 nm and calcium 393.366 nm for all 
bacteria in blood data. There is no visible separation between E. coli, E. cloacae, and S. aureus, but there is separation 
between P. aeruginosa and all other classes. This likely explains the high performance of P. aeruginosa in DFA and poor 
performance of the other 3 species.  

 

Figure 6.11: Scatter plot comparing independent variables phosphorus 213.618 nm and calcium 393.366 nm for bacteria 
in blood data. This plot demonstrates the need for ANN on the 3 species modelled.  
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6.3 Conclusions and Future Work 

Sterile blood and urine deposited on nitrocellulose filters were characterized using 

LIBS. It was found that they both contain carbon, sodium, and trace amounts of magnesium 

and calcium. A deposition method was developed for sterile blood and sterile urine spiked 

with bacteria on these nitrocellulose filters. Using PLSDA, infected urine can be reliably 

distinguished from sterile urine, and infected blood can be reliably distinguished from 

sterile blood. To classify species present in bacteria and blood, PCA-ANN on full spectrum 

data produced the most reliable and accurate results.  

Future work should be done to clarify the limit of detection of bacteria in blood and 

urine by investigating detection and classification ability of more dilute suspensions of 

bacteria. Future work should also focus on more closely mimicking clinical conditions that 

the blood and urine will be tested in. Fresh samples should be obtained and tested 

immediately if possible. As well, a greater understanding of how infections disperse and 

behave in the blood and urine samples that are initially drawn from patients will help us to 

understand the true clinical conditions that this technique will be implemented in. 

Understanding these clinical conditions will help us more accurately simulate them. Future 

work should also focus on improving the external validation results in blood and urine. 

Improvements to these results can likely be made by improving the repeatability of the 

deposition procedure, which is discussed in greater detail in Chapter 7.  
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Chapter 7: Dual Stage Centrifugation of Bacteria in Clinical Specimens 

Each millilitre of blood contains approximately 4 to 6 million cells and this large 

amount of cells may cause an increased carbon or phosphorus signal that would not be 

attributable to the bacterial cells in the blood, or may cause a false positive result.135 In 

Chapter 6 it was found that blood has a non-zero contribution to the spectrum, with a 

visible sodium line, and smaller calcium and magnesium lines. However, as noted in 

Chapter 6, this may not be entirely representative of a fresh clinical sample, due to the high 

volume of blood cells that may be present upon sampling. For clinical application then, it 

may be necessary to filter out any blood cells that are in the blood sample taken. This 

motivated the study of dual stage centrifugation, with the aim of separating blood cells 

from bacterial cells using our current deposition procedure. Dual stage centrifugation could 

be a viable option for separating out blood cells from bacterial cells because blood cells are 

approximately 6 to 8 μm in diameter, whereas bacteria range from 0.5 to 2 μm in length.136 

This difference could allow us to separate out the larger eukaryotic human cells from the 

smaller prokaryotic bacterial cells by size.  

During the study of dual centrifugation, it was found through several experiments 

described here that the deposition of bacterial cells upon our filters was not occurring 

nearly as consistently as anticipated or as required for reproducible data. The experiments 

below will demonstrate two substantial experimental problems that occurred during 

centrifugation deposition: the seal between the cone and the filter not working and the 

bacteria somehow going around the filter instead of resting on the filter deposition site. 

This experimental inconsistency is likely responsible for the scatter in Figure 5.4, but was 

not discovered until well after those experiments were completed.  

7.1 Dual Stage Centrifugation Methods 

To investigate dual stage centrifugation, a 2-step process was developed. Ideally, dual 

stage centrifugation will be performed in 1 step in the clinic. This can be accomplished 

using the centrifuge insert, which is shown in Figure 7.1.137 The centrifuge insert was 

designed for single and dual stage applications; however, it was designed before the use of 

the cone. Therefore, concentration can only be achieved on the first filter with the current 
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design. However, larger cells or material would need to be filtered out first, followed by 

smaller cells. The current design is not conducive to the concentration of cells onto the 

bottom filter. For future application of the insert in a 1 step process, a new piece will have 

to be designed for concentrating bacteria onto the bottom filter.   

 

Figure 7.1: (a) Centrifuge insert tube (left) and bottom pieces (right). All pieces are screwed together for dual-stage 
centrifugation, as shown in (b) and (c). Black lines in (b) show where the filters would be placed in dual-stage 
centrifugation. Figure adapted from [137]. 

The 2-step process used to deposit bacteria is illustrated in Figure 7.2. First, 100 μL of a 

1/5 bacterial suspension is pipetted into a centrifuge insert with no cone. The filter used 

for this has a larger pore size than the filter normally used to deposit bacteria. For this 

experiment, 8 μm filters were used. These filters will catch the larger blood cells, and this 

experiment will validate the thought model that bacteria will go through the filters with the 

larger pores. The sample is then centrifuged. After centrifugation, the tube is vortexed and 

the sample was removed from the bottom. The sample is then deposited into another 

centrifuge insert containing a cone and a 0.45 μm filter, which is centrifuged. The 0.45 μm 

filter is then sampled using LIBS to determine if bacteria went through the filter with the 

larger pore size and were deposited on the 0.45 μm filter. 3 species were tested with dual 

stage centrifugation: E. coli, E. cloacae, and S. aureus. To quantify how much bacteria got 

through the 8 μm filter, total spectral intensities were compared to filters of the same 

species that underwent single stage centrifugation.  

(a) (b) 

8 μm filter 

0.45 μm filter 

(c) 
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Figure 7.2: Procedure for dual stage centrifugation. 1/5 suspension of bacteria is pipetted into a centrifuge insert and 
deposited onto a filter of large pore size, in this case an 8 μm filter. The sample is centrifuged, removed from the bottom of 
the centrifuge tube, and pipetted into an insert containing the cone and a 0.45 μm filter.  

To compare the spectral intensities, an average total spectral intensity was calculated 

for each species as well as the standard deviation on the mean. Because our data is highly 

noisy, the 10% highest and 10% lowest total spectral intensities were removed from each 

species, and an average was taken of the middle 80% of data. The averages of these species 

and the standard deviation on the mean for each are given in Table 7.1. A total of 3 trials 

were taken of the dual stage centrifugation filters and an average total spectral intensity 

was computed for each. These results are shown in Table 7.2. The average for the 3 trials 

was calculated and compared to the average for each species. The total spectral power was 

within error for S. aureus, slightly outside of the error for E. coli, and E. cloacae showed the 

largest difference between dual stage centrifugation and single stage centrifugation, falling 

far outside the error. Figure 7.3 shows a comparison of the total spectral power between 

single centrifugation and dual centrifugation for each species. Figure 7.4 shows the 

comparison between the average for dual and single stage centrifugation for all 3 species.  

To further compare the single and dual stage centrifugation, a ratio of total spectral 

power was taken between dual centrifugation and single centrifugation. These ratios 

represent approximately the percentage of bacteria that went through the 8 μm filter and 

were deposited on the 0.45 μm filter. These ratios are shown in Table 7.3. These 

percentages are an estimate of how much bacteria comes through based on an average 

taken from regular samples. Based on the ratios and analysis of the figures, it can be 
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concluded that there are bacteria coming through the 8 μm filter, though it cannot be 

concluded with certainty if all cells come through the 8 μm filter. S. aureus and E. coli 

appear to have a higher percentage of cells coming through the 8 μm than E. cloacae. Since 

E. coli and E. cloacae are generally the same size and shape, the reason for this discrepancy 

is unclear at this time. There is some experimental error in these numbers, since we cannot 

control how much bacteria we pick up each time we make a sample, and we cannot control 

how each filter ablates due to the irregularity of the sample. 

Table 7.1: Average total spectral power after single stage centrifugation for 3 species of bacteria, standard deviation, and 
the standard deviation on the mean for each. 

 Average Total Spectral Intensity (arb u) σ σMean 

E. coli  17790.37 7050.558 371.597 

E. cloacae 20901.48 12651.55 646.464 

S. aureus 17034.95 6823.637 345.086 

 
Table 7.2: Average total spectral power after dual stage centrifugation for 3 species of bacteria.  

 Average Total Spectral Intensity (arb u) 

 Trial #1 Trial #2 Trial #3 Average 

E. coli 12654.97 14663.27 22513.43 16610.56 

E. cloacae 15520.93 20481.43 17695.00 18019.12 

S. aureus 22280.30 15187.70 15497.87 17655.29 

 
Table 7.3: Ratio of total spectral power of dual stage centrifuged samples to single stage centrifuged samples for 3 species. 

 Percentage of Bacteria Deposited on Second Filter  

 Trial #1 Trial #2 Trial #3 Average 

E. coli 71.13 % 82.42 % 126.55 % 100.02 % 

E. cloacae 74.25 % 99.71 % 84.66 % 86.21 % 

S. aureus 130.79 % 89.16 % 90.98 % 103.64 % 
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Figure 7.3: Bar graphs comparing summed intensities of 15 lines for single and dual stage centrifugation. 3 species are 
compared: (a) E. cloacae, (b) S. aureus, (c) E. coli. The standard deviation of the dual stage filters is compared to the 
standard deviation on the mean of the single stage centrifugation.  
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Figure 7.4: Comparison between average total spectral intensity for dual and single stage centrifugation for E. coli, E. 
cloacae, and S. aureus. Dual stage centrifugation of S. aureus is within error of single stage centrifugation, dual 
centrifugation of E. coli is slightly outside of the single stage centrifugation error, and dual stage centrifugation of E. 
cloacae is lower than single stage centrifugation.  

There is currently some uncertainty with how the bacteria are deposited onto the filter 

during centrifugation. It is unclear if the elemental signature detected originates from ions 

washed off of the cell surface or released osmotically or via lysis, or if there are intact 

bacterial cells present. Often, the phosphorus line is a hallmark of the presence of bacteria. 

To verify that bacteria are being deposited as opposed to elements and ions from solution, 

the intensity of the most reliable phosphorus line was tracked next. As well, our 

understanding of how the filters worked also needed to be verified. Our original belief was 

that the small cells will completely pass through the 8 μm filter, and all will be caught on 

the 0.45 μm filter. To verify that we understand how the filters worked, the same 

procedure outlined in Figure 7.2 was repeated using a 0.45 μm filter in both the first and 

second stage. This experiment should produce a null result when the second filter is tested 

with LIBS because all of the bacterial cells should be caught on the top filter as the pore size 

is smaller than the cells. E. coli, E. cloacae, and S. aureus were tested with this method. For 

this experiment, the intensity of the phosphorus line was tracked to ensure that we were 

observing bacteria, as opposed to ions being washed off the bacterial cell surface.  
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First the 8 μm filter data was re-analyzed to determine the phosphorus line intensity 

after passage through the filter and compared to the single centrifugation data. These 

results are shown in Tables 7.5, and average phosphorus line intensities for each of the 3 

species after single stage centrifugation are shown in Table 7.4. The ratios were calculated 

between the dual and single stage centrifugation, and these numbers are shown in Table 

7.6. Comparing the average intensities of the single and dual centrifugation samples shows 

a decrease in the phosphorus signal of roughly half after passing through the 8 μm filter. 

This is corroborated by the percentages in Table 7.6. The same sources of error are present 

in this experiment as the previous one, however one more thing to note is that the error of 

smaller lines is much higher than larger lines. The phosphorus lines are among the smallest 

of the important lines we observe in our spectra, and have intensities that are not highly 

reproducible. Poor reproducibility of a small line is a known complication in LIBS. Despite 

the larger error in these measurements, the phosphorus line was however consistently 

lower in dual centrifugation samples. Because of the poor reproducibility, we cannot 

reliably state how high the percentage of passage through the 8 μm filter is, but due to the 

presence of phosphorus we can conclude that cells are passing through the 8 μm filter. 
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Table 7.4: Phosphorus 213 nm average intensity after single stage centrifugation for 3 species of bacteria, standard 
deviation, and the standard deviation on the mean for each. 

 Average Phosphorus 213 nm Intensity (arb u) σ σMean 

E. coli 306.13 165.91 8.74 

E. cloacae 487.70 352.54 18.01 

S. aureus 355.13 169.70 8.58 

 
Table 7.5: Average phosphorus 213 nm line intensity after dual stage centrifugation for 3 species. 

Average Phosphorus 213 nm Intensity (arb u) 

 Trial #1 Trial #2 Trial #3 Average 

E. coli 156.08 168.23 214.58 179.63 

E. cloacae 197.44 191.86 272.45 220.58 

S. aureus 197.86 211.19 251.44 220.17 

 

Table 7.6: Ratio of phosphorus 213 nm line intensity of dual stage centrifuged samples to single stage centrifuged samples 
for 3 species.  

 Percentage of Phosphorus Line Measured  

 Trial #1 Trial #2 Trial #3 Average 

E. coli 50.98 % 54.95 % 70.09 % 68.13 % 

E. cloacae 40.48 % 39.34 % 55.86 % 45.23 % 

S. aureus 55.72 % 59.47 % 70.80 % 61.99 % 

 

After establishing that bacteria were present on the 0.45 μm filter after passage through 

the 8 μm filter, the blockage of cells after passage through a 0.45 μm filter was investigated 

using the same procedure outlined in Figure 7.2. The average phosphorus intensities were 

computed and compared to the average intensity after single centrifugation, these results 

are shown in Table 7.7. The results of this experiment were surprising; bacteria were 

observed on the second 0.45 μm filter after filtration through another 0.45 μm filter. The 

intensities observed once again were consistently lower than the average phosphorus line 

deposited through single centrifugation, but the intensities compared closely to the 

intensities observed after filtration through 8 μm filter. This finding suggested that the 0.45 

μm filter does not catch all cells as originally thought. The percentages again were 

calculated by finding the ratio of dual centrifugation intensity to single centrifugation 
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intensity and are shown in Table 7.8. These percentages are comparable to the percentages 

observed when filtering with 8 μm filter first.  

Table 7.7: Average phosphorus 213 nm line intensity after dual stage centrifugation for 3 species through the 0.45 μm 
filter. 

Average Phosphorus 213 nm Intensity (arb u) 

 Trial #1 Trial #2 Average 

E. coli 226.16 184.93 205.55 

E. cloacae 213.5 243.3 228.4 

S. aureus 221.00 197.63 209.32 

 

Table 7.8: Ratio of phosphorus 213 nm line intensity of dual stage centrifuged samples to single stage centrifuged samples 
for 3 species. 

Percentage of Phosphorus Line 

 Trial #1 Trial #2 Average 

E. coli 50.98 % 54.95 % 68.13 % 

E. cloacae 40.48 % 39.34 % 45.23 % 

S. aureus 55.72 % 59.47 % 61.99 % 

 

Due to the observation that bacteria was somehow coming through the 0.45 μm filter, 

further experiments were performed to determine how reliable filters are for catching 

bacteria. Experiments to quantify how much bacteria are caught by the smaller pore size 

filters were performed.  

7.2 Investigation of Filter Efficacy 

Originally, it was assumed that filters with pore sizes smaller than bacteria caught all of 

the bacteria. However, the previous results disagree with this initial assumption. It was 

observed via LIBS measurements of the phosphorus line that bacteria do appear to come 

through the 0.45 μm filter. This prompted several studies to determine which filters the 

bacteria could get through and approximately what fraction of bacteria the filters were 

catching. A study of pelletization was conducted after passage through several filters of 

different pore size. The goals of this study were to determine if a pellet of bacteria could be 

observed after a suspension passed through a filter and to measure how big the pellets 
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were relative to a control suspension of bacteria that had not passed through a filter. Next, 

measurements of the absorbance of the fluid that had passed through the filter were taken 

to attempt to quantify a cell concentration. LIBS measurements of these samples were also 

taken to compare to the optical densitometer measurements. The impact of the cone on 

filter efficacy was tested as well. Determining the efficacy of our filters will provide a more 

accurate estimate of our current limit of detection and may provide insight on how to 

deposit greater numbers of cells.  

7.2.1 Pelletization After Filtration  

A simple centrifugation test was devised to determine if there were bacteria passing 

through 8, 0.45, and 0.22 μm filters. 0.5 mL of E. coli was pipetted into 1.5 mL centrifuge 

tubes, which were then centrifuged to create a pellet. A picture was taken of the pellets 

before they were filtered and is shown in Figure 7.5. Before filtration, each pellet was 

approximately the same size. 3 centrifuge inserts were prepared with 8, 0.45, and 0.22 μm 

filters. The 8, 0.45, and 0.22 μm filter samples were then vortexed and removed from these 

1.5 mL centrifuge tubes and deposited into centrifuge inserts with no cone. These samples 

were then centrifuged through the filter. After centrifugation, the filtrate at the bottom of 

the centrifuge tube was collected and placed back into the 1.5 mL tubes, centrifuged, and 

resulting pellet sizes were compared. A positive and negative control were also included 

for comparison; the positive control is an unfiltered bacterial sample, the negative control 

is ultrapure water. This is shown in Figure 7.6.  

It is clear when comparing the before and after condition that all filters allow some 

bacteria to pass through. The pellets for all filters are smaller after filtration, but show that 

a significant amount of bacteria is not being caught on the filter. These pellets are also 

comparable in size to the pellet filtered through the 8 μm filter, which is counterintuitive.  
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Figure 7.5: Bacteria pellets before centrifugation through a filter. 

 

Figure 7.6: Comparison of pellet size after centrifugation through 8, 0.45, and 0.22 μm filters. A positive and negative 
control are also included; the negative control is purified water; the positive control is bacteria that have not been filtered. 

The same experiment was performed using the cone, and the pellet size before and after 

were compared. This was to test if the cone had any positive or negative effect on the 

number of bacteria captured. In this case, there was variation in the initial amount of 

bacteria for each test tube, as shown in Figure 7.7a, so a comparison between the initial 

conditions could not be made. A comparison could be made between initial and final pellet 

for the same filter size after filtration, and it was found that bacteria could still pass 

through the filter. The initial condition is shown in Figure 7.7a, and the final condition is 

Control 8 μm 
0.45 μm 

0.22 μm 

8 μm 0.45 μm 
0.22 μm 

Control (-) Control 
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shown in Figure 7.7b, c, and d. Therefore, the presence of the cone does not appear to 

mitigate the loss of bacteria through the filter, as had been hoped. 

 

 

Figure 7.7: Comparison between bacteria pellet size (a) before filtration and (b),(c),(d) post filtration. Filtration was 
through the cone. 

A more thorough comparison of the amount of bacteria passing through the filter was 

made by measuring the absorbance of the filtrate. 5 tubes containing 0.8 mL of E. coli 1/50 

suspension were centrifuged in 1.5 mL tubes to ensure pellet sizes were comparable before 

testing. A lower concentration of bacteria was used to ensure that optical densitometer 

measurements were in the linear regime. Bacterial suspensions were deposited into 

centrifuge inserts containing either 8 or 0.45 μm filters. A 0.22 μm filter was not 

investigated here because it is not used in our sample preparation methods, and therefore 

is not entirely relevant. As well, since it also allows bacteria through, it does not provide a 

viable solution to the currently used 0.45 μm filter. Samples were made with and without 

Control 
(-) Control 

8 μm 
0.45 μm 0.22 μm 

Control 

Control 
Control 0.22 μm 0.45 μm 8 μm 

(a) 

(b) (c) (d) 
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the cone. Samples were then centrifuged through the filter and filtrate was collected after. 

Filtrate was pipetted into 1 mL cuvettes for optical densitometer measurement. 

Absorbance measurements were also taken of ultrapure water and of an unfiltered sample. 

These absorbance values are compared in Table 7.9. Non-zero absorbance measurements 

indicate there are cells or cell fragments present in the water. As well, the 0.45 μm filter has 

lower absorbance values in both “with” and “without cone” cases, indicating that it is 

catching more bacteria. 

Table 7.9: Absorbance measurements of water (negative control), unfiltered sample (positive control), 8 μm filter, and 
0.45 μm filter. Absorbance are compared between filter size and between use of cone.  

Sample Absorbance 
(-) Control (Ultrapure H20) 0.000 

0.086 (+) Control (Unfiltered bacteria) 
Without Cone Abs. With Cone Abs. 

8 μm 0.014 8 μm 0.041 
0.45 μm 0.011 0.45 μm 0.026 

 

LIBS measurements were also performed on the filters made with the cone to verify 

that cells were present on the filter and determine if the spectra collected from the 0.45 μm 

filter had a higher intensity than those from the 8 μm filter, which they should if the 0.45 

μm filter was catching more cells. Spectra were not taken of the filters with no cone 

because the bacteria are too dilute to be measureable. A comparison of the spectra is 

shown in Figure 7.8. The comparison of spectra shows a higher intensity from the 0.45 μm 

filter, which corroborates the absorbance measurements. As well, the intensity of the 

phosphorus line was compared. This is shown in Table 7.10. The phosphorus 213 line is 

reliably higher for the 0.45 μm filter. The 214 nm and the 253 nm line are within error.  

Table 7.10: Comparison of the phosphorus line intensity between filters. 

Phosphorus Line Intensity on 0.45 μm Filter (arb u) Intensity on 8 μm Filter (arb u) 

P213 284 ± 102 178 ± 60 

P214 139 ± 73 80 ± 30 

P253 59 ± 27 34 ± 14 
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Figure 7.8: Comparison of LIBS intensity between 8 (red) and 0.45 (black) μm filter.  

The reasons for bacteria getting through a filter that has a smaller pore size than the 

cell size is unclear. It was hypothesized that the force of the centrifugation caused bacteria 

to be forced through the filter, either by lysing the cells allowing them to fall through or 

forcing them to take a different path. To test this, different RPM values were investigated to 

determine if there was a value for optimized deposition. Higher amounts of cell deposition 

should result in a lower absorbance and higher LIBS intensity. A suspension of 1/20 E. coli 

was prepared and 0.8 mL were pipetted into centrifuge inserts containing 8 μm and 0.45 

μm filters. For each filter, there were 4 samples made corresponding to 4 RPM values: 

2000, 3000, 4000, 5000. Lower values were impractical to use because it took 

approximately 30 minutes or longer for complete deposition whereas a typical deposition 

can be completed in 5 minutes. Each sample was centrifuged through a filter. The filtrate at 

the bottom of each sample was collected after vortexing and placed in a cuvette for 

measurement. The experiment was then repeated to determine if the relationship between 

absorbance and LIBS was repeatable. The results are summarized in Figure 7.9 below. 
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Figure 7.9: (a) Absorbance measurements for bacterial suspensions passing through filter (line graph) overlaid on LIBS 
intensity measurements. The absorbance values do not follow a clear or consistent trend with increasing RPM values. 
They are also uncorrelated with the LIBS measurements. (b) Repeat of absorbance experiments using different filter 
sizes; no pattern is clear between RPM’s and LIBS intensities.  

(a) 

(b) 
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The results of this study did not confirm this hypothesis. Absorbance measurements 

were not inversely correlated with LIBS measurements as hypothesized, and followed no 

discernable or repeatable pattern with respect to RPM. It was expected that lower RPMs 

should have lower absorbance. This was not observed, except for the case of 5000 RPMs, 

therefore the centrifuge is most likely not lysing and pushing cells through the filter at 

higher forces. As well, for the 0.45 μm filters, there is no value of RPM that reliably 

improves LIBS intensity. Bacteria still pass through all filters including those with smaller 

pores and changing to a smaller RPM value will not catch them all. However, this study 

confirmed that at higher RPM’s an 8 μm filter allows more bacteria through the filter due to 

its larger pore size, which confirms that using a filter with a larger pore size as the first step 

in dual centrifugation will let some bacterial cells pass.  

To further test the permeability of our filters, 0.05 μm filters were purchased and tested 

using LIBS and the current deposition method. 0.8 mL of E. coli was deposited onto 0.05 μm 

filters using the cone and centrifuge insert. The samples were centrifuged, and the filters 

were removed and sampled with LIBS. The filtrate was centrifuged to observe if a pellet 

was present after filtration. After centrifugation a pellet was observed at the bottom of the 

centrifuge tube, indicating that bacteria did come through the filter, shown in Figure 7.10. It 

was also observed after centrifugation that the bottom of the cone does not create a good 

seal with the filter. The filters had a spot of discolouration due to water leakage from the 

cone, shown in Figure 7.11. 

 

Figure 7.10: (a) Pellet of bacteria after filtration through a 0.05 μm filter. (b) Discolouration of filter due to leakage from 
the bottom of the cone. 

Bacteria 

pellet 

Discolouration of 

filter due to water 

(a) (b) 
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Several 0.05 μm filters was sampled using LIBS. The intensities of the spectra were 

recorded and compared to intensities typically obtained on 0.45 μm filters. A comparison of 

the intensities are shown in Figure 7.11. It is clear from this figure that 0.05 μm filters 

produce intensities that are reliably smaller than 0.45 μm filters. Many of the 0.05 μm 

filters resulted in low intensity spectra and were below the average intensity obtained 

from bacteria deposited on 0.45 μm filters. This is likely due to the phenomenon observed 

in Figure 7.10 which showed an imperfect seal and leakage of water out from under the 

cone and around the filter. It was concluded that the 0.05 μm filters do not catch all 

bacteria and do not perform as well as 0.45 μm. Therefore, it is recommended that 0.05 μm 

filters are not used in sample preparation. As well, the problem does not appear to be pore 

size since bacteria that are larger than the pore size are going through. 

 

Figure 7.11: Comparison of LIBS total spectral intensities between 0.05 μm filters to 0.45 μm. It is clear that 0.05 μm 
filters do not produce a reliably high intensity.  

Another potential explanation for the cells being able to circumvent filter deposition 

and form a pellet at the bottom is cell lysis. Typically, bacterial cells are stored in a 

phosphate buffer to relieve any osmotic pressure. However, we store our bacterial cells in 

ultrapure water to reduce the probability of any potential interferents in the spectra. Since 

the cells are not stored in a buffer solution, some lysis may occur prior to centrifugation, 

resulting in cell fragments reaching the bottom of the centrifuge tube instead of whole cells. 

However, we know that not all cells lyse when stored in ultrapure water because we 
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culture new plates of cells from old stocks, implying that not all cells are lysed and 

therefore non-viable. To test lysis of cells due to either osmotic pressure or the 

aforementioned force caused by centrifugation, 0.3 mL of 1/5 E. coli was centrifuged 

through 8 μm, 0.45 μm, 0.22 μm, and 0.05 μm filters. 0.3 mL of volume was used to ensure 

enough bacteria could be collected to form a pellet at the bottom of the centrifuge tube. 

After pelletization of the bacteria through centrifugation, the solution was vortexed, 

pipetted onto an agar plate, and then grown in the incubator for 48 hours to determine if 

the material passing through the filter consists of whole viable cells or just fragments of 

cells.  

Pictures were taken at 24 hours and 48 hours after plating to compare the amount of 

colonies that grew. The photos taken after 24 hours of incubation are shown in Figure 7.12. 

From this figure it is clear that not as many bacteria are present after filtration as the 

control plate shown in 7.12a, but the smaller pore sizes do not filter out significantly more 

than the 8 µm pore size filter. Growth appears consistent and comparable across all plates 

regardless of pore size. The photos taken after 48 hours of incubation are shown in Figure 

7.13. Consistent and comparable growth is seen here again across all plates that have been 

filtered prior to deposition for growth on agar. The presence of growth on all plates 

indicates that some cells are viable and are not being lysed due to centrifugation. Because 

some cells are not being lysed during centrifugation, which would allow them to pass 

through the smaller pore size filter, this study provides evidence towards the theory that 

some cells are going around the filter as opposed to through it. A potential solution for this 

would be to redesign the centrifuge piece used to concentrate the cells. More work needs to 

be done however to determine the dynamics of the fluid inside the centrifuge insert during 

the centrifugation process to further optimize cell deposition.  
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Figure 7.12: Pictures of growth on agar plates after 24 hours of incubation. (a) Bacteria that was not passed through a 
filter before plating. Bacterial suspension was plated following filtration with a (b) 8 µm pore size filter, (c) 0.45 µm pore 
size filter, (d) 0.22 µm pore size filter, and (e) 0.05 µm pore size filter. 

 

Figure 7.13: Pictures of growth on agar plates after 48 hours of incubation. (a) Bacteria that was not passed through a 
filter before plating. Bacterial suspension was plated following filtration with a (b) 8 µm pore size filter, (c) 0.45 µm pore 
size filter, (d) 0.22 µm pore size filter, and (e) 0.05 µm pore size filter. 
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It is also clear that the samples made with the cone have a higher absorbance than those 

made without the cone. A flaw in this experiment that may have caused this to happen is 

using a 0.8 mL volume of fluid. The cone and centrifuge tube can only hold 1 mL of fluid, 

and it has been observed in the past that higher volumes of fluid will leak around the side 

of the cone. Volumes between 0.75 mL and 1 mL are necessary for an accurate absorbance 

measurement. The difference between the values obtained with and without cone was 

attributed to this flaw in the centrifuge piece and cone. To resolve this, another trial of this 

experiment was performed. 100 μL of E. coli 1/5 suspension was pipetted into the 

centrifuge insert and cone, and centrifuged. Once centrifugation was complete, 0.8 mL of 

ultrapure water was added to the filtrate at the bottom in order to achieve enough volume 

to be measured by the optical densitometer. This new suspension was then vortexed and 

placed in cuvettes to be measured. Absorbance measurements were also taken for a 

negative control, which was ultrapure water, and a positive control, which was unfiltered 

100 μL of bacteria. The results show that bacteria still come through the filter despite the 

presence or absence of the cone, but the absorbance measured is approximately the same 

between cone and no cone, shown in Table 7.11. 

Table 7.11: Comparison of absorbance values after filtration through 0.45 μm and 8 μm filters with and without cone. 
Absorbance value were also compared between filters.  

Sample Absorbance 
(-) Control (H2O) 0.000 
(+) Control 0.523 

With Cone Abs. Without Cone Abs. 
8 μm 0.011 8 μm 0.035 

0.45 μm 0.022 0.45 μm 0.007 
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7.3 Conclusions and Future Work 

Through analysis of the absorbance of several samples, it is clear that the filters used do 

not catch all of the bacteria, regardless of pore size or RPM speed. Evidence presented in 

this chapter suggests that bacteria goes around the filter instead of being deposited on it, 

most likely due to a poor seal between the filter and the centrifuge insert. This is especially 

evident in the deposition experiments done with no cone; however, it is unknown why this 

occurs. Attempting to use the cone to keep the bacteria concentrated also does not prevent 

bacteria from going around the filter, likely because the seal between the cone and filter is 

improper. The improper seal is shown schematically in Figure 7.14, which shows where the 

seal is supposed to be between the cone and filter. The red arrows in the figure represent 

the path that bacteria take around the edges of the filter. The leakage from the cone was 

also demonstrated in Figure 7.10b. The experimental inconsistency of how many cells are 

deposited is likely responsible for the high amount of scatter presented in Figure 5.4.  

It is clear then that our deposition method is not as effective as once thought at reliably 

depositing cells on a filter. One solution for this is to redesign the centrifuge insert or the 

cone to create a better seal. Future work will focus on characterizing a flat metal disk, as 

opposed to the cone, to be used for concentration. The disk will be pressed between the 2 

centrifuge insert pieces, hopefully reducing the amount of leakage and increasing the 

integrity of the seal, thereby increasing the number of cells deposited on the filter. A 

schematic of what this setup may look like using a metal disk is shown in Figure 7.15. With 

the disk used for concentration instead of the cone, the centrifuge inserts will likely not 

have to be redesigned for dual centrifugation. The current design if used in conjunction 

with the cone will only allow for concentration on the first filter, since the second filter 

would be on the second bottom piece screwed into the first bottom piece. There is no room 

for a cone to be placed on top of the second filter. If the disk concentrates as well as or 

better than the cone, the disk would eliminate the problem of redesign. It should also be 

noted that because less cells are being deposited on the filter than originally thought, our 

limit of detection is likely lower than originally anticipated. 
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Figure 7.14: Schematic of the path of bacteria through the centrifuge insert and cone during the centrifugation process. 
The dashed line on the filter shows where the seal between the cone and filter should occur. Due to the improper seal 
between the 2 pieces, bacteria goes around the filter, due to a second improper seal between the filter and the centrifuge 
insert.  
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Figure 7.15: New design for concentration component of centrifuge insert. the disk will be between the top and bottom 
piece, potentially reducing the amount of leakage from the bottom and from around the sides. 

The effect of phosphate buffer on our spectra should also be investigated. Cells are 

typically stored in a medium that reduces the osmotic pressure so no lysing occurs. While 

we know our cells are still viable since we reculture from stock solutions, it is unclear if any 

lysis occurs in the ultrapure water due to the higher osmotic pressure. Further 

investigation needs to be done on determining how the storage of cells in the appropriate 

buffer effects our spectra and ability to discriminate. Phosphate buffer solution should be 

characterized without the presence of cells and with cells to elucidate this. As well, 

investigating how the ‘freshness’ of our bacterial suspensions effects spectra and 

discrimination should also be investigated.  

Finally, future work will also focus on optimizing dual stage centrifugation for the 

separation of blood and bacteria. Dual stage centrifugation through an 8 μm filter followed 

by a 0.45 μm filter was achieved, with the average total spectral intensity of the dual stage 

centrifugation samples being comparable to single stage centrifugation samples, and 
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phosphorus lines being measured at between 45%-68% for the 3 species tested. Dual stage 

centrifugation of S. aureus appears to have achieved the highest amount of bacterial 

deposition, but the reason for this is not clear at this time. Proof-of-concept has been 

achieved for dual stage centrifugation, and optimizing the amount of bacteria through the 8 

μm filter while optimizing the amount deposited on the 0.45 μm filter will be the focus of 

future work. As well, a duplication of these experiments using these techniques on fresher 

clinical samples to ensure that we are modelling bacteria in blood correctly should be 

performed.   
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Chapter 8: Conclusions and Future Work 

8.1 Conclusions 

The overarching goal of our research for the past several years has been to create a 

point-of-care diagnostic tool for rapid identification of bacterial infections. A rapid 

diagnostic tool will address the current antibiotic crisis occurring worldwide and 

accelerate the treatment process. Though we have made significant progress, several 

complications still needed to be addressed. When working with lower concentrations of 

cells, classification accuracy is poor between bacterial species. There is also high variability 

between filters which is causing poor classification. As well, no work had been done on 

testing bacteria in blood and urine.  In working towards this goal, my thesis focuses on 

improvement of classification of species through outlier rejection, implementation of new 

algorithms to improve classification, as well as the development of testing procedures for 

bacteria in blood and in urine.  

The problem of poor classification in chemometric algorithms was attributed to high 

scatter in the data as well as contamination from deposition pieces. Solutions to these 

problems were addressed in chapter 4. First, cleaning of the metal cone was investigated 

where it was found that ultrasonicating the cone in acetone and methanol reduced the 

background intensity of the spectrum. The effect of the water used in sample preparation 

was also studied, with the conclusion that ultrapure megohmic water has the lowest 

background intensity which is ideal for our experiment. Therefore, ultrapure megohmic 

water was used in bacterial suspensions and used in sample preparation. Other filters were 

also investigated to determine if any had lower carbon emission than the nitrocellulose 

filters. This study showed that nitrocellulose filters had the lowest emission of calcium, 

magnesium, and sodium lines and the highest emission of carbon. Since the sodium, 

magnesium, and calcium lines are all important to bacterial detection and classification, we 

have continued to use nitrocellulose filters. To address the scatter in the data, outlier 

rejection was investigated but did not improve classification results. A method that worked 

for improvement of classification was adding spectra together to reduce noise and remove 

the shot-to-shot variability. The average sensitivity and specificity of single-shot E. coli 
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classified against single-shot sterile water was 87 % and 72 %, respectively. After applying 

this method, the sensitivity and specificity improved to 100 % and 100 %, respectively.  

For discrimination between species, application of DFA using 10-fold CV and adding 

spectra was unsuccessful for 5-class tests. Reducing the complexity of the model to a 3-

class test and applying the same methods as a 5-class test did not improve the results. Due 

to the non-linearity of our data, we switched to developing and using an ANN algorithm. 

This only improved results marginally, which led us to add the preprocessing step of PCA 

before ANN to reduce the dimensionality of our data. As well, we chose to analyze the full 

spectrum as opposed to individual lines. This greatly improved our results for classification 

of species. 

A new method of deposition was developed to simulate the testing of a blood or urine 

sample drawn from a patient. Blood and urine were characterized using the LIBS setup. 

Blood and urine were found to be fairly empty spectra, with the most prominent features 

being the carbon line from the filter and the sodium line. Infections were successfully 

simulated in blood and urine by ‘spiking’ each sample with our bacterial suspensions. The 

success of the simulated infection was made clear by the presence of bacteria lines on the 

fairly empty blood and urine spectra. A discrimination between sterile clinical fluids and 

simulated infections was performed with PLSDA, with identification of infected blood and 

urine occurring 100 % of the time. As well, classification of species present in blood and 

urine was carried out using DFA and PCA-ANN, with the best results being achieved with 

analysis of full spectrum data in PCA-ANN. This indicates that we can clearly detect and 

diagnose bacteria in a simulated sepsis or UTI infection.  

Another method of deposition was investigated with the aim of separating out blood 

and bacterial cells. The studies were initially done to show proof-of-concept that the 

technique would work to separate out the two cell sizes, however it ended up showing that 

the deposition efficacy is not as high as originally anticipated. It was found that a large 

number of cells were not being deposited on the filter and instead ended up at the bottom 

of the centrifuge tube. Several studies were conducted varying the RPMs, filter size, and 

presence of cone to determine if the loss of cells could be reduced. It was found that none of 
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the above techniques allowed for capture of 100% of the cells, which led to the design of a 

new concentration piece that may be able to mitigate the number of cells going around the 

filter.  

8.2 Future Work 

The goal of our work is to develop an easy-to-use, low-cost instrument to be used in the 

clinic for rapid diagnosis. We have accomplished proof of concept by demonstrating 

accurate detection of bacteria in water and discrimination between species and strains. 

However, these results were accomplished with large amounts of cells, and most of the 

work over the past few years has been focused on retaining the same level of classification 

accuracy with fewer cells. This thesis and all future work aims to achieve the goal of high 

diagnostic accuracy with simple procedures, inexpensive equipment, and small numbers of 

cells.  

Though classification of fewer cells was improved using PCA-ANN, work still needs to 

be done on classification of individual filters with this method. In a clinical setting, the 

diagnostic data will not be analyzed in an 80:20 split of training and testing. Rather, the 

testing data will be one sample or filter inputted by the physician against a library of 

training data. This poses a problem for our current procedures because external validation 

of individual filters was found to have a lower classification accuracy than an 80:20 

external validation. To combat this, filter to filter variation needs to be reduced, which is 

being approached by designing a new concentration piece for use with our centrifuge 

insert. A schematic of what this might look like is shown in Figure 7.15 as a thin disk with a 

hole in the middle. The disk will span the entire width of the centrifuge insert and will sit 

between the bottom piece and top piece, potentially reducing or eliminating the leakage 

around the deposition area that was observed with the cone. Another approach to reducing 

the filter-to-filter variation is deposition of nanoparticles with the bacteria to enhance the 

spectra. Enhancement of spectra may eliminate the occurrence of low intensity filters. This 

is an ongoing area of research in our lab. 

New algorithms may also be investigated if changing our deposition method to reduce 

filter-to-filter variability fails to improve classification with PCA-ANN. Work has been done 
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in the past on decision tree algorithms by Multari et al. as well as other authors. Decision 

trees make successive, 2-class decisions on samples entered into the model. For example, if 

this type of model was implemented in our work, the first test the algorithm would perform 

would be the presence or absence of bacteria. If bacteria were present, it would classify it 

against the species in the library that is easiest to identify, which would be P. aeruginosa. If 

the unknown species did not classify as P. aeruginosa, the decision tree would continue to 

perform 2-class discrimination tests until the unknown species found a match.  

Filter-to-filter variation may also be affected by the coupling of the laser to the surface. 

We have observed numerous times that spectra coming from shots close together spatially 

on the filter are very different in intensity. Currently we use a 1064 nm laser for ablation, 

but it is known that lasers in the UV regime offer higher photon energies for bond breakage 

and ionization of the sample. UV lasers also have a lower penetration depth, particularly in 

water-containing targets, which allows for more energy per unit volume to be deposited in 

the sample, and therefore a greater ablation efficiency.138,139  A 355 nm 10 ns Q-switched 

YAG laser is available in our laboratory for experiments to compare the ablation efficiency 

of the ultraviolet wavelength to the infrared wavelength with the bacteria targets. 

Detection and diagnosis of bacterial pathogens could also benefit from the effects of 

dual-pulse LIBS. Dual-pulse LIBS increases the emissivity of the plasma, which increases 

emission intensities and therefore improves sensitivity of the technique. The most popular 

configuration studied that has shown the highest enhancement has been the orthogonal 

pre-ablation spark method.140 This method however results in a wider or deeper crater, 

which may not be ideal for our testing substrate since it may result in more filter ablation 

instead of more bacterial ablation. Studies on the effect on the volumes of filter ablated 

using orthogonal pre-ablation LIBS are recommended. Another method that showed some 

enhancement was the collinear dual-pulse arrangement, where enhancement was mostly 

attributed to reheating of the plasma with the second laser pulse.141 This method of dual-

pulse may be more attractive than the previous as it could result in less filter ablation and 

enhancement of the bacteria lines.  
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To further understand the issues presented in Chapter 7 specifically and to understand 

deposition, concentration curves can be created using the optical densitometer for cell 

suspensions to understand what percentage of cells we are catching. A curve representing 

an unfiltered series of suspensions to serve as a control compared to a curve of filtered 

suspensions will allow us to calculate how many cells we are losing in deposition. As well, 

this curve will allow us to compare the efficacy of other deposition methods we hope to 

investigate using newly designed centrifuge insert pieces.  

A more in-depth approach we could take could be to understand how the algorithms 

are classifying our data, and further how the filters are failing classification; this can be 

accomplished by understanding more in-depth how the algorithms work. Understanding of 

how the algorithms classify our data could be done using a technique called permutation 

feature importance. Permutation feature importance determines which features in a data 

set hold predictive power by shuffling the values for each feature. Breaking the relationship 

between the feature and the predicted result may result in a lower accuracy for the model, 

with larger decreases in performance meaning the feature holds more weight in the 

classification.142 An in-depth analysis of each filter that misclassifies may give us an idea of 

how to improve our deposition and sampling.  

In terms of clinical sample accuracy, future studies should focus on obtaining fresher 

samples of blood and urine, if possible, to ensure accurate representation of the data and 

performance in algorithms. As mentioned in Chapter 7, blood cells in samples can 

disappear over time, causing a misrepresentation of clinical conditions. A potential solution 

to this may be working closely with the staff in the hospital to test blood upon sample 

collection.  

More studies need to be done to capture the diversity of bacterial concentrations that 

may exist within patients. Lower and higher concentrations of bacterial suspensions 

present in blood and urine need to be investigated to determine if they still classify 

correctly. LOD’s also need to be found and quantified in blood and urine samples. Future 

studies should also focus on replicating the dispersion of the bacteria in blood and urine, 

since some species may not disperse evenly throughout the blood. For example, S. aureus 
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aggregate together surrounded by a fibre-based film, instead of evenly dispersing 

throughout the blood stream. However, behaviours and aggregation of cells in the blood 

stream is largely unexplored.143,144  

A clinical fluid that could not be studied in this thesis due to infrequent testing and 

small lack of volume available in each test was cerebral spinal fluid. Future studies should 

focus on obtaining and testing this fluid to determine if diagnosis of bacteria in cerebral 

spinal fluid is feasible. Such experiments require the cooperation of our partners at the 

Windsor Regional Hospital and the availability of such specimens is out of our control. 
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Appendix A 

Table A.1: Complete list of RM3 ratios used for discrimination. 

Complete List of RM3 Ratios 

p1/c p2/caii2 p4/mgii1 p6/mgii1 mgii2/caii2 mgi1/c caii4/c 

p1/mgii1 p2/caii3 p4/mgii2 p6/mgii2 mgii2/caii3 mgi1/caii2 caii4/na1 

p1/mgii2 p2/caii4 p4/mgii3 p6/mgii3 mgii2/caii4 mgi1/caii3 caii4/na2 

p1/mgii3 p2/cai1 p4/mgii4 p6/mgii4 mgii2/cai1 mgi1/caii4 cai1/na1 

p1/mgii4 p2/na1 p4/mgi1 p6/mgi1 mgii2/na1 mgi1/cai1 cai1/na2 

p1/mgi1 p2/na2 p4/mgi2 p6/mgi2 mgii2/na2 mgi1/na1 c/na1 
p1/mgi2 p3/c p5/c p6/caii2 mgii3/c mgi1/na2 c/na2 

p1/caii2 p3/mgii1 p5/mgii1 p6/caii3 mgii3/caii2 mgi2/c mgi1/mgii1 

p1/caii3 p3/mgii2 p5/mgii2 p6/caii4 mgii3/caii3 mgi2/caii2 mgi1/mgii2 

p1/caii4 p3/mgii3 p5/mgii3 p6/cai1 mgii3/caii4 mgi2/caii3 mgi1/mgii3 
p1/cai1 p3/mgii4 p5/mgii4 p6/na1 mgii3/cai1 mgi2/caii4 mgi1/mgii4 

p1/na1 p3/mgi1 p5/mgi1 p6/na2 mgii3/na1 mgi2/cai1 mgi2/mgii1 

p1/na2 p3/mgi2 p5/mgi2 mgii1/c mgii3/na2 mgi2/na1 mgi2/mgii2 

p2/c p3/caii2 p5/caii2 mgii1/caii2 mgii4/c mgi2/na2 mgi2/mgii3 
p2/mgii1 p3/caii3 p5/caii3 mgii1/caii3 mgii4/caii2 caii2/c mgi2/mgii4 

p2/mgii2 p3/caii4 p5/caii4 mgii1/caii4 mgii4/caii3 caii2/na1 cai1/caii2 

p2/mgii3 p3/cai1 p5/cai1 mgii1/cai1 mgii4/caii4 caii2/na2 cai1/caii3 

p2/mgii4 p3/na1 p5/na1 mgii1/na1 mgii4/cai1 caii3/c cai1/caii4 
p2/mgi1 p3/na2 p5/na2 mgii1/na2 mgii4/na1 caii3/na1  

p2/mgi2 p4/c p6/c mgii2/c mgii4/na2 caii3/na2  
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Table A.2: Complete list of ratios used in RM2.5 discrimination. 

Complete List of RM2.5 Ratios 

p1/c p2/caii3 mgii1/caii4 mgii4/caii3 caii4/na2 

p1/mgii1 p2/caii4 mgii1/cai1 mgii4/caii4 cai1/c 
p1/mgii2 p2/cai1 mgii1/na1 mgii4/cai1 cai1/na1 

p1/mgii3 p2/na1 mgii1/na2 mgii4/na1 cai1/na2 

p1/mgii4 p2/na2 mgii2/c mgii4/na2 c/na1 

p1/mgi1 p4/c mgii2/caii2 mgi1/c c/na2 
p1/caii2 p4/mgii1 mgii2/caii3 mgi1/caii2 mgi1/mgii1 

p1/caii3 p4/mgii2 mgii2/caii4 mgi1/caii3 mgi1/mgii2 

p1/caii4 p4/mgii3 mgii2/cai1 mgi1/caii4 mgi1/mgii3 

p1/cai1 p4/mgii4 mgii2/na1 mgi1/cai1 mgi1/mgii4 
p1/na1 p4/mgi1 mgii2/na2 mgi1/na1 cai1/caii2 

p1/na2 p4/caii2 mgii3/c mgi1/na2 cai1/caii3 

p2/c p4/caii3 mgii3/caii2 caii2/c cai1/caii4 

p2/mgii1 p4/caii4 mgii3/caii3 caii2/na1  
p2/mgii2 p4/cai1 mgii3/caii4 caii2/na2  

p2/mgii3 p4/na1 mgii3/cai1 caii3/c  

p2/mgii4 p4/na2 mgii3/na1 caii3/na1  

p2/mgi1 mgii1/c mgii3/na2 caii3/na2  

p2/caii2 mgii1/caii2 mgii4/c caii4/c  

p2/caii3 mgii1/caii3 mgii4/caii2 caii4/na1  
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