Oscillator strength measurements in Pr II with the fast-ion-beam laser-induced-fluorescence technique

R Li ${ }^{1}$, R Chatelain ${ }^{2}$, R A Holt ${ }^{1}$, S J Rehse ${ }^{3}$, S D Rosner ${ }^{1}$ and T J Scholl ${ }^{1}$
${ }^{1}$ Department of Physics and Astronomy, University of Western Ontario, London, ON, N6A 3K7, Canada
${ }^{2}$ Department of Physics, McGill University, Montréal, QC, H3A 2T8, Canada
${ }^{3}$ Department of Physics and Astronomy, Wayne State University, Detroit, MI, 48202, USA
E-mail: rosner@uwo.ca

Received 25 May 2007
Accepted for publication 10 September 2007
Published 16 October 2007
Online at stacks.iop.org/PhysScr/76/577

Abstract

The spontaneous-emission branching fractions of 32 levels of Pr II were measured by the fast-ion-beam laser-induced-fluorescence technique. The levels studied had energies from ~ 21500 to $\sim 29000 \mathrm{~cm}^{-1}$, and the decay branches detected were in the range from 250 to 850 nm . The experimental uncertainties are within 10%. Using our previously measured radiative lifetimes, we determined the Einstein A coefficients and oscillator strengths for 260 transitions. The results are important for stellar elemental abundance determinations.

PACS numbers: $32.70 . \mathrm{Cs}, 32.70 . \mathrm{Fw}, 95.30 . \mathrm{Ky}$

1. Introduction

The study of lanthanide (rare-earth) elements in stellar photospheres is important in increasing our understanding of nucleosynthesis, and the mechanisms which move elements between the core of a star and its surface. The lanthanides are particularly useful because they constitute a continuous sequence of atomic numbers, and their spectra fall in similar wavelength ranges, yet the nucleosynthesis pathways leading to the formation of the many different stable isotopes can be quite different. In his extensive review of the lanthanide elements in stellar spectra [1], Wahlgren pointed out the importance of metal-poor galactic halo stars in testing models of nucleosynthesis that proceed via the r- (rapid) and s- (slow) neutron capture processes. In a recent study of these stars, abundances of singly-ionized La, Eu, Dy and Nd were used to infer an inhomogeneous distribution of neutron-capture elements in the early interstellar medium [2]. Lanthanide elements are also found in the Sun, and in chemically peculiar (CP) stars of the upper main sequence, where their abundance is high compared to solar values. In CP stars with measurable magnetic-field effects, the abundances of the lanthanide elements are among the most enhanced. Strasser et al [3] have studied the strengths and line profiles of Pr, Nd, and other elements in the slowly rotating Ap star HD 187474 in order to model their abundance distributions over the stellar
surface and test a previously derived magnetic field geometry. Lanthanides are also important in the comparison of solar and meteoritic elemental abundances, which have often been taken to be the same [4].

Laboratory measurement of oscillator strengths (f-values) is of prime importance in inferring abundances. As astrophysical models become more detailed, improving the accuracy of f-values becomes more important. For example, it is expected that systematic differences between solar and meteoritic abundances should exist because of selective diffusion of elements to and from the visible photosphere, but higher accuracy is required to observe this effect [4].

In the 1930s, Meggers et al began a program of intensity measurements at the US National Bureau of Standards that led to a number of monographs listing intensities [5, 6] and oscillator strengths [7]. The accuracy of the oscillator strengths was limited by the assumptions about local thermodynamic equilibrium, rate of entry and exit of atoms from the discharge, and negligible self-absorption. The overall uncertainty in $\log g f$ (where f is the absorption oscillator strength and g is the multiplicity $2 J+1$ of the lower state) was estimated as a standard deviation varying from 0.24 to 0.29 as the upper-level term energy varied from 1.5×10^{4} to $5.0 \times 10^{4} \mathrm{~cm}^{-1}$, corresponding to a factor of error of $1.7-2.0$ in $g f$.

A more accurate approach to determining oscillator strengths is to combine data on the branching fractions (BFs) for all transitions from a given level with a value for the spontaneous emission lifetime of that level. Lage and Whaling [8] measured BFs in a hollowcathode discharge and incorporated the beam-foil lifetime measurements of Andersen and Sorensen [9] to obtain oscillator strengths for transitions from five levels of Pr II. Kurucz and Bell [10] have compiled experimental oscillator strengths in a form which is available online (http://cfawww.harvard.edu/amp/ampdata/kurucz23/sekur.html) using the data of Lage and Whaling, BFs from the intensity measurements of Meggers et al, together with experimental lifetime data. Goly et al [11] obtained BF values for 62 Pr II transitions by measuring the emission from a ferroelectric plasma source. Using Fourier transform spectrometry and previously measured lifetimes, Ivarsson et al [12] determined oscillator strength values for 31 lines of Pr II in the $280-800 \mathrm{~nm}$ range. Biémont et al [13] performed relativistic Hartree-Fock (HFR) calculations of BFs for 24 levels and combined them with their own timeresolved laser-induced-fluorescence lifetime measurements to calculate oscillator strengths for ~ 150 transitions; these are available online from the DREAM database (http://w3.umh.ac.be/~astro/dream.shtml).

In the present work, we have carried out a measurement of BFs of Pr II for all levels whose lifetimes we determined in a previous study [14]. The use of a laser/fast-ion-beam method enables highly selective excitation of ions to the level of interest. The resulting uncluttered fluorescence spectrum contains only transitions that emanate from that common upper level, so it is impossible to mistakenly include branches that belong to other upper levels. The combination of the previously measured lifetimes with the BFs measured here produces oscillator strengths with experimental uncertainties of $\sim 10 \%$ arising mainly from the calibration of the optical response of our detector system as a function of wavelength.

2. Experimental method

In our apparatus, Pr^{+}ions are produced by surface ionization on a hot tungsten filament in a modified Danfysik 911A source. The ion source contains only Pr vapor produced by a small, electrically heated oven, and there is no discharge. Under such conditions, ions can be produced in metastable states with energies up to several $1000 \mathrm{~cm}^{-1}$; in this work we utilized metastable ions with energies up to $5079 \mathrm{~cm}^{-1}$. After acceleration to 10 keV , the ions are focused and massfiltered by a Wien filter before being electrostatically deflected to merge collinearly with a counter-propagating laser beam. The collinear geometry creates kinematic compression [15] of the Doppler width to $\sim 150 \mathrm{MHz}$, which increases the signal size and makes the excitation process more selective. The ion current, typically $\sim 100 \mathrm{nA}$, is detected by a Faraday cup with secondary-electron suppression.

The single-frequency laser beam is produced by an argon-ion-pumped Coherent 699-21 dye laser using Stilbene 3 dye, which has a nominal single-frequency tuning curve from 415 to 465 nm . Given the metastable energy range of the ions, we
can study all excited levels from ~ 21500 to $\sim 29000 \mathrm{~cm}^{-1}$ for Pr II, except for some levels whose lifetimes are too long to provide sufficient signal in our detection apparatus. The laser wavelength is determined to ~ 1 part in 10^{7} with a traveling-mirror Michelson interferometer using a polarization-stabilized reference helium-neon laser as a reference [16, 17].

Ion resonance with the counter-propagating laser beam is confined to a small post-acceleration region. As the ions enter this region, they are accelerated and brought into resonance with the Doppler-shifted laser beam. The excitation occurs primarily in a central cylindrical volume in which the potential is nearly uniform over $\sim 3 \mathrm{~cm}$ length. The background light from scattered laser light is reduced by focusing the laser beam and the use of apertures, while the light arising from ionneutral collisions is kept at an acceptable level by maintaining the vacuum at $10^{-6}-10^{-7}$ Torr. The light background is further suppressed by modulating the post-acceleration potential at 2 kHz , providing an ac component to the LIF that is detected with a lock-in amplifier.

Two bundles of optical fibers are positioned around the post-acceleration region to collect the LIF. The LIF from one bundle is used for branching-fraction data while the other provides a 'normalization' signal that is used to correct the branching-fraction signal for variations in the excitation rate due to drifts in the properties of the laser and ion beams. This normalization signal is obtained from a relatively strong transition in the LIF spectrum, and is divided into the branching-fraction signal before relative intensities are calculated. The fibers of each bundle are mounted in specific angular arrays chosen to minimize systematic error in the BFs arising from anisotropic excitation and detection [18].

The two fiber bundles are connected to two identical $f / 3.8$ scanning monochromators. Each monochromator has three gratings on a rotating carousel to provide complete spectral coverage: their reciprocal linear dispersions and spectral ranges are as follows: $\left(1.0 \mathrm{~nm} \mathrm{~mm}^{-1}, 250-\right.$ $500 \mathrm{~nm})$, ($1.5 \mathrm{~nm} \mathrm{~mm}^{-1}, 250-750 \mathrm{~nm}$), and ($3.0 \mathrm{~nm} \mathrm{~mm}^{-1}$, $250-1500 \mathrm{~nm}$). The light detector for the normalization monochromator is a bialkali-photocathode blue-sensitive photomultiplier (PMT), while that for the branchingratio monochromator is a trialkali-photocathode PMT with extended red response useful in practice to $\sim 850 \mathrm{~nm}$. In order to eliminate second-order diffraction lines, a long-pass filter (91.5% flat transmission for wavelength $\lambda>550 \mathrm{~nm}$) is inserted for scans above $\sim 600 \mathrm{~nm}$. The PMTs were operated in current mode to allow the use of lock-in detection for background suppression and wavelength stabilization (see below).

To calibrate the wavelength-dependent response of the complete detector system (fibre array + monochromator + PMT), a 200-W NIST-traceable quartz-tungsten-halogen (QTH) lamp (Oriel model 63355) is used as a standard illumination source. The uncertainty of the response calibration was estimated as 7.1% systematic and 1.5% statistical. For a detailed discussion see [18].

The signal from the normalization monochromator is connected to two lock-in amplifiers. One operating in ' $2 f$ ' mode provides the background-suppressed normalization signal, while the second, operating in ' $1 f$ ' mode, provides an

Figure 1. Partial fluorescence spectrum in Pr II from the upper level with energy $22675.439 \mathrm{~cm}^{-1}$. This level was laser-excited using the transition at 440.88 nm from the ground state of the ion. The laser power was 115 mW and the ion current is 75 nA . Dwell time was 4 s per 1-nm step.
error signal for dye-laser wavelength stabilization. With the laser wavelength locked to the peak of the pump-transition resonance, the branching-fraction monochromator is scanned to record the spontaneous emission lines from 250 to 850 nm . During a scan, the computer also records the normalization signal, the laser power transmitted through the apparatus, and the ion-beam current. A sample decay-branch partial spectrum for the upper level $22675.44 \mathrm{~cm}^{-1}$ is shown in figure 1 .

3. Data analysis

BFs are obtained from a spectrum such as that shown in figure 1 by determining the relative intensities of all observed transitions from an excited state. For transitions from an upper state u to a set of lower states 1 , the relative intensities $I_{u l}$ are obtained by dividing the areas $S_{u l}$ of the observed spectral lines by the wavelength-dependent detection sensitivity of our apparatus. The latter is determined in a separate calibration procedure employing our QTH irradiance standard as $r\left(\lambda_{u l}\right) / i\left(\lambda_{u l}\right)$, where $r\left(\lambda_{u l}\right)$ is the measured response of our fibre/monochromator/PMT system, and $i\left(\lambda_{u l}\right)$ is the value of the manufacturer's spectral irradiance data for our lamp. Altogether,

$$
\begin{equation*}
I_{u l}=\frac{S_{u l}}{\left[r\left(\lambda_{u l}\right) / i\left(\lambda_{u l}\right)\right]} \tag{1}
\end{equation*}
$$

BFs $R_{u l}$ are then obtained as

$$
\begin{equation*}
R_{u l}=\frac{I_{u l} \lambda_{u l}}{\sum_{l} I_{u l} \lambda_{u l}} \tag{2}
\end{equation*}
$$

in which the $\lambda_{u l}$ factors are needed to convert relative intensities into relative photon emission rates.

The areas $S_{u l}$ are found by least-squares fitting the emission lines with a symmetric Gaussian function, chosen after a systematic study to optimize goodness of fit and robustness [18]. The uncertainties associated with the areas obtained from the fitting procedure ranged from 0.2% for the
strongest lines to 5% for the weakest. Due to the wavelengthdependent dispersion of a Czerny-Turner monochromator, a linewidth function $w(\lambda)=A(\lambda-\bar{\lambda})^{2}+B(\lambda-\bar{\lambda})+C$ was employed in the fitting, where $\bar{\lambda}$ is the mean wavelength of the scanned range (introduced merely to reduce correlation between the fitted parameters and minimize truncation errors). This quadratic parameterization was a satisfactory representation of the true wavelength dependence over the range of interest, and provided a robust fit for small peaks common in the infrared region for Pr II.

In some cases it is necessary to combine partial spectra taken with different gratings in order to obtain complete spectral coverage with adequate resolution. The relative normalization of the spectra being combined is determined from spectral lines in the overlap regions common to both spectra. The procedure employs a least-squares adjustment of $n-1$ multiplicative normalization constants when the fitted areas from n spectra are being merged.

4. Results

The data required for the BF calculation are the relative intensities of all measured branches from a given upper state. These data are presented in table 1. Obtaining BFs from relative intensities assumes that all radiative transitions that contribute to the decay of the level have been measured. This is practically impossible due to the limited spectral region of detectors and poor signal-to-noise ratio (SNR) for a number of weak lines, predominantly in the near infrared region. (In both tables 1 and 2 , lines labeled as ' w ' were reproducible to the eye but could not be fit because of a poor SNR.) In our work, only the transitions between 250 and 850 nm were observed, and the $g A$ and $\log g f$ values derived from them are presented in table 2, along with $g A$ values from [8, 11-13] where available. To assess the error in our $g A$ values arising from unseen branches, it is interesting to compare our data with that of Ivarsson et al [12], who also measured both lifetimes and BFs but made a theoretical correction for missed branches. Except for the upper level at $22675.44 \mathrm{~cm}^{-1}$, the agreement is almost always excellent, implying that the contribution of missed branches is comparable with the experimental uncertainties. For the same $22675.44 \mathrm{~cm}^{-1}$ upper level, the agreement between the data of Goly et al [11] and our work is excellent (except for one branch where they took data from elsewhere), and our spectrum has a very good SNR, so the disagreement with Ivarsson et al on this level is puzzling. It is interesting to note that for the upper level at $26860.44 \mathrm{~cm}^{-1}$, three branches are in excellent agreement (difference <1 standard deviation), while the branch at 426.179 nm gives very poor agreement (difference >6 standard deviations). Since this line is listed as 'complex' by Meggers et al [6], it is likely that Ivarsson et al measured a blend in their hollow cathode discharge, while we observed a single line because of our selective laser excitation of the upper level.

In table 3, we make an overall numerical comparison of our results for $g_{u} A_{u l}$ to those of [11, 12], both of whom used measured lifetimes and measured BFs, and gave error estimates. For these references we list the average quantity

Table 1. Relative intensities of branches from a given upper level of Pr II. The intensities of branches that were observed but too weak to analyze are indicated by ' w '.

Upper level energy ${ }^{\text {a }}$ (cm^{-1})	Lower level energy ${ }^{\text {a }}$ $\left(\mathrm{cm}^{-1}\right)$	Wavelength in air ${ }^{\text {b }}$ (nm)	Relative intensity
22040.05	0.00	$453.592^{\text {c }}$	1
	441.95	462.874	0.69(8)
	1649.01	$490.275^{\text {d }}$	0.17(2)
	1743.72	$492.563^{\text {d }}$	
	3403.21	536.423	0.011(5)
	3893.46	550.915	0.36 (4)
	4097.60	557.183	0.16(2)
	7438.23	$684.659^{\text {d }}$	0.05(2)
	7446.43	$685.046^{\text {d }}$	
22571.48	0.00	$442.913^{\text {c }}$	1
	441.95	451.758	0.27(3)
	1649.01	$477.822^{\text {d }}$	0.072(8)
	1743.72	$479.994^{\text {d }}$	
	3403.21	521.551	0.034(5)
	3893.46	535.240	0.32(3)
	4097.60	541.154	0.14(1)
22675.44	0.00	$440.882^{\text {c }}$	1
	441.95	449.646	0.36(4)
	3893.46	532.276	0.36(4)
	4097.60	538.126	0.16(2)
	7438.23	$656.107^{\text {d }}$	0.05(1)
	7446.43	$656.462^{\text {d }}$	
22885.59	0.00	$436.833^{\text {c }}$	1
	441.95	445.436	0.13(1)
	1649.01	470.754	0.10(1)
	1743.72	472.863	0.11(1)
	3403.21	513.142	$0.031(5)$
	3893.46	526.388	0.32(3)
	4097.60	532.107	0.13(1)
	7438.23	$647.181^{\text {d }}$	0.032(8)
	7446.43	$647.526^{\text {d }}$	
23261.36	0.00	$429.777^{\text {c }}$	1
	441.95	438.101	$0.036(5)$
	1743.72	464.605	0.15(2)
	3403.21	503.432	$0.023(5)$
	3893.46	516.174	0.30(3)
	4097.60	521.673	0.08(1)
	7438.23	631.813	w
	8099.72	$659.374^{\text {e }}$	0.008
23660.20		$422.535^{\text {c }}$	
	441.95	430.576	$0.34(4)$
	4097.60	511.038	0.14(2)
	7438.23	616.278	w
	7446.43	616.594	w
	7744.27	628.128	w
23977.83		424.763^{c}	
	1649.01	447.726	$0.45(6)$
	1743.72	449.634	0.52(7)
	2998.36	476.523	0.20 (3)
	3403.21	485.900	0.13(2)
	5108.40	529.809	0.66(8)
	5226.52	533.148	0.23(3)
	8489.87	645.484	w
	10030.31	716.777	w
24115.50	441.95	$422.293^{\text {c }}$	1
	1649.01	444.983	0.27(5)
	1743.72	446.866	0.47(8)
	2998.36	473.42	0.11(2)
	3403.21	482.670	w

Table 1. Continued.

Upper level energy ${ }^{\text {a }}$ (cm^{-1})	Lower level energy ${ }^{\text {a }}$ (cm^{-1})	Wavelength in air ${ }^{\text {b }}$ (nm)	Relative intensity
	3893.46	494.372	w
	5079.35	$525.17{ }^{\text {d }}$	0.36(4)
	5108.40	$525.973^{\text {d }}$	
	5226.52	529.262	0.16(2)
	6413.93	564.765	w
	8489.87	639.796	w
24393.73	1743.72	$441.377^{\text {c }}$	1
	3403.21	476.272	0.27(3)
	4097.60	492.567	w
	5108.40	518.385	0.20(2)
	5226.52	521.580	0.048(7)
	8465.04	$627.625^{\text {d }}$	0.008(3)
	8489.87	$628.605^{\text {d }}$	
	10163.47	702.534	0.028(5)
	11418.52	770.498	0.047(9)
24716.04	0	404.481	0.36(4)
	441.95	411.846	1
	1649.01	433.397	0.4(1)
	1743.72	$435.184^{\text {c }}$	0.6 (2)
	3893.46	480.114	w
	5226.52	512.952	0.25(3)
	7438.23	578.617	w
	7446.43	578.892	w
	8099.72	601.648	w
	8489.87	616.118	0.13(3)
	9128.67	641.368	w
24835.03	441.95	409.840	0.18(2)
	1743.72	$432.941^{\text {c }}$	1
	2998.36	457.817	0.32(3)
	3403.21	466.465	0.76(8)
	5079.35	$506.043^{\text {d }}$	0.12(2)
	5108.40	$506.788^{\text {d }}$	
	6413.93	542.705	0.05(1)
	9646.67	658.218	0.034(6)
	10163.47	681.404	0.10(1)
	10535.83	699.147	0.031(6)
	11418.52	$745.145^{\text {d }}$	0.041(8)
	11447.73	$746.771^{\text {d }}$	
25248.69		423.615^{c}	
	2998.36	449.306	$0.19(2)$
	3403.21	457.632	0.34(4)
	4437.15	480.369	0.055 (7)
	5079.35	495.664	0.62(6)
	6417.83	530.896	0.17(2)
	11749.49	740.581	0.04(3)
	11794.38	743.052	0.05(1)
	12243.49	768.712	0.03(1)
	13029.09	818.134	0.04(3)
25467.47	0.00	392.547	0.53(6)
	441.95	399.479	1
	1743.72	$421.400^{\text {c }}$	0.022(3)
	4097.60	467.818	0.031(4)
	7438.23	$554.501^{\text {d }}$	0.074(8)
	7446.43	$554.753^{\text {d }}$	
	8099.72	575.617	0.11(1)
	9045.00	608.752	0.09(1)
25499.52	0	392.053	0.25(4)
	441.95	398.968	1
	1649.01	419.160	0.68(9)

Table 1. Continued.

Upper level energy ${ }^{\text {a }}$ (cm^{-1})	Lower level energya	Wavelength in air ${ }^{\text {b }}$ (nm)	Relative intensity
	1743.72	$420.832^{\text {c }}$	0.47(6)
	3403.21	452.438	0.025(4)
	3893.46	462.704	0.034(5)
	5226.52	493.130	0.017(3)
	7438.12	$553.517^{\text {d }}$	0.13(2)
	7446.43	$553.768^{\text {d }}$	
	8099.72	574.560	0.022(4)
	8465.04	586.883	0.10(1)
	9128.67	610.672	$0.035(5)$
	10116.63	649.893	0.03(1)
	10163.47	651.879	0.04(2)
25569.19	1649.01	417.939	1
	2998.36	$442.925^{\text {c }}$	0.26(3)
	3403.21	451.015	0.27(3)
	5079.35	$487.91{ }^{\text {d }}$	0.020(6)
	5108.4	$488.60^{\text {d }}$	
	5226.52	491.440	w
	6413.93	$521.905^{\text {d }}$	0.45(5)
	6417.83	$522.011^{\text {d }}$	
	7659.76	558.210	w
	9646.67	627.868	w
25610.20	441.95	397.214	0.79(8)
	1649.01	417.225	,
	1649.01	417.225	1
	2998.36	$442.122^{\text {c }}$	0.23(2)
	3403.21	450.182	0.047(6)
	5079.35	$486.936^{\text {d }}$	0.056(6)
	5108.4	$487.626^{\text {d }}$	
	6413.93	520.790	0.19(2)
	8465.04	$583.094^{\text {d }}$	0.065(7)
	8489.87	$583.939^{\text {d }}$	
	9378.63	615.910	0.030(3)
	9646.67	626.255	0.046(5)
	10535.83	663.195	0.011(2)
	11418.52	704.445	0.021(3)
25656.69			0.9(1)
	1649.01	416.416	1
	1743.72	$418.065^{\text {e }}$	0.038
	2998.36	$441.215^{\text {c }}$	0.08(2)
	3403.21	449.242	$0.025(5)$
	5079.35	$485.836^{\text {d }}$	0.043(7)
	5108.4	$486.523^{\text {d }}$	
	6413.93	519.531	0.19(2)
	7438.23	548.742	0.010(3)
	8465.05	$581.517^{\text {d }}$	0.07(1)
	8489.87	$582.358^{\text {d }}$	
	9378.63	614.151	0.018(3)
		624.435	0.035 (5)
	11418.52	702.151	0.036 (6)
26146.01	0	382.359	0.08(1)
	441.95	388.934	0.49(5)
	1649.01	408.098	0.65(7)
	1743.72	409.682	1
	3403.21	$439.576^{\text {c }}$	0.06(1)
	3893.46	449.261	0.020(5)
	7438.23	$534.388^{\text {d }}$	0.08(1)
	7446.43	$534.623^{\text {d }}$	
	8465.04	565.423	0.07(2)
	8489.87	566.219	0.02(1)
	9128.67	587.474	$0.037(6)$

Table 1. Continued.

Upper level energy ${ }^{\text {a }}$ (cm^{-1})	Lower level energy ${ }^{\text {a }}$ $\left(\mathrm{cm}^{-1}\right)$	Wavelength in air ${ }^{\text {b }}$ (nm)	Relative intensity
	10163.47	625.510	0.045(7)
	10729.75	648.487	0.011(3)
26398.52	441.95	385.155	0.24(3)
	1649.01	403.934	0.29(3)
	1743.72	405.488	1
	2998.36	427.227	0.35(4)
	3403.21	$434.749^{\text {c }}$	0.24(3)
	6413.93	500.246	0.044(8)
	7438.23	527.271	w
	8465.04	$557.461{ }^{\text {d }}$	0.005(2)
	8489.87	$558.235^{\text {d }}$	
	9378.63	587.383	0.009(3)
	9646.67	596.782	0.046(8)
	10163.47	615.782	0.008(3)
	10535.83	630.236	0.014(4)
	11418.52	667.378	0.06(1)
	11794.38	684.547	w
26445.11	1649.01	403.175	,
	2998.36	426.378	0.33(3)
	3403.21	$433.870^{\text {c }}$	0.44(5)
	4437.15	454.254	0.048(6)
	5079.35	$467.908^{\text {d }}$	0.13(1)
	5108.4	$468.545^{\text {d }}$	
	6413.93	$499.083^{\text {d }}$	0.075(8)
	6417.83	$499.180^{\text {d }}$	
	7659.76	532.182	0.13(1)
	9646.67	595.127	0.010(3)
	10030.31	609.038	0.07(1)
	11005.57	647.509	0.014(4)
	11749.49	$680.287^{\text {d }}$	0.025(6)
	11794.38	$682.372^{\text {d }}$	0.025(6)
	13029.09	745.174	0.08(1)
26524.02		383.296	0.42(4)
	1743.72	403.433	1
	2998.36	$424.948^{\text {c }}$	0.39(4)
	3403.21	432.390	0.23(2)
	6413.93	497.125	0.038(5)
	8465.04	$553.588^{\text {d }}$	0.026(5)
	8489.87	$554.350^{\text {d }}$	
	9646.67	592.346	0.066(8)
	10535.83	625.289	0.031(7)
	11418.52	661.834	0.16(2)
26640.86	1649.01	400.017	0.71(8)
	1743.72	401.539	1
	3403.21	$430.215^{\text {c }}$	0.12(2)
	9378.63	579.136	0.13(2)
	9646.67	588.274	0.04(1)
	10116.63	605.004	0.10(3)
	10163.47	606.727	0.07(2)
26707.31	0	374.323	0.020(3)
	441.95	380.622	0.028(4)
	1743.72	400.470	1
	3403.21	$428.988^{\text {c }}$	0.14(2)
	5226.52	465.402	0.029(3)
	7438.23	$518.822^{\text {d }}$	0.048(5)
	7446.43	$519.043^{\text {d }}$	
	8099.72	537.266	0.005(2)
	8465.04	$548.026^{\text {d }}$	0.033(4)
	8489.87	$548.772^{\text {d }}$	
	9821.67	568.717	0.011(3)

Table 1. Continued.

Upper level energy ${ }^{\text {a }}$ (cm^{-1})	Lower level energy ${ }^{\text {a }}$ $\left(\mathrm{cm}^{-1}\right)$	Wavelength in air ${ }^{\text {b }}$ (nm)	Relative intensity
	9378.63	576.916	0.051(6)
	10163.47	604.287	0.09(1)
26860.95	1649.01	396.525	0.66(7)
	2998.36	$418.948^{\text {c }}$	1
	3403.21	426.179	0.037(5)
	4437.15	445.830	0.047(6)
	5108.40	459.588	w
	6413.93	$488.933^{\text {d }}$	0.043(5)
	6417.83	$489.026^{\text {d }}$	
	7659.76	520.655	0.17(2)
	8140.67	534.032	w
	9646.67	580.752	0.009(2)
	10030.31	593.990	0.08(1)
	10163.47	598.729	w
	10729.75	619.745	0.019(3)
	11005.57	630.523	0.014(2)
	13029.09	722.770	0.017(3)
26961.96	441.95	376.967	w
	1649.01	394.943	1
	1743.72	396.426	0.85(9)
	2998.36	417.182	0.93(10)
	3403.21	$424.351^{\text {c }}$	0.33(4)
	5079.35	456.856	w
	6413.93	486.529	w
	8465.04	$540.480^{\text {d }}$	0.026(9)
	8489.87	$541.207^{\text {d }}$	
	9378.63	568.560	0.023(8)
	10030.31	590.445	0.09(2)
	10163.47	595.127	0.10(2)
	10535.83	608.616	0.04(1)
	11418.52	$643.184^{\text {d }}$	0.11(3)
	11447.73	$644.391^{\text {d }}$	
27128.00	2998.36	414.311	1
	4437.15	$440.583^{\text {c }}$	0.18(2)
	5079.35	$453.415^{\text {d }}$	0.10(1)
	5108.40	$454.014^{\text {d }}$	
	6413.93	482.629	w
	6417.83	482.720	w
	7659.76	513.514	0.11(1)
	7805.61	517.390	0.29(3)
	8958.49	550.220	
	10030.31	584.713	0.05(1)
	11005.57	620.081	w
	11611.05	644.278	w
27781.69	2998.36	403.383	1
	4437.15	$428.242^{\text {c }}$	0.72(7)
	5079.35	440.360	0.31(3)
	7805.61	500.459	0.08(1)
	8958.49	531.112	0.14(2)
	11611.05	618.234	0.08(1)
	14705.96	764.566	0.013(8)
28009.80	1649.01	379.244	0.11(2)
	2998.36	399.704	0.30(3)
	3403.21	406.281	1
	4437.15	$424.101^{\text {c }}$	0.45(5)
	5079.35	$435.979^{\text {d }}$	0.17(2)
	5108.40	$436.532^{\text {d }}$	
	7659.76	491.26	0.06(1)
	11005.57	587.925	0.09(1)

Table 1. Continued.

Upper level energy ${ }^{\text {a }}$ (cm^{-1})	Lower level energy ${ }^{\text {a }}$ (cm^{-1})	Wavelength in air ${ }^{\text {b }}$ (nm)	Relative intensity
	11749.49	$614.824^{\text {d }}$	0.05(1)
	11794.38	$616.527^{\text {d }}$	
	12826.94	658.456	W
	13029.09	667.341	0.09(2)
	13373.61	683.050	w
28034.08	2998.36	399.316	0.18(2)
	3403.21	405.880	1
	5079.35	$435.518^{\text {c }}$	0.29(4)
	5108.40	$436.070^{\text {d }}$	0.05(2)
	5226.52	$438.328^{\text {d }}$	
	10729.75	577.729	0.11(2)
28172.96	2998.36	397.116	0.35(4)
	3403.21	403.605	0.20(3)
	4437.15	421.186	1
	5079.35	$432.899^{\text {c }}$	0.67(7)
	11749.49	$608.717^{\text {d }}$	0.18(4)
	11794.38	$610.385^{\text {d }}$	
28201.95	2998.36	396.657	0.43(5)
	4437.15	420.672	.
	5079.35	$432.355^{\text {c,d }}$	0.11(2)
	5108.40	$432.900^{\text {d }}$	
	6413.93	$458.840^{\text {d }}$	0.04(2)
	6417.83	$458.922^{\text {d }}$	
	7805.61	490.147	0.05(1)
	8958.49	519.511	0.17(2)
	11005.57	581.355	0.024(8)
	11611.05	602.572	0.10(2)
	11794.38	609.306	
	12243.49	626.454	0.023(9)
	14705.96	740.757	w
28577.79	2998.36	390.829	0.41(5)
	3403.21	397.116	0.32(4)
	4437.15	414.122	1
	5079.35	$425.440^{\text {c,d }}$	0.16(2)
	5108.40	$425.967^{\text {d }}$	
	7659.76	477.923	w
	10729.75	$560.130^{\text {d }}$	0.04(2)
	11005.57	$568.921^{\text {d }}$	
	11611.05	589.225	w
	11749.49	$594.072^{\text {d }}$	0.16(4)
	11794.38	$595.660^{\text {d }}$	
	12826.94	$634.711^{\text {d }}$	0.09(2)
	13029.09	$642.963{ }^{\text {d }}$	

${ }^{\text {a }}$ NIST Atomic Spectroscopy Database
(http://physics.nist.gov/PhysRefData/ASD/index.html).
${ }^{\mathrm{b}}$ Wavelength sources in order of decreasing priority:

1. NIST Atomic Spectroscopy Database (see footnote a);
2. Kurucz R L and Bell B 1995 Atomic Line Data, Kurucz CD-ROM no. 23 (Cambridge, MA.: Smithsonian Astrophysical Observatory). Online at http://cfa-www.harvard.edu/amdata/ampdata/kurucz23/sekur.html;
3. Ritz wavelengths calculated from NIST energy levels.
${ }^{\text {c }}$ Transition used to excite the upper level.
${ }^{\mathrm{d}}$ Blended line in this work.
${ }^{\mathrm{e}}$ Transition observed by [6], but not in this work. The relative intensity is calculated from data in that reference.

Table 2. Transition probabilities and oscillator strengths for Pr II derived from branching-fraction and lifetime data. Values of $g_{u} A_{u l}$ from this work are compared with those of $[8,11-13]$. Branches that were observed but were too weak to fit are indicated by ' w '.

Upper level energy $\left(\mathrm{cm}^{-1}\right)^{\mathrm{a}}$	J	$\begin{aligned} & \text { Lifetime } \\ & (\mathrm{ns})^{\mathrm{b}} \end{aligned}$	Transition wavelength (nm)	Branching fraction	This work	BLQSX ${ }^{\text {c }}$	$\begin{array}{r} g_{u} A_{u l} \\ \left(10^{6} \mathrm{~s}^{-1}\right) \\ \mathrm{ILW}^{\mathrm{d}} \end{array}$	GKNW ${ }^{\text {e }}$	LW ${ }^{\text {f }}$	$\log g_{l} f_{l u}$ This work
22040.05	5	67.5(1.7)	453.592	0.38(2)	62(4)					-0.715
			462.874	0.27(2)	44(3)					-0.849
			$490.275^{\text {g }}$	0.070(7)	11(1)					-1.382
			$492.563{ }^{\text {g }}$							
			536.423	0.005(2)	0.8(3)					-2.465
			550.915	0.17(1)	27(2)					-0.903
			557.183	0.073(8)	12(1)					-1.255
			684.659 ${ }^{\text {g }}$	0.03(1)	5(1)					-1.469
			$685.046^{\text {g }}$							
22571.48	5	51.8(6)	442.913	0.51(2)	109(5)					-0.495
			451.758	0.14(1)	30(2)					-1.032
			477.822^{g}	0.040(4)	8.5(8)					-1.532
			$479.994^{\text {g }}$							
			521.551	0.021(2)	4.4(5)					-1.750
			535.240	0.20(1)	42(3)					-0.739
			541.154	0.085(7)	18(1)					-1.100
22675.44	5	13.5(2)	440.882	0.48(2)	394(18)		518(41)	358(89)		0.053
			449.646	0.18(1)	144(11)		178(18)	164(41)		-0.368
			532.276	0.21(1)	170(12)		113(12)	207(52)		-0.123
			538.126	0.096(8)	78(7)		18(2.3)	4(1)		-0.461
			$656.107^{\text {g }}$	0.036(8)	29(6)					-0.723
			$656.462^{\text {g }}$							
22885.59	5	35.0 (7)	436.833	$0.50(2)$	158(7)					-0.346
			445.436	0.068(6)	21(2)					-1.199
			470.754	0.057(7)	18(2)					-1.227
			472.863	0.059(7)	19(2)					-1.206
			513.142	0.018(3)	5.8(8)					-1.639
			526.388	0.20(1)	62(5)					-0.592
			532.107	0.077(7)	24(2)					-0.988
			647.181^{g}	0.024(6)	7(2)					-1.329
			647.526^{g}							
23261.36	5	48.8(1.6)	429.777	0.60(2)	134(7)					-0.429
			438.101	0.022(3)	5.0(6)	41.7				-1.845
			464.605	0.099(9)	22(2)	15.2				-1.142
			503.432	0.016(3)	3.6(7)	7.22				-1.858
			516.174	0.21(2)	48(4)	25.2				-0.720
			521.673	0.056(6)	13(1)					-1.292
			631.813	w		7.85				
			659.374	w		3.62				
23660.20	4	7.57(15)	422.535	0.66(2)	786(29)		494(123)			0.323
			430.576	0.23(2)	269(21)		153(38)			-0.125
			511.038	0.11(1)	134(13)		98(24)			-0.280
			616.278	w						-0.280
			616.594	w						
			628.128	w						
23977.83	6	36.0 (9)	424.763	0.28(2)	103(8)					-0.555
			447.726	0.13(1)	49(4)					-0.834
			449.634	0.16(1)	57(4)					-0.762
			476.523	0.063(6)	23(2)					-1.109
			485.900	0.041(4)	15(2)					-1.282
			529.809	$0.24(2)$	85(6)					-0.446
			533.148	0.083(8)	30(3)					-0.895
			645.484	w						
			716.777	w						
24115.50	6	7.92(15)	422.293	0.39(2)	642(41)	735	698(49)	445(111)	508	0.235
			444.983	0.11(2)	185(31)	181	225(18)	122(31)	161	-0.261
			446.866	0.20(2)	321(40)	299	270(22)	135(34)	200	-0.017

Table 2. Continued.

Upper level energy (cm^{-1})	J	Lifetime (ns) ${ }^{\text {b }}$	Transition wavelength (nm)	Branching fraction	This work	BLQSX ${ }^{\text {c }}$	$\begin{array}{r} g_{u} A_{u l} \\ \left(10^{6} s_{-1}\right) \\ \text { ILW }^{\text {a }} \end{array}$	GKNW ${ }^{\text {e }}$	LW ${ }^{\text {c }}$	$\log g_{l} f_{l u}$ This work
			473.420	0.049(8)	80(13)	2.20		23(6)	33	-0.571
			482.670					10(5)	13	
			494.372			12.0		9(5)	8	
			$525.171^{\text {g }}$	0.17(2)	286(26)	365	314(25)	204(51)	291	0.072
			$525.973^{\text {g }}$							
			529.262	0.08(1)	128(17)	122	132(13)	100(50)	121	-0.269
			564.765	w					9	
			639.796	w		17.3			25	
24393.73	6	80.9(1.3)	441.377	0.58(2)	94(4)					-0.563
			476.272	0.17(1)	27(2)					-1.034
			492.567	w						
			518.385	0.13(1)	22(2)					-1.062
			521.580	0.033(4)	5.3(7)					-1.664
			627.625^{g}	0.007(2)						-2.178
			$628.605^{\text {g }}$							
			702.534	0.026(4)	4.2(7)					-1.508
			770.489	0.048(8)	8(1)					-1.164
24716.04	5	6.4(11)		0.12(1)	207(23)				201(50)	-0.293
			411.846	$0.34(3)$	588(57)				475(119)	0.175
			433.397	0.15(4)	251(71)				301(75)	-0.150
			435.184	0.22(5)	374(89)				157(39)	0.027
			480.114						33(8)	
			512.952	0.11(1)	186(23)				141(35)	-0.134
			578.617	w						
			578.892	w						
			601.648	w						
			616.118	0.07(2)	112(26)					-0.196
			641.368	w						
24835.03	6	92.7(1.2)	409.840	$0.058(5)$	8.2(7)					-1.686
			432.941	0.35(2)	49(3)					-0.861
			457.817	0.12(1)	17(1)					-1.280
			466.465	$0.29(2)$	40(2)					-0.884
			$506.043^{\text {g }}$	0.050(5)	7.0(7)					-1.570
			$506.788^{\text {g }}$							
			542.705	0.023(5)	3.2(7)					-1.851
			658.218	0.018(3)	2.6 (4)					-1.778
			681.404	0.055(6)	7.7(8)					-1.273
			699.147	$0.018(3)$	$2.5(4)$					-1.742
			745.145^{g}	0.025(4)	3.4(6)					-1.543
			746.771^{g}							
25248.69	7	96.6(2.0)	423.615	0.35(2)	54(3)					-0.835
			449.306	0.069(6)	10.7(9)					-1.490
			457.632	0.13(1)	20(2)					-1.202
			480.369	0.022(2)	3.4(4)					-1.933
			495.664	$0.25(2)$	40(3)					-0.837
			530.896	0.074(6)	11(1)					-1.315
			740.581	0.03(2)	4(3)					-1.478
			743.052	0.031(7)	5(1)					-1.401
			768.712	0.016(9)	2(1)					-1.656
			818.134	0.03(2)	5(3)					-1.336
25467.47	4	11.6(9)	392.547	0.26(2)	206(21)				202(50)	-0.323
			399.479	0.51(2)	392(35)				458(114)	-0.028
			421.400	0.012(2)	9(1)					-1.624
			467.818	0.018(2)	14(2)				15.3(2.8)	-1.330
			$554.501^{\text {g }}$	0.052(5)	40(5)					-0.730
			554.753^{g}							
			575.617	0.078(7)	61(7)					-0.521
			608.752	0.070(7)	54(7)					-0.521
25499.52	5	16.2(4)	392.053	0.08(1)	54(7)				64(16)	-0.907

Table 2. Continued.

Table 2. Continued.

Table 2. Continued.

Upper level energy (cm^{-1})	J	Lifetime $(\mathrm{ns})^{\mathrm{b}}$	Transition wavelength (nm)	Branching fraction	This work	BLQSX ${ }^{\text {c }}$	$\begin{array}{r} g_{u} A_{u l} \\ \left(10^{6} s_{-1}\right) \\ \text { ILW }^{\mathrm{a}} \end{array}$	GKNW ${ }^{\text {e }}$	LW ${ }^{\text {c }}$	$\log g_{l} f_{l u}$ This work
26860.95	7	6.69(52)	$548.772^{\text {g }}$							
			568.717	0.010(2)	3.7(9)					-1.751
			576.916	0.046(5)	17(2)					-1.070
			604.287	0.085(8)	31(3)					-0.766
			396.525	0.29(2)	643(64)	307	579(41)	315(78)		0.181
			418.948	0.46(2)	1025(93)	1410	917(64)	452(113)		0.431
			426.179	0.017(2)	39(5)		155(17)	41(20)		-0.978
			445.830	0.023(2)	51(7)	34.9				-0.817
			459.588							
			$488.933^{\text {g }}$	0.023(2)	51(6)					-0.739
			$489.026^{\text {g }}$			23.6				-0.739
			520.655	0.098(8)	220(25)	227	214(17)	119(30)		-0.048
			534.032							
			580.752	0.005(1)	12(3)	8.13				-1.211
			593.990	0.053(7)	120(19)	93.8				-0.198
			598.729			15.9				-0.198
			619.745	0.013(2)	29(5)	34.5				-0.779
			630.523	0.010(1)	29(5)	15.8				-0.889
			722.770	0.014(2)	31(6)	3.31				-0.616
26961.96	6	11.7(5)	376.967	w						
			394.943	0.26(2)	293(22)					-0.164
			396.426	0.22(1)	250(20)					-0.230
			417.182	$0.26(2)$	$288(22)$					-0.123
			424.351	$0.093(8)$	104(10)					
			456.856	w						-0.553
			486.529	w						
			$540.480^{\text {g }}$	0.009(3)	10(4)					-1.344
			$541.207^{\text {g }}$							
			568.560	0.009(3)	10(3)					-1.319
			590.445	0.034(7)	38(8)					-0.702
			595.127	0.041(8)	46(9)					-0.612
			608.616	$0.018(5)$	$20(6)$					-0.950
			643.184^{g}	0.05(1)	52(12)					-0.494
			644.391^{g}							
27128.00	8	5.79(13)	414.311	0.53(2)	1561(71)	1910	1579(95)	921(230)	991	0.604
			440.583	0.10(1)	297(25)	124	315(25)	156(39)	153	-0.062
			453.415	0.060(5)	175(16)	103	232(25)	109(54)	83	-0.268
			454.014				6.8(3.4)		7	
			482.629			10.4	38(4.9)		7	
			482.629	w		10.4	38(4.9)		7	
			482.720			18.7				
			513.514	0.076(7)	$222(22)$	214	258(28)	$145(36)$	212	
			517.390	$0.19(1)$	569(44)	616	604(48)	345(86)	541	0.359
			550.220						<10	
			584.713	0.038(9)	112(25)	16.8				-0.240
			620.081	w		9.61			31	
			644.278	w						
27781.69	8	18.4(6)	403.383	0.40(2)	366(23)					-0.049
			428.242	0.30(2)	278(19)					-0.116
			440.360	0.13(1)	122(10)					-0.449
			500.459	0.038(4)	35(4)					-0.881
			531.112	$0.075(8)$	$70(8)$					-0.531
			618.234	$0.048(6)$	$44(6)$					-0.595
			764.566	0.010(6)	9(5)					-1.104
28009.80	7	6.97(21)	379.244	0.042(6)	91(13)				<15	-0.706
			399.704	0.12(1)	256(23)			333(83)		-0.213
			406.281	0.40(2)	871(53)			506(126)	1500	-0.334
			424.101	0.19(1)	408(33)			174(44)	345	-0.041
			435.979 ${ }^{\text {g }}$	0.073(8)	157(17)			63(16)	159	-0.350

Table 2. Continued.

Upper level energy (cm^{-1})	J	$\begin{aligned} & \text { Lifetime } \\ & (\mathrm{ns})^{\mathrm{b}} \end{aligned}$	Transition wavelength (nm)	Branching fraction	This work	BLQSX ${ }^{\text {c }}$	$\begin{array}{r} g_{u} A_{u l} \\ \left(10^{6} s_{-1}\right) \\ \text { ILW }^{\text {a }} \end{array}$	GKNW ${ }^{\text {e }}$	LW ${ }^{\text {c }}$	$\log g_{l} f_{l u}$ This work
			$436.532^{\text {g }}$						15	
			491.260	0.030(4)	65(10)			33(8)	86	0.631
			587.925	0.052(7)	111(15)				114	-0.240
			614.824^{g}	0.029(6)	63(13)					-0.444
			616.527^{g}							
			658.456	w						
			667.341	0.061(9)	131(19)					0.059
			683.050	w						
28034.08	6	48.4(3.0)	399.316	0.10(1)	28(3)					-1.172
			405.880	0.59(2)	158(12)					-0.408
			435.518	0.19(2)	50(6)					-0.850
			$436.070^{\text {g }}$	0.03(1)	8(3)					-1.642
			$438.328^{\text {g }}$							
			577.729	0.09(2)	25(5)					-0.909
28172.96	7	70.6(1.9)	397.116	0.13(1)	29(3)					-1.169
			403.605	0.076(8)	16(2)					-1.401
			421.186	0.41(2)	86(5)					-0.640
			432.899	0.28(2)	59(4)					-0.778
			608.717^{g}	0.10(2)	22(4)					-0.909
			$610.385^{\text {g }}$							
28201.95	8	10.7(6)	396.657	0.20(2)	314(30)		419(42)	235(59)		-0.130
			420.672	0.49 (2)	779(57)		967(77)	770(77)		-0.315
			432.355^{g}	0.055(9)	87(15)		98(12)	83(21)		-0.613
			$432.900^{\text {g }}$							
			458.840^{g}	0.021(8)	33(13)					-0.980
			458.922^{g}							
			490.147	0.027(8)	43(12)			39(10)		-0.806
			519.511	0.10(1)	163(20)		190(19)			-0.180
			581.355	0.016(5)	25(8)					-0.892
			602.572^{g}	0.07(1)	117(17)					-0.195
			$609.306^{\text {g }}$							
			626.454	0.017(6)	26(10)					-0.808
			740.757	w						
28577.79	7	7.03(28)	390.829	0.17(1)	361(35)					-0.082
			397.116	0.13(1)	285(29)					-0.171
			414.122	0.44(2)	935(64)					-0.381
			425.440^{g}	0.071(9)	151(19)					-0.386
			425.967^{g}							
			477.923	w						
			$560.130^{\text {g }}$	0.02(1)	51(23)					-0.622
			568.921^{g}							
			589.225							
			594.072^{g}	0.10(2)	219(49)					0.064
			595.660^{g}							
			634.711^{g}	0.06(1)	131(22)					-0.101
			642.963^{g}							

${ }^{\text {a }}$ NIST Atomic Spectra Database [Ver. 3.0] available online at http://physics.nist.gov/PhysRefData/ASD.
${ }^{\mathrm{b}}$ All lifetimes taken from [14] except that for level $26524.02 \mathrm{~cm}^{-1}$ [13].
${ }^{\text {c }}$ Biémont et al [13].
${ }^{\mathrm{d}}$ Ivarsson et al [12].
${ }^{\mathrm{e}}$ Goly et al [11].
${ }^{\mathrm{f}}$ Lage and Whaling et al [8].
${ }^{\mathrm{g}}$ Blended line in this work.
$\bar{\Delta}_{g A}$ and its standard deviation, where

$$
\begin{equation*}
\Delta_{g_{u l} A_{u l}} \equiv \frac{\left(g_{u l} A_{u l}\right)_{\mathrm{ref}}-\left(g_{u l} A_{u l}\right)_{\text {this work }}}{\sqrt{\left(\sigma_{u l}^{2}\right)_{\mathrm{ref}}+\left(\sigma_{u l}^{2}\right)_{\mathrm{this} \text { work }}}} \tag{3}
\end{equation*}
$$

Since the measured lifetimes used in these references can be quite different, we have also listed the same statistics using $\left(g_{u l} A_{u l}\right)_{\text {ref }}$ calculated with our own measured lifetimes, effectively providing a comparison of measured BFs. Table 3 shows very good overall agreement, especially when the

Table 3. Overall comparisons of $g A$ data with other work that used both measured lifetimes and measured BFs.

Reference	$\Delta_{g A}^{a}$	$\Delta_{g A}^{b}$
Ivarsson et al [12]	$0.30(48)$	$-0.08(48)$
Goly et al [11]	$-1.46(30)$	$-0.11(28)$

${ }^{a}$ Calculated using lifetimes from the reference of column 1
${ }^{\mathrm{b}}$ Calculated using our lifetimes from [14].
same lifetimes are used for the comparison. There are however individual exceptions, as described above. In a comparison of our results with those of Lage and Whaling [8], where only general statements about error are given, we find that the percentage difference ranges from +39 to -178%, with a standard deviation of 51%. Comparison of our results with those of Biémont et al [13] is difficult because their data depends on theoretical branching ratios for which no uncertainty estimates are given. If we take an uncertainty of 50%, based on an upper limit in earlier work [19] by this group, and eliminate three cases where we report blended lines, we find seven cases out of 40 where the Δ parameter (defined above) is greater than 2 . In five of these transitions, the lines are weak, and for the transition at $396.525 \mathrm{~nm}, \Delta$ is only slightly more than 2 . The large disagreement for the transition at 397.214 nm is puzzling since weaker transitions from the same upper level ($25610.20 \mathrm{~cm}^{-1}$) are in much better agreement.

The Einstein coefficients $A_{u l}$ and absorption oscillator strengths $f_{l u}$ were calculated using our previously determined radiative lifetimes [14] and well-known formulae [20] for electric dipole transitions,

$$
\begin{gather*}
A_{u l}=R_{u l} / \tau_{u} \tag{4}\\
g_{l} f_{l u}=\frac{1}{0.66702 \sigma_{u l}^{2}} g_{u} A_{u l}, \tag{5}
\end{gather*}
$$

where τ_{u} is the upper-state lifetime, $g_{u}=2 J_{u}+1$ and $g_{l}=$ $2 J_{l}+1$ are the statistical weights of the upper and lower levels respectively and $\sigma_{u l}$ is the transition wave number $\left(\mathrm{cm}^{-1}\right)$.

5. Conclusions

We have measured 260 oscillator strengths for Pr II transitions over the wavelength range $250-850 \mathrm{~nm}$, originating from 32 levels in the range $\sim 21500-29000 \mathrm{~cm}^{-1}$. Highly selective laser excitation of only a single upper level produces an uncluttered fluorescence spectrum, removing any ambiguity in the assignment of a transition to a pair of energy
levels. The oscillator strengths were obtained by combining measured relative intensities with previously measured radiative lifetimes. Of the 260 measured oscillator strengths, 183 have been determined accurately for the first time. The uncertainties arose principally from systematics of the efficiency calibration of the optical detection system (7.1\%), with smaller statistical contributions (1.5%). The measured values were compared with prior measurements using both our lifetimes and lifetimes measured by others.

Acknowledgment

We are grateful to the Natural Sciences and Engineering Research Council of Canada for financial support.

References

[1] Wahlgren G M 2002 Phys. Scr. T 10022
[2] Burris D L, Pilachowski C A, Armandroff T E, Sneden C, Cowan J J and Roe H 2000 Astrophys. J. 544302
[3] Strasser S, Landstreet J D and Mathys G 2001 Astron. Astrophys. 378153
[4] Grevesse N and Sauval A J 1998 Space Sci. Rev. 85161
[5] Meggers W F, Corliss C H and Scribner B F 1961 Tables of Spectral-Line Intensities, NBS Monograph 32, Parts I and II (Washington, DC: US Government Printing Office)
[6] Meggers W F, Corliss C H and Scribner B F 1975 Tables of Spectral-Line Intensities, NBS Monograph 145, Parts I and $I I$ (Washington, DC: US Government Printing Office)
[7] Corliss C H and Bozman W R 1962 Experimental Transition Probabilities for Spectral Lines of Seventy Elements, Monograph 53 (Washington, DC: US National Bureau of Standards)
[8] Lage C S and Whaling W 1976 J. Quant. Spectrosc. Radiat. Transfer 16537
[9] Andersen T and Sorensen G 1974 Sol. Phys. 38343
[10] Kurucz R L and Bell B 1995 Atomic Line Data, Kurucz CD-ROM No. 23 (Cambridge, MA: Smithsonian Astrophysical Observatory)
[11] Goly A, Kusz J, Nguyen Quang B and Weniger S 1991 J. Quant. Spectrosc. Radiat. Transfer 45157
[12] Ivarsson S, Litzén U and Wahlgren G M 2001 Phys. Scr. 64455
[13] Biémont E, Lefèbvre P-H, Quinet P, Svanberg S and Xu H L 2003 Eur. Phys. J. D 2733
[14] Scholl T J, Holt R A, Masterman D, Rivest R C, Rosner S D and Sharikova A 2002 Can. J. Phys. 80713
[15] Kaufman S L 1976 Opt. Commun. 17309
[16] Hall J L and Lee S A 1976 Appl. Phys. Lett. 29367
[17] Cadwell L H 1996 Am. J. Phys. 64917
[18] Rehse S J, Li R, Scholl T J, Sharikova A, Chatelain R, Holt R A and Rosner S D 2006 Can J. Phys. 84723
[19] Xu H L, Svanberg S, Quinet P, Garnir H P and Biémont E 2003 J. Phys. B: At. Mol. Opt. Phys. 364773
[20] Martin W C and Wiese W L 1996 Atomic, Molecular, and Optical Physics Handbook ed Drake G W F (New York: AIP)

