# Fast-ion-beam laser-inducedfluorescence measurements of spontaneous-emission branching ratios and oscillator strengths in Sm II 

S.J. Rehse, R. Li, T.J. Scholl, A. Sharikova, R. Chatelain, R.A. Holt, and S.D. Rosner


#### Abstract

We measured the spontaneous-emission branching ratios of 69 levels in Sm II selectively populated via single-frequency laser excitation of a 10 keV ion beam. The levels studied had term energies up to $29600 \mathrm{~cm}^{-1}$, and decay branches with spontaneous emission in the range $250-850 \mathrm{~nm}$ were detected. The experimental accuracy was in the range of $10 \%$. We used these branching ratios along with our previously determined radiative lifetimes to infer transition probabilities and oscillator strengths for 608 transitions in the wavelength range 363-771 nm, which are useful for stellar abundance determinations.


PACS Nos.: 32.70.Cs, 95.30.Ky


#### Abstract

Résumé : Nous avons mesuré les rapports de branchement d’émission spontanée de 69 niveaux du Sm II peuplés de façon sélective par excitation laser à fréquence unique d'un faisceau d'ions de 10 keV . Les niveaux excités avaient des terme d'énergies jusqu'à $29600 \mathrm{~cm}^{-1}$ et nous avons détecté des branches de désexcitation avec émission spontanée de 250 à 850 nm . La précision expérimentale était de l'ordre de $10 \%$. Nous avons utilisé ces rapports de branchement avec des temps de vie radiatifs préalablement obtenus pour déterminer les probabilités de transition et les forces d'oscillateur de 608 transitions dans le domaine de longueur d'onde de 363 à 771 nm qui sont utiles pour fixer les abondances stellaires.


[Traduit par la Rédaction]

## 1. Introduction

A knowledge of the atomic properties of the lanthanide ions is vital to astrophysical studies of chemically peculiar (CP) stars of the upper main sequence, metal deficient stars of the galactic halo, and the Sun [1,2]. The lanthanides are present in CP stars in great excess in comparison with solar

[^0]C. dei: $10.139{ }^{2}$ - 2006 NRC
abundances: for example, in the rapidly rotating star HD )(0) ()6.5 (Proybylski's star). Sm In has an excess of 3.6 dex (a factor of $+\times 10^{3}$ ) compared with its solar abundance $\{3 \mid$. In CP stars with measurable magnetic-field effects. the spectral lines of the lanthanide elements are among the most enhanced |2|. The galactic halo stars, which are among the oldest stars in our galaxy, have the potential to reveal the secres of nucleosynthesis in novae and supernovae. The lanthandes, in particular, form a contiguous sequence of atomic numbers which allow astrophysicists to study the odd-even effect resulting from the nuclear pairing interaction. and they present numerous examples of isotopes that may be formed by the $r$-process, the $s$-process, the $p$-process, or a combination. In the case of Sm, of the seven stable isotopes. ${ }^{1+8} S m$ and ${ }^{1515} S m$ are produced in the stars by the $s$-process: ${ }^{1+4}$ Sm by the $p$-process: ${ }^{15+}$ Sm by the $r$-process: and ${ }^{1+7} \mathrm{Sm} .{ }^{1+9} \mathrm{Sm}$, and ${ }^{15}{ }^{15} \mathrm{Sm}$ by both the $r$ - and $s$-processes. The study of lanthanides in the solar spectrum is experiencing a resurgence of interest with the availability of satellite spectra in the UV and laboratory data from new teelmigues. The potential contribution of two free electrons to the solar opacity by the lamthanides, the realization that diffusion, which has had a significant fractionating effeed on helime [ $\mid$ |, may well have affected the heavier elements in the Sun, and increasing caution with regard to the acturacy of meteoritic abundances have all contributed to this renewed interest. Beyond astrophysics. the atomic properties of the lanthandes are needed in the design of commercial high-intensity discharge lamps $|5|$ and in the use of spectrat to probe the crystalline structure of divalent and trivalem crystal salts 1 ? 1 .

For a transition of known wavelength, the most important atomic property for astrophysies is its oscillator strength $f$. In the case of Sm II, only a very small number of experiments have provided published data of modest accuracy. In the 1930, Meggers began a program of intensity measurements at the National Bureau of Standards that led to a number of monographs listing intensities $\mid 6$. $7 \mid$ and oscillater strengths $|8|$. In the later version of these experiments. 0.1 atomic per cent of the element under study was incorporated in the Cuelectroden of a DC'are discharge, and the spectrum was measured with a rotating stepped sector to decrease the intensity of a line until it reached the limit of photographic detectability, from which a linear measure of the line intensity could be obtained. Assumptions about local thermodynamic equilibrium, rate of entry and exit of atoms from the dischange and negligible sell-absorption were then used by Corliss and Borman $|8|$ to determine abolute transition probabilities. They estimated the overall uncertainty in loge $g f$ as varying from $0.2+100.29$ (comesponding to almos a factor of 2 in $g f$ ) as the upper-level term energy varied from $1.5 \times 10^{+} 10.5 .0 \times 10^{+4}$ em ${ }^{1} .(g$ is the multiplicity $2 . I+1$ of the lower state).

A more accurate approach to determining oscillator strengeths is to combine data on the branching ration (BRs) for all transitions from a given level with a value for the pontancous emission lifetime of that level. Satfman and Whaling |9| measured BRs in a hollow-cathode discharge and incorporated the beam-foil lifetime measurements of Andersen el al. |lo| to ohtain oscillater strengths for tramsitions from 9 levels of Sm II. Kuruez $|1| \mid$ compiled experimental oscillater strengths in a form that is avaitable online |I2|. using the data of Saffiman and Whaling. BRs from the intensity measurements of Megers el al., together with experimental lifetime data.

Kastherg et al. $|1.3|$ used optical nutation with a fand Doppler witching techmique in collinear fast-ion-beam laser spectroncopy to measure the abolute tramsition probabilities for three lines of SmI II: the combined statistical and syvematio mentaintios were on the order of $10 \%$.

Quite recently. Xu et all. | $1+\mid$ performed relativistic Hartree-Foch (HFR) calculations of BRe for 47 Eevels and combined them with their own time-resolsed laser-induced-fluerescence lifetime measurements to calculate oreillator strength for 162 transitions: these are analable online from the DREAM database $|1.5|$. The estimated uncertainties in the oreillator strengh determinations were assigned one of three values: $10 \%$. $30 \%$ or $50 \%$.

Previously to the work of Xu et ald our own group measured the spontancous-emission lifetimes of 82 Iecels in Sin II with a fast-iom-beam laser-induced-flumencence techmique | $16 \mid$. A comparison of the two sets of results showed agrement within experimental error (a few pereen in both cases) although

Fig. I. Apparatus for branching-ratio measurements. A 100 nA Sm II beam is overlapped with a collinear antiparallel single-frequency ew laser beam tuned to excite a Doppler-shifted energy level in a postacceleration region whose potential is modulated at 5 kHz . Fluorescence from all the decay branches is collected with arrays of optical libers, spectrally analyed in a Crerny-Turner monochromator, and detected by a photomultiplier connected to a lock-in amplifier. A second identical monochromator set to the watelength of one of the decay branches provides a normalization signal. A data acquisition computer controls watelength stanning of the monochromator and records the laser-induced fluorescence intensity as a function of wavelength, ats well as the ion current, laser power, and the output of the normatization chamnel. A third lock-in amplifier is used to stabilize the dye-laser frequency against wavelength drift.

there was a hint of a systematic divergence for lifetimes longer than 60 ns. In the current work. we have carried out a measurement of BRs for all levels whose lifetimes we determined in our previous study. using a new fast-ion-beam technique to be described in more detail in the following section. Using the spectrum of laser-induced fluorescence from a velocity-modulated 10 keV ion beam to measure BRs. we can identily with certainty the tramsitions that belong to a common upper level. and the unduttered speetra avoid most problems due to blended lines.

## 2. Experimental method

Branching ratios for an excited atomic state are typically measured by observing the spectrum of spontaneous emission from that state and measuring the relative intensities of the spectral lines. Previous determinations of branching ratios in lamthanides have utilized a hollow-cathode discharge lamp with the element of interest contained in the cathode cavity $\mid 17$. The energy level structure in the lanthanides is quite rich and the spontaneous emission from many levels in several ionization states is present in such discharges creating potential systematic erros dae to spectal blending. To properly identify the branches from specific levelsof interest. comparison with previous measurements or a priori calculations are necessary. Even still. given the sparse knowledge of the levels of Sm II, the possibility exists for the misidentitication of emission lines by either omitting a branch from its correct level or attributing to a level an emission that actually emanates from a different excited state.

The "heam-laser" method is a much more reliable spectroscopic technique that involves selective excitation of a single state in a single-species ion beam followed by direct observation of the subsequent laser-induced thorescence [18|. All decay branches originating from this selectively populated state with a transition wavelength within the spectral viewing range are observed and can be assigned with absolute certainty to that excited state. Also, the signal-to-nome ration (SNR) provided by laser excitation is excellent for typical conditions of integration times of $\sim 1$ sor greater and ion currents of $\sim 50$ nA or greater.

A schematic of our experimental apparatus is shown in Fig. I. Sm ${ }^{\dagger}$ ions were produced in a modified Danfysik 91IA source without an are discharge: ionization oceurred on the surface of a hot tungsten filament. Under such conditions. we observed stable heams of ions produced in metastable levels up $10 \sim 7100 \mathrm{~cm}{ }^{\prime}$. Iom-beam currents of $\sim 100 \mathrm{nA}$ were typical and the actual current as detected by a secondary-electron-suppressed Faraday cup was monitored by a data acquisition computer. After acceleration to 10 keV , the ions were focused. mass-filtered by a Wien velocity filter, and then electrostatically deflected to overlap a counter-propagating laser beam. Collinear geometry has thee advantages, arising from the Doppler effect. The spatial extent of the excitation region call be limited by utilizing the Doppler shift produced in a post-acceleration process. Modulation of the post-acceleration fied and phase-sensitise fluorescence detection yields background-suppressed signals. Also. collinear geometry creates a kinematic compression of the Doppler width, which increases signal size and makes the excitation process more selective $|19|$. Our absorption Doppler width arose primarily from the spread in the hinetic energy of the ions, resulting in linewidths of $\sim 200 \mathrm{MH}$, for our beam velocities and laser frequencies, compared to $\simeq 2$ ( BH , in the case of the two beams crossing at 90 ".

The single-frequency laser bean was produced by an argon-ion-pumped Coherent 699-21 dye laser running with Stilbene 3 dye. Stilbene 3 has a mominal tuning curve from $+15-405 \mathrm{~nm}$, soonly Sm Il levels that could be excited via transitions within this wavelength range were stadied. The laser wavelength was determined to $\sim 1$ part in $10^{7}$ by a trateling Michelson interferometer with a polariation-stabilized reference helimm-neon laser 120. 21|. In the area of laser excitation and thorescence, the laser beam was softly focused to a 0.5 mm radius waist by a 2 m focal-length lens. Prior to entering the ion-beam vacum chamber, the laser beam passed through moltiple irises to eliminate laser light seattered from upstram optical elements.

Ion resonatnee with the antiparallel propagating laser beam was condined to a small region with a high degrec of optical access by a modification of the "Doppler-switching" technique |22|. The ions were accelerated (and symmetrically decelerated) in regions of an electric field shaped by eight paratle conducting aperture plates separated by insulating ceramic beads thereater refered to as the postacceleration region"). A photograph of the $\sim 9 \mathrm{~cm}$ long post-accelemation region and the optical fibers used to collect laser-indeced fluorescence is shown in Fig. 2. Modeling of the potential by mumerical shation of Laplate sequation allowed us to create a highly unifom potential in the $\sim 3$ em central region. As the ions entered this region. they were accelerated by the field and brought into resonance

Fig. 2. The post-acceleation region and optical tibers. Careful shaping of the electric field creates a -500 V flat potential "step" between the parallel plates. In this $\sim 9 \mathrm{em}$ long region. the laser beam is Doppler-shifted into resonance with the Sm' ions. To allow lock-in detection, an added sinusoidal potential of -15 Vpp at 5 kHz modulates the Doppler-shifted laser frequency seen by the ions. Two bundles of 80 optical libers arrayed around the axis of the ion beam/aser beam collect the laser-induced fluorescence and guide it out of the vacuum system.

with the Doppler-shifted laser beam. Because the absorption Doppler width corresponded to an energy spread of $\sim 20 \mathrm{~V}$, a potential of this sise applied to the central region would have been sufficient to contine the laser-induced fluorescence (LIF) to the vicinity of the optical fiber collectors. In practice we found that the LIF signals increased as this potential was increased because a larger fraction of the Doppler distribution wats pumped in view of the fibers, and so a potential of -500 V was used.

Scattered laser light was minimied by careful alignment of the laser beam through a series of apertures on either side of the post-accelemation region. To further suppress the constant bateground provided by residual scattered laser light and ion collisions with residual gas, the post-acceleration potential was modalated at 5 kHz , providing an $A C$ component to the LIF that was detected with lock-in amplifiers. After passing through the post-acceleration region, the laser beam exited the ionbeam vacum chamber to a photodiode, where the laser power was measured and recorded by the data aceuisition computer. The vacuum system was pumped with three diffusion pumps and the pressure in the soure chamber during operation was around $7 \times 10^{-7}$ Torr ( $9.3 \times 10^{-5}$ Pat , while the laser/ion interation region pressure was around $7 \times 10^{-6} \operatorname{Torr}\left(9.3 \times 10^{-4} \mathrm{~Pa}\right)$.

The LIF was viewed by wo arrays of poly imide-coated quart/quarto optical fibers (Optran-UV from SOMTA, Lid) with $>99 / / 2 \mathrm{~m}$ tansmission from 390 to 850 nm . The outer diameter of the polyimide jactee was $685 \mu \mathrm{~m}$. The LIF from one aray was used for branching-ratio data while the other provided a "nomalization" signal that was used to correct the branching-ration signal for variations in the excitation rate due to drifts in the properties of the laser and ion beams. Each array was composed of 80 fibers ( 160 ) tibers total), whose in-vacuum ends were disposed in four rings surrounding the LIF region. The four rings of one array were interleaved with the four rings of the other. The outer ends of the 80 fibers of each array were bundled into a rectangle of four columns by 20 rows to mateh the entrance slits of the monochromators used to spectrally analyse the fluorescence. The tiber bundle dimensions were 3.2 mm wide by 14.2 mm tall. Each bundle passed from the vacuum system via a purpose-built vacum feedthrough. The geometric lightecollection efliciency for a coplanar ring of 20 fibers was $1.1 \%$ and the spacing of the rings was such that a passing ion illuminated $\sim 1$ ring of each array at any instant.

Fig. 3. Geometry of the 160 fluorescence-collecting fibers. The angle $\theta$ is measured with respect to the vertical linear polarization axis of the laser light $(\hat{B})$. The laser is propagating out of the page along the axis of the rings holding the fibers ( $\hat{i}$ ). (a) The "magic" angle geometry. (b) The sin" geometry.

linear polarization
of laser light
(b) $\frac{d N}{d \theta}=5 \sin \theta$


In the centre of the post-ateceleration region. each individual fiber was oriented such that its optical axis was perpendicular to the ion/laser axis. The azimuthat positions of the tibers in each army were chosen to eliminate a pecitic systematic eror in the evaluation of the branching ratios that could arise from anisotropic excitation by the linearly polarised laser beam. With the direction of the electric field of the vertically polaried laser delined as $\theta=0$. the libers of one array were placed at or near the
 $\Delta M= \pm 1$ transitions has the same intensity as that for $\Delta M=0$ transitions. The fibers of the other array were distributed around a circle in a vertical plane with a density $\mathrm{d} N / \mathrm{d} \theta$ weighted as sin $\theta$. This spacing ensured that the ratio of detected fluorescence from any two branches was identical to its a alte in the case of isotropic excitation or detection. These two geometric orientations are illustrated in Fig. 3. Figure 3 a bows the fibers arranged in the magic angle orientation. While Fig. 36 shows the sine weighting. The laser was propagating in the $\hat{f}$ direction (out of the page) at the centre of the rings holding the fibers and was vertically polarised $(\dot{)}$ with respect to the apparatus and fibers. Branching-ratio data were collected with the sint-distributed fibers and the magic-angle bundle collected the normalization signal. A more detailed analysis of the magic-angle and sine-weighted amay is presented in the Appendix.

Each so tiber bunde terminated in a rigid coupling to the input stit of a $0.275 \mathrm{~m} . / 1 / 3.8$ samning monochromator (Acton Rescarch Corp.) The 20 mon high slits were nomatly set atheir maximum width of 3 mm . Each monochromator had thee gratings on a rotating caromed to provide complete spectral coverage. The gratings had 3600 . 2400 , and 1200 groones/mm with a corresponding reciprocal
dispersion of $1.0,1.5$, and $3.0 \mathrm{~nm} / \mathrm{mm}$. respectively. The first grating provided coverage from 250500 nm , the second from 250-750 nm, and the third from 250-1500 mm. Since most of the Sm II emission lines have wavelengths shorter than 500 nom. the first two gratings with superior resolution were used for the majority of the measurements, while the infrequent longer wavelength lines were ohserved with the third grating. In cases where closely spaced emission lines precluded the resolution of individual lines, the entrance and exit slits of the monochromator were narrowed until the individual lines were resolved and the entire spectrum was obtained at that slit width. When measuring branches with wavelengths longer than 600 nm. a long-wavelength-pass filter ( $50 \%$ transmission point at 475 nm ) wats inserted prior to the PMT to avoid observation of second-order diffraction from the grating.

When it was not possible to record the entire spectrum with sufficient resolution with only one grating. spectra obtained with multiple gratings were pieced together to provide complete spectral coverage. When this wats done catre was taken to ensure sufficient spectral overlap of the spectra. Each grating scan contained at least two branches. one of which was recorded by another grating: in some cases the number of branches appearing in both specta wan greater than one. The method for combining the data from two overlapping spectra is discussed below.

Before measurement of any branching ratios, a catalog of the potential "pump" transitions (transitions used to excite the ion from a ground or metantable state to the energy level of interest) and anticipated branches wals compiled from the Kuruc/ Atomic Line Database |11. 12|. This catalog was used to identify all the possible branches from the leved of interes that were accessible within the wavelength range of the Stilhene 3 dye-tuning curve. From these tamsitions, one with a large listed Einstein A-coefticient originating from a low-lying leve was chosen as the pump transition. A transition other than the pump transtion with a large listed banching ratio was chosen as the "nomalization" transition.

In Fig. I the "mormalization" monochromator coupled with a bialkali-photocathode photomultiplier tube (PMT) (Electron Tuhe LAd., 9235QB) was set the wavelength of the nomalization transition. Oupput from this PMT was analyed by two lock-in amplifiers: one operating in $" 2 f$ mode provided the back ground-suppressed nomalization signal. while the second, operating in "1 $/=$ mode, provided a derivative signal for dye-laser watelengh stabilization. The normalization signal was maximized by making minute corrections to the ion beam serving to optimise the overlap of the laser and the ion beam and was recorded concurrenty with the branching atato spectra on the data acyuisition computer. Division of the branching ratio data by the nomalization signal in softwate made this measuremem relatively insensitive to laser power fluctuations. ion-bean current fluctuations. and stering/pointing insabilities in either heam. The derivative-shaped oupput of the $1 /$-mode lock-in amplitier provided an errom signal that was input to the samming control of the dye laser to lock its wavelengh to the pump taimsition. This wavelengh lock would typically hold for 15-20 min before the correction signal reached its limit and had to be manually rese to centre range.

With the later watelengh locked to the peat of the pump-tramsition renonance the "branching ratio" monochromator (Fig. I). coupled to a thermelectrically-cooled trialkali PMT (Electron Tubes
 flumescence from the decan bancher was recoded. This signal was input a a third lock-in amplitier operating in $2 f$ mede and its bacheround-supproned ouput was recorded on the data acequisition computer, which also controlled the scaming of the monochromator grating. A typical sam would step the monochromator grating I mimper sep and would dwell for 2 oper step, taking from 5 to 15 min per scam.

A typial banching ratio spectrom with exceltem SNR is shown in Fig. t. The energey level at $26.5+0.119 \mathrm{~cm}{ }^{\prime}$ "ancexited by pumping the transition at $+25.6+\mathrm{mm}$ from the $30.52 .65 \mathrm{~cm}{ }^{1}$ metanable state. The I.If from 10 decay branches in the watelength range $f(0)-850$ nm was recorded by seaminge the memochromater in vep of 1 mom with a dwell time of 2 a per step, utitizing the 1200 groove/mm grating. The curve shown in Fig. + is a fit to the data of a model (see below) used to determine the relative line intensities. I. If from the framsition at +4.76 nm was recoded as the nomalization signal.

Fig. 4. A typical branching-ratio spectum showing data points and the fit using symmetric Gathsians on a constant hateromad. The energe kese at $20.540 .119 \mathrm{~cm}{ }^{\prime}$ was excited by promping on the transition at $+25.0 .+\mathrm{mm}$ form the $3052.65 \mathrm{~cm}^{1}$ loner state. The fluesescence from nine deeay branches in the



The Sm' ion-beam current was 81 nA and the laser power was 8.5 mW . This spectrom illustrates one of the adrantages of the selective excitation mentioned earlier. The decay branch at 727.06 nm was heretofore unattributed to the $26.540 .119 \mathrm{~cm}{ }^{\prime}$ level. but in this spectrum can umamiguously be assigned to it.

## 3. Data analysis

The calculation of banching ration from a spectrom sach as that hown in fig. + consisted of two tast s: measuring the area under the line protile anociated with a particular decay branch. and ohtaining a proper spectral calibration of the detector system. For transitions from an upper state at a set of lower states $t$, the relative intensities $I_{\text {It }}$ are obtaned by dividing the areas $S_{m}$ of the observed spectral lines by the waselength-dependent efficiency $r(i)$ of the fiber/monochromator/PMT system
$I_{\prime \prime \prime}=\frac{S_{I \prime \prime}}{\xi\left(i_{1 \prime \prime}\right)}$
Branching ration $R_{\text {at }}$ are then ohtained as
$R_{1 \prime \prime}=\frac{I_{1 \prime \prime} i_{-1 \prime}}{\sum_{1} I_{1 \prime \prime} i_{1 \prime \prime}}$
The procedures and possible sy stematic eroms ansociated with the se tanh ate described in the following paragraphs.

### 3.1. Line-profile fitting

To determine the areas under the emission peaks, a nonlinear least-squares fitting routine was used to fit a spectrom, using as parameters a constant background, peak line centres, peak widths (see below). and peak areas. The statistical uncertainties in the fitted areas ranged from $\sim 0.2 \% 10 \sim 27 \%$ depending mainly on the peak size. Tocombine the relative intensities from spectra measured with different grating. so we could obtain a complete set of branching ratios. we employed a least-squares adjustment of $n-1$ multiplicative constants when the fitted areas from $n$ spectra were being merged.

The actual shape of the line protile is primarily determined by the instrument response of the CoernyTurner monochromator and is asymmetric about the line centre due to the formation of a curved image of the finite-height entrance slit on the exit slit of the monochromator [23]. To ensure that the intensity ratios were model-independent. the results of fitting several different line profiles were compared. These included symmetric and asymmetric Gaussians and triangular functions. The conclusion of this study was that the results were statistically insensitive to asymmetry and to the choice of Gaussian or triangular functions. For this reason and because Gaussian fitting is more robust, it was decided to use the symmetric Gaussian function in all line-protile fitting.

In titting a spectrum it was necessary to use a wavelength-dependent width parameter $u(\lambda)$ becathse a Coerny-Turner scamning monochromator has a wavelength-dependent dispersion that causes the peaks to narrow toward longer wavelengths [23]. For the 2400 groove $/ \mathrm{mm}$ grating a peak at 725 nm will have $\sim 55 \%$ of the width of a peak at 400 mm. It should be noted that, even given this line narrowing, the total area under the peak does not systematically change as a function of wavelength, as can be seen from the fact that the area of the convolution of two functions is equal to the product of their individual areas.

We explored a number of simple models for $w(\lambda)$. They included an independent linewidth for each peak, linear and quadratic modets, and a physical model that explicilly accounted for the diffraction of obliquely incident rays at the grating but did not include optical aberrations. The physical model was found to fit the highest SNR data, but required fairly nonrealistic parameters. The linear model gave a poor fit to the data. As for the independent linewidth model, it was found that small noisy peaks could not be fit with reasonable parameters. Our final choice was a simple quadratic function. $w^{\prime}(\lambda)=A(\lambda-\bar{\lambda})^{2}+B(\lambda-\bar{\lambda})+C$. where $\bar{\lambda}$ is the mean wavelength of the scanned range. This function was completely adequate to describe the nomlinear dependence on wavelength and had the added advantage of being robust during the fitting of hundreds of spectra, some with poor SNR. Shifting the wavelength origin to $\bar{\lambda}$ improved the fitting procedure by avoiding correlations in the fitted parameters.

### 3.2. Efficiency calibration

An important source of uncertainty in the branching-ratio results comes from the uncertainty in the relative efficiency of our detector system (fiber aray, monochromator, and PMT) as at function of wavelength. To measure this efficiency, a 200 W NIST-traceable quartz-tungsten-halogen (QTH) lamp (Oried model 6.3355) was used as a standard illumination source with calibated emission in the wavelength range $250-2500 \mathrm{~mm}$. The uncertainty of the manufacturer"s calibration with the wavelength range utilized to calibrate our system includes a $1.09-0.91 \%$ wavelength-dependent uncertainty in the NIST standard lamp plus a $1.5 \%$ uncertainty in the secondary-standard transfer calibration procedure. The manufaturer quoter a total (quadrature sum) uncertainty of $1.85 \%$ at 350 nm . $1.75 \%$ at 654.6 nm . and $1.85 \%$ at 900 mol. Although such calibrated QTH lamps are prone to spectral degradation with use. the very low-hour usage of our repeated efticiency calibations over a period of several months resulted in no noticeable ageing effects. Nevertheless. data supplied by the manufacturer in which several lamps are compared over time suggest possible ageing effects as large as $3.5 \%$ change in ouput per 100 operating hours. particularly at the short-watvelenge end of the spectrum. For the worst-case lamp tested, the differential change in the range $350-800 \mathrm{~mm}$ is $2.0 \% / 100 \mathrm{~h}$. Given an 87 h operating time for our calibration lamp, we have accordingly assigned $2 \%$ an our estimate of possible systematic
(1) 20MO NRC C Callada
 hranching-ratio eyperiment. A calibrated guatre tungeten hallogen lamp was used as a stable broadhand emission soures. The deviation of repeated measurements from the least-squates ancrage is shown for each gratinge The plothed retative efficiency sate is differen for eath of the three gratinge to make their feature mote vinible




Initial calibrations were conducted on an isolated test bench using various input configurations. These experiments showed that slight difierences in the way light is introduced to the monochromator could catase large changes in the response. A narrow cone of light entering the monochromator offaxis could lead to underestimates of the efficiency at long wavelengths, where some of the collimated calibration light could miss the highly tilted diffaction grating. As well, overfilling the entrance solid angle of the monochromator could lead to stray-light effects that were severely exaggerated when the intense long-wavelength continum of the QTH lamp was present, but were absent in the adtual BR measumeme. Therefore, great care was taken to block paths by which stray light from the QTH continumm source could travel from the entrance slit to the exit slit of the monochromator.

The conclusion drawn from these initial calibrations was that measuring the relative spectral efficiency in situ was the best waty to perform the calibration. This was done by decoupling one of the fiber bundles from its monochromator and illuminating the decoupled end of the bundle with the QTH lamp to tramsmit its light to the post-acceleation region. Some of the emergent light was eollected by the other 80-fiber bundle, and transmitted to the test monochromator. Each grating in the monochromator was then scanned over its full wavelength range, and the resulting intensity curve was divided by the manufacturer-provided QTH lamp emission curve to produce a calibration curve of relative efficiency versus wavelengh. The relative efliciency calibation curves of our system for the three gratings used in the experiment are shown in Fig. 5. Note that the relative efticiencies of the three gratings as presented in Fig. 5 camot be compared directly to each other as different sales were used in ploting each grating to mate the spectral dependence visible. Repeated calibrations spaning several months were rescaled with a least-squates procedure to minimize the residuals summed over wavelength. and showed very little change in the relative spectral efficiency of our system. The residuals provided an estimate of the uncertanty in the calibration due to misaligmments and (or) changes in the light collection system. These deviations, with typical values less than $3 \%$. are shown in Fig. 5 with their corresponding efficiency curves.

This calibration procedure most closely reproduced the actaal conditions present during the experiment. with two minor differences. In the calibration procedure. the light passed through twice the length of optical fiber compared with that in the actual experiment. With a specified attenuation in the fiber of $\sim 10 \mathrm{~dB} / \mathrm{km}$ throughout our wavelength range, the nominal attenuation in the additional length of input fiber was estimated to be $\sim 0.1 / \%$. We took $0.24 / \%$ as a conservative estimate of the maximum uncertainty in the ration any two spectral components in our wavelength range due to tiber attentation. The second difference is that the fraction of light reaching the fibers either directly or by seattering maty be somewhat diflerent in the calibration procedure and in the real experiment. However, any seattering must be from the colloidal graphite coating on the almminm ring that holds the fibers, and the reflection coefficient fom such a suffee is fairly flat over the wavelengh range of interes.

To obtain an empirical estimate of the uncertainty in our meastrement of the relative detection efficiency. we examined the relative intensity of all spectal lines that were common to two or more scans. each taken with a different grating. This test exposed any seater greater than that expected from the statistical uncertainty in the calibration shown in Fig. S. Such excess scatter can only be due to symematic effects in our calibation. We found that the aserage mangitude of thisexcess wats $23 / 4$ and it is combined with the fiber attenuation uncertainty toderive a total uncertainty of $3.2 \frac{1}{6}$. which appears in Table I as "(systematic) efficiency calibration procedure".

### 3.3. Fiber geometry

As described above two differen liber geometries were used to compensate for andotropie excitation. To test the dege of eompensation and the relative collection efficiency, several banching-ratio spectar for the same upper level were obtained with the roles of the two arrays swite hed. No statistical difference in the intensity ratios for different branches was found.

Table 1. Extimated ancertainties in the determination of relative intensities.

| Source of uncertainty | Wncertamy (\%) |
| :---: | :---: |
| Sysmematic: |  |
| Total lampe calibration" | 3.9 |
| Efliciency calibration procedure" | 3.2 |
| Statistical: |  |
| Fia of line protiles lo data | -0.2-5 |
| Eticiciency calibration procedure ${ }^{\prime}$ | 1.5 |

```
"NIST. Hamser to Oriel lamp. lamp ating.
"Includes O.z': for fiber allembation eftect.
"The rame veron is fiom a sample of sis ypetta, and
```



```
    lar eath fit were wed in arrining all the wat uncertamien
    for the RR, from that tit.
"The uncertainly suma is a sample mean. Sce fig. S
```


### 3.4. Choice of pump transition

Becalase of the selectivity of excitation in the beam-laser method, the laser watelength could be tuned to two or more diflerent pump transitions seguentially and the branching ratios from the two spectar compared. As a check of any systematic errons comected with a particular pump transition. the banching-ratio spectrum from the $2+928.80 \mathrm{~cm}{ }^{\prime}$ level was acquired using thee different pump ransitions to populate this level. No statistically significant difference was found.

### 3.5. Unoloserved branches

Ohtaining banching ratios from relative intensities ansumes that all radiative transitions that contribute to the decaly of the level have been observed. Becatuse of negligible detector response beyond 90) mon. we how that some beanches seen in previous work have indeed been missed. The measurements
 do no consider levels beyond $27695 \mathrm{~cm}^{\prime}$. Considering the level of agrement of our data with older data, we have not attempted to modify our branching ration using these older data. Instead, in tabulating the relative intensities (see Table 2). We hatse listed data for all transitions not seen by us but present in the older data. These data give the reader an opportunity to gatge the effect of unobserved branches and to recalculate banching ratios from the relative intensities for relatively unambunds cases. To illustrate the problem. consider the data for the level with energy 2.3902 .250 cm . The data of ref. 6 include three lesels beyond 7.50 mon that we did not observe. representing $3.5 \%$ of their total relative intemsty. However, among the five levels that are common to this work and ref. G, one of the strongest disagrees in its relative intensty by a factor of 1.0.

### 3.6. Summary of uncertainties

Estamates of the uncertainties in our determination of the relatice intensties of radiative transitions. in Sin II are summaried in Table 1 . The total uncertanty was obtained by combining in quadrature the statistical uncertanty from the litting and calibation procedares with the sysmatic uncertainty from the efficiency calibration finclading lamp calibration). Repeated measurements of the relative intensities of branches from a single upper level taken over many months yeded deviations of less than
 The excellent repeatability and seffeconsisency of these measurements contime that the systematio uncertanty in the relative efliciency ealibation dominates the error bedged.

Table 2. Measured refative intensities in Sm II. To facilitate comparison, we have se the intensity of the strongest line observed in ont work to 1 . Branches that were observed but were too small to fit are indicated by the letter $w$.

| Tpper level energy <br> (cm) ${ }^{1}$ ) | Lower level energy$\left(\mathrm{cm}^{1}\right)$ | Transition wavelenget (117) | Relative intensity |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | This work | MCS ${ }^{\prime \prime}$ | XSQCiB ${ }^{\prime \prime}$ |
| 21655.420 | 0.000 | +61.649 | $0.0811)$ | 0.078 |  |
|  | 326.040 | +68.719 | 1 | 1 |  |
|  | 1518.290 | +96. +57 | 0.1+12) | 0.122 |  |
|  | 2003.230 | 508.707 | $0.072(9)$ | 0.078 |  |
|  | 71.35 .060 | 688.+4) | $0.010(3)$ |  |  |
|  | $8578.700)$ | 764.507 | $0.08(1)$ | 0.122 |  |
|  | 10.371 .510 | $88.5 .97+$ |  | 0.070 |  |
| 21702.330 | 0.000 | +60.0.51 | 0.400.5 | 0. 126 | $0.7(3)$ |
|  | $320.6+0$ | +67.690 | 1 | 1 | 1 |
|  | 838.220 | +79.158 | 0.23(3) | 0.338 | $0.11(6)$ |
|  | 1.518 .290 | +95.303 | 0.046(9) | 0.066 |  |
|  | 2088.690 | 525.792 | w |  |  |
|  | 71.35 .060 | 686.281 | 0.07(3) | 0.059 | 0.12(7) |
|  | 7524.860 | 705.150 | 0.21(5) | 0.132 | $0.3(1)$ |
|  | 10873.300 | 923.190 |  |  | $0.03(2)$ |
| 21904.119 | (0.000) | +56.407 | 0.15(2) | 0.128 |  |
|  | $326.6+0$ | +6.3.316 |  |  | $0.2(1)$ |
|  | 838.220 | +74.568 | 1 | 1 | 1 |
|  | 1.518 .290 | +90.400 | w |  |  |
|  | 2003.230 | 502.350 | $0.11(1)$ | 0.128 |  |
|  | 2688.6900 | 520.270 | 0. $0+4.3(5)$ | 0.128 |  |
|  | 7524.860 | 69.5 .255 | 0.012(2) |  |  |
|  | 8.578 .700 | 750.239 | (0.041(6) | $0.0+9$ |  |
|  | $9+10.0000$ | 800.156 | 0.0 .36077 | 0.040 | $0.051 .3)$ |
|  | 10.518 .500 | 878.060 |  |  | $0.08(5)$ |
|  | 1074.3 .400 | 895.754 |  |  | $0.08(5)$ |
|  | 1087.3 .300 | 900.302 |  |  | $0.07(4)$ |
| 22348.320 | 326.040 | +50.042 | 0.25(3) | $0.32+$ |  |
|  | 838.220 | 460.939 | 1 | 1 |  |
|  | $1+89.160$ | 481.581 | 0.52(5) | 0.581 |  |
|  | 2003.230 | +93.809 | 0.1311) | 0.162 |  |
|  | 2688.690 | 511.115 | $0.01512)$ |  |  |
|  | $3+99.120$ | 53.3 .208 | $0.009(2)$ |  |  |
|  | 71.35 .060 | 661.488 | $0.009(2)$ |  |  |
|  | 7524.860 | 679.001 | $0.07+(8)$ | 0.081 |  |
|  | $8 \mathrm{CO}+6.000)$ | 70.3 .916 | 0.17(2) | 0.122 |  |
|  | 10873.300 | 878.878 |  | 0.031 |  |
| 22875.410 | 8.38 .220 | +5.3.6.51 | 0.22(2) | 0.24 .5 | 1.2(5) |
|  | $1+89.100$ | 467.459 | 1 | 1 |  |
|  | 22.37 .970 | 484.421 | 0.4.3(4) | 0.282 | $0.11(6)$ |
|  | 2688.690 | +95.2.37 | (0.162) | 0.109 | $0.07(+)$ |
|  | $3+49.120$ | 515.951 | $0.019(2)$ |  |  |
|  | $+380.030)$ | 540.701 | $0.005(1)$ |  |  |
|  | 7524.860 | 6.51 .26 .3 | 0.00602 |  |  |
|  | 8040.000 | 67+.150 | 0.061(7) | 0.050 | 0.1047) |

Table 2. (cominnted).


Table 2. (comimued).

| Upper level energy (cm ') | Lower level energy$\left(\mathrm{cm}^{\prime}\right)$ | Transition wavelength ( IIII ) | Relative intensity |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | This work | MCS ${ }^{\text {a }}$ | $\mathrm{XSQGB}{ }^{\prime \prime}$ |
| 23902.250 | 11395.400 | 803.199 |  | 0.027 |  |
|  | 116.59 .800 | 820.0 .31 |  | 0.010 |  |
|  | 11798.600 | 830.088 |  | 0.017 |  |
|  | 326.640 | +22.971 | 1 | 1 |  |
|  | 8.38 .220 | +32.329 | $0.82(8)$ | 0.797 |  |
|  | 2003.230 | +55.266 | $0.89(9)$ | 0.554 |  |
|  | 2688.690 | +69.936 | $0.19(2)$ | 0.162 |  |
|  | 8.578 .700 | 649.866 | $0.11(2)$ | 0.047 |  |
|  | 1074.3 .400 | 756.287 |  | 0.026 |  |
|  | 1087.3 .300 | 76.3 .793 |  | 0.031 |  |
|  | 11798.600 | 821.896 |  | 0.035 |  |
| 24013.501 | 0.000 | +16.314 | 0. $36(4)$ | 0.421 |  |
|  | 326.640 | +22.055 | $0.09(1)$ |  |  |
|  | 8.38 .220 | +31.372 | $0.260 .3)$ | $0.474^{\circ}$ |  |
|  | 2003.230 | +54.205 | 1 | 1 |  |
| $2+19+.381$ | 8.38 .220 | +28.032 ${ }^{\text {c }}$ | $0.57(6)$ | 0.500 |  |
|  | 1489.160 | +40.3() + | $0.5616)$ | $4.500{ }^{\circ}$ |  |
|  | 2003.230 | +50.504 | 1 | 1 |  |
|  | 2688.690 | 464.86 .3 | $0.09(1)$ |  |  |
|  | 3499.120 | 483.068 | $0.05(1)$ |  |  |
|  | 71.35 .1060 | 586.027 | $0.08(3)$ | 0.078 |  |
| $2+221.811$ | .326.640 | $+18.377$ | $0.80(9)$ | 1.4.32 |  |
|  | 1.518 .290 | +40.3.37 | $0.6 .3(7)$ | 1.108 |  |
|  | 2003.230 | +49.948 | 1 | 1 |  |
|  | 8.578 .700 | 6.39.082 | $0.08(1)$ | 0.068 |  |
|  | 10.371 .510 | 721.807 | w | 0.070 |  |
|  | 11047.300 | 758.8 .33 | w | 0.062 |  |
| $2+257.369$ | $1+89.160$ | +39.086 | 1 | 1 | 1 |
|  | $22.37 .970$ | $45+.018$ | $0.1+11)$ | $0.181$ | $1.9(x)$ |
|  | $3052.650$ | $471.461$ | $0.077(9)$ | $0.047$ | $0.3(1)$ |
|  | $3+99.120$ | $481.602$ | $0.08(1)$ | 0.05 .3 | $0.15(9)$ |
|  | +386.0.30 | $503.098$ | $0.013(4)$ |  |  |
|  | 8679.230 | 6+1.748 | $0.04 .5(6)$ | 0.018 | $0.2(1)$ |
|  | $9+06.6 .30$ | 67.3.181 | 0.12(2) | 0.075 | $0.3(1)$ |
|  | 10180.700 | 710.200 | $0.01012)$ |  |  |
|  | 10900.100 | 751.8 .31 | w |  |  |
|  | 11.395 .400 | 777.272 | w |  |  |
|  | 12045.100 |  | $11$ |  |  |
|  | $12232.3+0$ | $8.31 .370$ | w |  | $0.101(6)$ |
|  | $12789.810$ | 871.786 | w | 0.019 | $0.02(1)$ |
|  | $128+1.600$ | 875.741 | w |  | $0.04(2)$ |
| $2+429.520$ | 0.000 | +(1)9.225 | 1 | 1 | 1 |
|  | 320.640 | +1+.771 | $0.300 .3)$ | 0.320 | 0.000000 |
|  | 8.38 .220 | +23.760 | $0.68(7)$ | 0.50) | $0.13(8)$ |
|  | 1518.290 | +36.34.5 | (0.32(3) | 0.220 |  |
|  | 2003.230 | +4.7.780 | $0.03 .3(4)$ |  | 0.000(0) |
|  | 2688.600 | 4.59 .835 | 0.19(2) | 0.090 | O. $11(6)$ |

Table 2. (cominuted).


[^1]Table 2. (continucd).


Table 2. (cominuted).

| Upper level energy ( cm$)^{1}$ ) | Lower level energy (cm) | Tramsition wavelength (1101) | Relative intensity |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | This work | MCS ${ }^{\prime \prime}$ | XSQCi3 ${ }^{\prime \prime}$ |
| 25178.444 | (0.00) | 397.155 | $0.4+(4)$ | 0.740 |  |
|  | 326.640 | +102.272 | $0.048(6)$ | 0.090 |  |
|  | 8.38 .220 | +10.727 | 0.18(2) | 0.810 |  |
|  | $1518.290)$ | +22.532' | 1 | I' |  |
|  | 2003.230 | +31.374 | $0.047(6)$ | 0.180 |  |
| 25304.090 | 838.220 | 408.617 |  | 0.04 .5 |  |
|  | $1+89.160$ | +19.786 | $0.0 .3 .3(+1$ | (0.030 |  |
|  | 22.37 .971 | +33.414 | 0.9 (1) | 0.867 |  |
|  | 2688.690 | +42.052 | 1 | 1 |  |
|  | 3490.120 | +58.483 | $0.5 .3(6)$ | 0.37 .3 |  |
|  | 4386.0300 | +77.92.3 | $0.0160 .3)$ |  |  |
|  | $80+6.000$ | 579.278 | w |  |  |
|  | 8679.230 | 601.3+3 | w |  |  |
|  | $9+10.0000$ | 62x.991 | $0.023(5)$ | 0.017 |  |
|  | 116.59 .800 | 7.32.706 | 1.2(2) | 0.004 |  |
|  | 12232.340 | 76.4.798 |  | 0.01 .3 |  |
|  | 12987.860 | 811.714 |  | 0.006 |  |
| $25361+44$ | 0.000 | . $39+.188$ | 1 | 1 |  |
|  | $326.6+0$ | 399.331 | $0.87(9)$ | 0.560 |  |
|  | 8.38 .220 | 407.602 | $0.30 \times 3)$ | 0.21 .5 |  |
|  | 2003.230 | $+27.99+$ | $0.57(6)$ | 0.18 .5 |  |
|  | 2688.690 | +40.934 | $0.08(7)$ | 0.400 |  |
|  | $9+10.000$ | 626.729 | 0.1.32) | 0.077 |  |
|  | $10.518 .500$ |  | W |  |  |
|  | $1087.3 .300$ | $690.029$ |  | $0.00 \times$ |  |
|  | $110+7.300$ | 698.17 | w | $0.010$ |  |
| 25.385 .359 | 22.37 .970 | +31.893. | 1 | 1 | 1 |
|  | 3052.650 | +47.648 |  |  | $0.03(2)$ |
|  | 3909.620 | 46.5 .511 | 0.11121 | 0.079 | $0.04(2)$ |
|  | 4.386 .030 | 476.07.3 | 0.()1+(5) |  |  |
|  | 5317.560 | +98.172 | $0.009(5)$ | 0.024 |  |
|  | 9406.6 .30 | 625.659 | $0.0260 .3)$ | $0.02+4$ | $0.018(9)$ |
|  | $1021+.380$ | 6.58 .971 | $0.082(9)$ | (0.058 | $0.07(2)$ |
|  | 10960.160 | (6)3.040 | $0.01+(2)$ | 0.008 | 0.02111 |
|  | 11791.050 | 7.5 .399 | $0.00 .3(1)$ |  | $0.017(9)$ |
|  | $120+5.100$ | 749.408 | $0.007(2)$ |  | $0.008(4)$ |
|  | 12789.810 | $793.713^{1 /}$ | 0.012(3) | 0.010 |  |
|  | $128+1.000$ | $796.990{ }^{\prime \prime}$ |  |  |  |
|  | 13.466 .500 | 88.38 .776 | 0.0) $1+(5)$ | (0,010 | (0.0) 1 (1) |
|  | $1.360+.500$ | $8+8.801$ | $0.0 .31(8)$ | (0.02-4 | 0.07(2) |
| $25+17.1+1$ | 326.640 | $398.4+5$ | 0.0s(1) |  |  |
|  | 8.38 .220 | 406.7 .38 | 0.42(4) |  |  |
|  | 1.889 .100 | +17.80.3 | 1 | 1 |  |
|  | 2003.230 | +26.976 | 0.25(3) | 0.080 |  |
|  | 2088.690 | +39.8.54 | $0.026019)$ |  |  |
|  | 3.499 .120 | 456.118 | $0.25(3)$ | $0.0+1$ |  |
|  | 7.524.800 | 558.746 | W |  |  |

Table 2. (cominuc d).

| Upper level energy <br> (cm) | Lower level energy$\left(\mathrm{cm}^{1}\right)$ | Transition wavelength (nmi) | Relative intensity |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | This work | MCS ${ }^{\prime \prime}$ | XSQGB ${ }^{\prime \prime}$ |
| 25.5.2.801 | 8578.700 | 593.715 | w |  |  |
|  | $9+10.000$ | 62-4.549 | w |  |  |
|  | 10518.500 | 671.017 | w |  |  |
|  | 11155.300 | 700.979 | w |  |  |
|  | 11.395 .400 | 712.982 | w |  |  |
|  | 11659.800 | 726.085 | w |  |  |
|  | 11798.600 | 73.4 .091 | w |  |  |
|  | 326.640 | 390.302 |  | 2.679 |  |
|  | 838.220 | +(1)4.505 | 1 | 1 |  |
|  | 1.518 .290 | +1.5.951 | $0.37(4)$ | 0.179 |  |
|  | 2003.230 | $+2+.517^{\prime}$ | 0.71 (7) | $0.21+$ |  |
|  | 2688.690 | +37.244 | $0.058(7)$ |  |  |
|  | 8578.700 | 588.970 | w |  |  |
|  | $9+10.000$ | 619.300 | w |  |  |
|  | 1074.3 .400 | 675.061 | w |  |  |
|  | $110+7.300$ | 689.204 | w |  |  |
| 2556.5 .971 | 8.38 .220 | +04.290 | 1 | 1 |  |
|  | 1489.160 | +15.220 | 0.9 (1) | 1.364 |  |
|  | 22.37 .970 | +28.549 | 0.61161 | 0.057 |  |
|  | 2688.690 | +36.992 | $0.19(2)$ | 0.2 .39 |  |
|  | $4386.030)$ | +72.01.3 | $0.08(1)$ | 0.040 |  |
|  | $9+10.000$ | 618.795 | w | 0.02 .5 |  |
|  | 10180.700 | $6+9.793$ | $0.0+(2)$ |  |  |
|  | 10960.160 | 68.4 .470 | $0.09(2)$ | 0.06 .3 |  |
|  | 11.395 .400 | 705.493 | w | 0.018 |  |
|  | 11798.600 | 726.15.5 |  | 0.010 |  |
|  | $120+5.170$ | $7.39 .398$ |  | 0.015 |  |
|  | $12987.860$ | $79+.81 .3$ |  | 0.018 |  |
| 25597.699 | $1+89.160$ | +14.674 | 0.0.4.5(9) | 0.089 |  |
|  | 2237.97() | +27.967 | 0.40(4) | $0.667{ }^{\prime}$ |  |
|  | 30.52 .650 | +43.4.32 | 1 | 1 |  |
|  | 3499.120 | 452.391 | 0. $4+4$ (5) | 0.361 |  |
|  | 4.380 .030 | 471.307 | $0.15(2)$ | 0.150 |  |
|  | 5317.560 | 492.956 | $0.023(8)$ | 0.016 |  |
|  | 10180.700 | 648.455 | $0.027(5)$ | 0.019 |  |
|  | 10960.160 | 682.986 | $0.017(5)$ | 0.015 |  |
|  | 11.395 .400 | 703.918 | w |  |  |
|  | $11791.050$ | $724.089$ | $0.022(9)$ | 0.0 .3 .3 |  |
|  | 12045.170 | 7.37 .666 |  | 0.014 |  |
|  | $128+1.000$ | 78.3.72.3 |  | 0.014 |  |
|  | 12987.800 | 792.813 |  | 0.050 |  |
|  | 1.3466 .500 | $82+.094$ |  | 0.009 |  |
|  | $1+115.000$ | 870.6 .36 |  | 0.007 |  |
| $2566+.971$ | 3052.650 | +42.113 | 1 | 1 |  |
|  | 3909.620 | +59.528 | $0.85(9)$ | 0.58 .3 |  |
|  | 5317.560 | +91.326 | $0.27(3)$ | 0.36 .5 |  |
|  | $9+00.6 .30)$ | $61+899$ | $0.005(3)$ |  |  |

Table 2. (comtinuc $d$ ).


Table 2. (cominut'd).

| (Tpper level energy (cm') | Lower level energy ( $\mathrm{cm}^{1}$ ) | Transition wavelengh ( 1 ml ) | Relative intensity |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | This work | MCS ${ }^{\text {a }}$ | XSQGB ${ }^{\prime \prime}$ |
| 26088.6 .6 .31 | 12987.860 | 76.5 .575 | $0.011(2)$ | 0.006 |  |
|  | 8.38 .220 | 395.953 | $0.7+(8)$ | 0.902 |  |
|  | $1+89.160$ | +06. +31 | $0.64(7)$ | 0.683 |  |
|  | 22.37 .970 | +19.193' | 1 | 1 |  |
|  | $3+99.120$ | +42.598 | (0.150) | 0.08 .5 |  |
|  | +.386.030 | +60.688 | $0.25(3)$ | 0.110 |  |
|  | 8679.230 | 574.309 | 0.02(1) |  |  |
|  | 10180.700 | 628.523 | $0.0312)$ |  |  |
|  | 116.59 .800 | 692.962 | $0.060 .3)$ | 0.029 |  |
|  | 12045.170 | 711.980 | 0.15(4) | 0.06 .3 |  |
| 26159.600 | 8.38 .220 | 394.811 |  | 1 |  |
|  | 1489.160 | +(05.229 | $0.027(6)$ |  |  |
|  | 2688.690 | +25.9.39 | $0.0+4(7)$ | 0.068 |  |
|  | 3499.120 | + +1.17.3 | $0.0 .39(6)$ |  |  |
|  | +386.030 | 4.59.144 | $0.012(5)$ |  |  |
|  | 8 O 46.0000 | 551.918 | $0.009(6)$ |  |  |
|  | 8679.230 | 571.912 | $0.025(8)$ | 0.019 |  |
|  | 116.59 .800 | 689.475 | $0.051 .3)$ |  |  |
| 26190.920 | $326.6+0$ | 386.524 | 0.35(4) | 0.4 .32 |  |
|  | 8.38 .220 | .394.324 | 0.89 (9) | 0.8 .38 |  |
|  | 1489.160 | 404.715 | 1 | 1 |  |
|  | 2003.230 | +1.3.317 | 0.13(1) | 0.135 |  |
|  | 2688.690 | +25.372' | 0.11(1) | 0.081 |  |
|  | 3499.120 | +40.504 | $0.09(1)$ | $0.0+7$ |  |
|  | $9+10.0000$ | 505.750 | $0.060(1)$ | 0.0.30 |  |
|  | 10180.700 | 6.24.4.29 | $0.08(1)$ |  |  |
|  | 1087.3 .300 | 652.663 | $0.0602)$ | 0.018 |  |
|  | 11155.300 | $6(64.904$ |  | 0.027 |  |
|  | 11798.600 | $69+.62+$ | $0.11(3)$ |  |  |
| 26214.051 |  |  | (0). $40 \times 5$ ) |  |  |
|  | $8.38 .220$ | .993.90t | $0.12(1)$ | 0.179 |  |
|  | 1489.160 | +104. 3.37 | $0.18(2)$ |  |  |
|  | 2003.230 | +12.922 | 1 | 1 |  |
|  | 2688.690 | +2. $4.95{ }^{\prime}$ | 0.85(9) | 0.750 |  |
|  | $3+99.120$ | 440.116 | 0.48(5) |  |  |
| 20.357 .900 | .326.6+0) | $38+.045$ | $0.69(8)$ | 0.909 | 1 |
|  | 8.38 .220 | 391.744 | $0.9(1)$ | $1 .+09$ |  |
|  | $1+89.100$ | +11.998 | 0. 4 $^{(1)(0)}$ | 0.0 .30 | (0.21(9) |
|  | 2003.230 | +10.48.3 | W |  |  |
|  | 2688.690 | +22.371 | (1). +3 (5) | $0.3+1$ | 0.3 (1) |
|  | $3+99.120$ | +37.346 ${ }^{\circ}$ | 1 | 1 |  |
|  | $9+10.000$ | $589.880$ |  |  |  |
|  | 10180.700 | 617.98 .3 | 0.07(2) | (0.050 | $0.07(4)$ |
|  | 10.518 .500 | 6.31 .16 .3 |  |  | 0.02(1) |
|  | 10873.300 | 64.6 .625 |  | 0.023 | $0.03(2)$ |
|  | 11155.300 | 0.57 .601 |  |  | $0.016(9)$ |
|  | 11.395 .400 | 668.153 | $0.09(2)$ | 0.0 .39 | $0.07(4)$ |
|  | $1+667.960$ | 85.201 |  |  | $0.01 .3(7)$ |
|  |  |  |  |  | OWN NRCO |

Table 2. (cominuced).

| Upper level energy <br> (cm) | I.ower level energy (cm ') | Transition wavelengh (mill) | Relative intensity |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | This work | MCS ${ }^{\text {a }}$ | $\mathrm{XSQGB}{ }^{\prime \prime}$ |
| 26505.529 | 2237.970 | +11.9.57 | $0.0 .360(t)$ | 0.052 |  |
|  | 3052.650 | +26. 267 | 0.24(2) | 0.448 |  |
|  | 3909.620 | +42.4.34 | 1 | 1 |  |
|  | +.386.0.30 | +51.90.3 | 0.30 (3) | 0.303 |  |
|  | 5317.500 | +71.8.34 | $0.08+(9)$ | 0.066 |  |
|  | 10960.160 | 64.3.101 | $0.010(2)$ | 0.008 |  |
|  | 11791.050 | $679 .+1.5$ | $0.0+5(5)$ | 0.0 .3 .3 |  |
|  | 12789.810 | 728.890 | W | 0.006 |  |
|  | $128+1.600$ | 731.653 | $0.00+12)$ |  |  |
|  | 1.3+460.500 | 766.717 | w | 0.007 |  |
|  | 1.3604 .500 | 774.919 | $0.009(3)$ | 0.010 |  |
|  | $1+08+.550$ | $804.808{ }^{\prime \prime}$ | $0.0+3(7)$ | 0.014 |  |
|  | $1+115.000$ | $806.8+6{ }^{\prime \prime}$ |  | 0.016 |  |
| 26.540 .119 | 3052.6 .50 | +25.6.39 | 1 | 1 |  |
|  | 3909.620 | +41.758 | 0.16(2) | 0.181 |  |
|  | 5317.550 | +71.065 | $0.045(5)$ | 0.020) |  |
|  | 10214.380 | 612.360 | 0.014(1) | 0.010 |  |
|  | $1109+.060$ | 647.235 | $0.003(7)$ | 0.021 |  |
|  | 11791.050 | 677.822 | $0.020(2)$ | 0.010 |  |
|  | 12789.810 | 727.056 | $0.004(1)$ |  |  |
|  | $1.360+.500$ | $772.8+7$ | $0.01+(2)$ | 0.014 |  |
|  | $1408+.550$ | 802.6 .33 | $0.019(2)$ | 0.011 |  |
|  | $1+503.670$ | 830.582 | $0.04+(5)$ | 0.010 |  |
| 26.565 .609 | $1+89.160$ | 398.608 | 1 | 1 |  |
|  | 22.37 .970 | +10.939 | $0.58(6)$ | 0.554 |  |
|  | 3052.650 | +25.178 | 0.4.5(5) | 0.338 |  |
|  | 3499.120 | +33.408 | 0.050 (6) |  |  |
|  | +.380.0.30 | +50.7.39 | $0.028(5)$ |  |  |
|  | 5317.500 | +70.500 | $0.032(5)$ |  |  |
|  | 8046.000 | 5.99819 | 0.0.41(7) |  |  |
|  | 8679.230 | 558.930 | 0.02-416) |  |  |
|  | 10960.160 | 640.625 | $0.11(2)$ | 0.016 |  |
|  | 11.395 .400 | 6.59 .005 | W |  |  |
|  | 11791.050 | 676.6 .52 | $0.107(2)$ | (0.019 |  |
|  | 12045.100 | 688.495 | 0.060 ? |  |  |
|  | 122.32.340 | 697.485 | $0.05(2)$ |  |  |
|  | 12789.810 | 725.711 | 0.10 (3) | 0.012 |  |
| 26.599 .080 | 0.000 | .375.8.46 | 0.59 (7) | 0.56 .3 |  |
|  | 8.38 .220 | 388.1076 | 1 | 1 |  |
|  | 1518.290 | 398.599 | 0.2-4(3) | 0.188 |  |
|  | 2003.230 | +00.4.58 | 0.84 (9) | 1.750 |  |
|  | 2688.600 | +18.110 | $0.77(8)$ | 0.660 .3 |  |
|  | 71.35 .1600 | 513.626 | $0.060)$ | 0.000 |  |
|  | 10518.500 | 621.696 | 0.1065 | 0.000 |  |
|  | 1074.3.40) | $6.30 .51+$ | 0.1005) | 0.016 |  |
|  | 1087.3 .300 | 6.5 .5 .723 | (0.1605 | 0.036 |  |
|  | $110+7.300$ | 6.2 .8 .836 | $0.22(6)$ | 0.028 |  |
|  | 11798.600 | 67.467 | 0.09071 | 0.021 |  |

Table 2. (comimucd).

| Upper level energy ( cm$)^{1}$ ) | Lower level energy$\left(\mathrm{cm}^{1}\right)$ | Transition wavelength ( mm ) | Relative intensity |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | This work | MCS ${ }^{\text {a }}$ | $\mathrm{XSQGB}^{\prime \prime}$ |
| 26723.869 | $326.6+0$ | . 778.720 | $0.35(4)$ | 0.48 .5 |  |
|  | 8.38 .220 | 386.205 | 1 | 1 |  |
|  | 2003.230 | +104.406 | 0.46(5) | 0.364 |  |
|  | 2688.690 | +1.5.9+(0) | $0.37(4)$ | 0.152 |  |
| 26820.811 | $1+89.160$ | $39+.651$ | 0.71(7) | 0.617 |  |
|  | 2237.970 | 406.67 .3 | 1 |  |  |
|  | 3052.650 | 420.612 | 1 | 0.815 |  |
|  | $3+99.120$ | +28.665 | $0.46(5)$ | 0.432 |  |
|  | +.386.030 | +4.5.611 | 0.13 (1) | 0.111 |  |
|  | 5.317 .500 | $46+.916$ | $0.035(6)$ |  |  |
|  | $9+06.6 .30$ | $57+.086$ | $0.033(8)$ |  |  |
|  | 10180.700 | (0)0.792 | 0.035(9) |  |  |
|  | 10900.160 | 6.30.317 | $0.0711)$ | 0.036 |  |
|  | 11791.050 | 665.16 .3 | w | (0.025 |  |
|  | 12789.810 | 712.511 | w | 0.028 |  |
| 26828.289 | 3052.650 | +20.480 | 0.022(3) | 0.042 | (0.14(5) |
|  | 3909.620 | +36.20.3 | $0.54(5)$ | 0.675 | 0.0) (1) |
|  | $+386.030$ | $+4.5 .+6.3$ |  |  | 1 |
|  | $5317.560$ | $+6+.754$ | $0.15(2)$ | $0.075$ |  |
|  | $9+(06.6 .30$ | $57.3 .8 .39$ |  |  | $0.008(t)$ |
|  | 1021+.380 | (0)1.7.39 |  | 0.015 | $0.02(1)$ |
|  | 11791.050 | $60+8.83$ |  |  | $0.009(5)$ |
|  | 12789.810 | 712.132 |  |  | $0.006(3)$ |
|  | 1.3466 .500 | $7+8.197$ | (0.67(9) | 0.022 |  |
|  | 13600.4 .500 | 750.005 | (0.25(5) | 0.010 | 0.010051 |
|  | $1+08+.550$ | $78+.483^{4}$ | 0.8(1) | 0.008 |  |
|  | $1+115.000$ | $780.362^{\prime \prime}$ |  | 0.016 | $0.002(1)$ |
|  | 1.5847 .540 | $91+.599$ |  |  | $0.003(1)$ |
|  | 1061.5 .500 | 978.890 |  |  | $0.0+11)$ |
| $26880.600$ | . 3052.650 | $+19.557$ | $0.0200(2)$ |  |  |
|  | 3909.620 | +35.210 | 0.80 (8) | 0.789 |  |
|  | +.386.0.30 | +4.4.427 | $1$ | $1$ |  |
|  | $5317.560$ | $+6.3 .627$ | $(0.18(2)$ | 0.127 |  |
|  | $8679.2 .30$ | $5+4.2 .57$ | $0.012(2)$ |  |  |
|  | $9+(16.6 .30$ | $572.122$ | $0.018(3)$ |  |  |
|  | $10960.160$ | 6.27.950 | $0.01 .5(2)$ | 0.014 |  |
|  | 11791.050 | 60.2.527 | $0.01+(2)$ | 0.008 |  |
|  | 12045.100 | 673.876 | $0.0013(1)$ |  |  |
|  | $12 x+1.000$ | 712.105 | $0.01 .3(2)$ |  |  |
|  | 13466.500 | 74.5.279 | $0.026(4)$ |  |  |
|  | $1+08+.550$ | 781.276 |  | 0.011 |  |
|  | $1+115.000$ | 783.140 | 0.0. $+3.3(6)$ | $0.01+$ |  |
| 26974.670 | $326.6+0$ | . 375.156 | $0.37(4)$ | 0.762 |  |
|  | 838.220 | 382.490 | $0.34(4)$ |  |  |
|  | $1+89.160$ | 392.209 | 0.31 (3) | 0.429 | $0.916)$ |
|  | 200.3 .230 | +00.344 | $0.90(9)$ | 1.333 | 6. + (38) |
|  | 2088.690 | +11.044 | $0.7+(8)$ | 0.90 .5 | $2 .+(1+)$ |

Table 2. (cominucid).

| Wper level energy (cm ') | Lomer level energy (cm ') | Tramsition wavelength (1101) | Relatice intensity |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | This work | MCS | AsQcis ${ }^{\text {b }}$ |
| 27107.619 | $3+99.120$ | +25.855 | 1 | 1 | 1 |
|  | $80 .+6.000$ | 52x.1.5 | " |  | (0.3(2) |
|  | 8.578 .700 | 54.4.47 | 11 |  |  |
|  | 11798.600 | 6.58 .750 | 11 |  | $0.015(8)$ |
|  | $1+607.900$ | 812.342 |  |  | 0.0814) |
|  | 8.38 .220 | 380.50 .3 | 0.30031 | 0.516 |  |
|  | $1+89.100$ | . 390.23 .3 | 0.0)(1) | 0.105 |  |
|  | 22.37 .970 | +01.98.3 | 0.15(2) | 0.19+ |  |
|  | 2688.690 | 409.403 | $0.3+(4)$ | 0.468 |  |
|  | 3499.120 | +23.457 | 1 | 1 |  |
|  | 4386.030 | +39.987 | (1.120) | 0.14.5 |  |
|  | 8679.230 | 542.491 | $0.020(5)$ |  |  |
|  | 10960.160 | 619.122 | (0.02.5(8) |  |  |
|  | 12045.100 | 66.3 .721 | 0.05(1) |  |  |
|  | 12566.800 | 687.529 | W | 0.1016 |  |
| 27165.350 | 326.640 | 372.490 | 1 | 1 | 1 |
|  | 838.220 | 379.729 | 0.67(X) | 1 |  |
|  | $1+89.160$ | .389.356 |  |  | $0.5(2)$ |
|  | 20013.230 | 397.310 | (0)16(3) |  | $1.3(6)$ |
|  | 2088.690 | +118.4. 37 | 0. $0+(8)$ | 0.52+ | 0.4(2) |
|  | $3+99.120$ | +22.424 | 0.22(3) | 0.110 |  |
|  | $752+.800$ | $5(1) .010$ | 0.12(2) |  | $0.3(2)$ |
|  | 80.46 .000 | 523.885 | (1)24(3) | 0.14 .3 |  |
|  | 8.578 .700 | 5.37 .871 | (0.0+(1) |  |  |
|  | $1+067.900$ | 799.947 |  |  | $0.0+12)$ |
| 27188.301 | 8.38 .220 | 379.398 | 1 | 1 |  |
|  | $1+89.100$ | . 389.008 | 0.502 | 0.381 |  |
|  | 22.37 .970 | +00).08.3 | (0.07(4) | 0.050 |  |
|  | 2688.090 | 408.055 | 0.2(1) | 0.150 |  |
|  | $3+99.120$ | +22.01.5 | 0.2(1) | 0.113 |  |
|  | +386.030 | +.38.4.30) | (0.3(1) | 0.181 |  |
|  | $8679.230)$ | 540.120 | 0.02(1) |  |  |
|  | 10180.700 | 587.810 | (1).041.3) | 0.008 |  |
|  | 10960.160 | 616.043 | $0.08(0)$ | 0.014 |  |
|  | 11.395 .400 | 6,33.0221 | (1).0 $+(4)$ |  |  |
|  | 12() .45 .170 | (6)0.18.3 | (1.2(1) | 0.12 .5 |  |
|  | 12232.340 | 608. 4.45 | $0.0716)$ |  |  |
| 2720.3 .250 | 39)以.620 | +28.079 | 1 | 1 |  |
|  | $1109+.060$ | 618.289 | $0.01 .311)$ | 0.01 .3 |  |
|  | $120+5.100$ | (0.50.929 | 0.12(1) | 0.067 |  |
|  | $1408+5.50$ | 758.591 | $0.0107(1)$ | (0.)11+ |  |
|  | $1+503.670$ | 78.3.504 | $0.02092)$ | 0.018 |  |
| 27284.689 | . $326.6+0$ | . $370.8+1$ | $0.48(5)$ | 0.4 .36 | 0.4(1) |
|  | 838.220 | 378.015 | $0.04 .5(6)$ |  |  |
|  | $1+89.160$ | 387.5.54 | $0.45(5)$ | $0.504)$ |  |
|  | 2685.690 | +106.4.5.5 | $0.77(x)$ | $1.273^{\circ}$ | 1.42) |
|  | $3+99.120$ | +20.3015 | 1 | 1 | 1 |

(1) 20060 NRC Camada

Table 2. (cominuted).


Table 2. (comtinuced).

| Wpare level energy (cill) | Lower level energy$\left(\mathrm{cm}^{1}\right)$ | Tramsition wavekengh ( mm ) | Relative intensity |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | This work | MCS ${ }^{\text {" }}$ | $\mathrm{XSQ} \mathrm{CiB}^{\prime \prime}$ |
| 28072.3 .30 | 8.38 .220 | 367.082 | 1 | 1 |  |
|  | 1489.160 | 376.171 | 0.64(7) | 0.864 |  |
|  | 2688.690 | 393.84.3 | W | 0.013 |  |
|  | 3499.120 | 406.832 | $0.31(3)$ | 0.32 .3 |  |
|  | 4.386 .030 | +22.066 | $0.0216)$ | 0.3 .36 |  |
|  | 80.6 .0000 | +リ9.20.3 | (0.09(1) | 0.0 .32 |  |
|  | 8679.230 | 515.50 .4 | $0.2+(3)$ | 0.10t |  |
|  | 11.395 .400 | $519 .+6.5$ | 0.04(1) | 0.011 |  |
|  | 12045.170 | 623.768 |  | 0.013 |  |
|  | 12506.800 | 6.44.75.3 |  | 0.00 .3 |  |
|  | 1.3777 .050 | (29).339 |  | 0.006 |  |
| $2 \times 151.400$ | 22.37 .970 | 385.791 | ().4.4(6) | 0.049 |  |
|  | 3052.650 | 398.314 | 1 | 1 |  |
|  | 3909.620 | +12.395 | 0.81(9) | 0.959 |  |
|  | $+386.0 .30$ | +20.062 | 0.57(7) | 0.365 |  |
|  | $5317.560$ | +37.824 | $0.9(1)$ | $1.189$ |  |
|  | 11791.050 | 611.065 | $0.12(2)$ | $0.061$ |  |
|  | $1360+4.500$ | 687.242 | 0.11(3) | 0.0 .36 |  |
|  | $1+115.000$ | 712.237 | $\cdots$ | 0.016 |  |
| 28191.961 | $1+89.160$ | . 374.387 | 1 |  |  |
|  | 2237.970 | .385.188 | $0.38(5)$ | 1 |  |
|  | $3+99.120$ | +14.8.81 | 0.11(2) | 0.500 |  |
|  | $+386.030$ | +19.9+5 | $0.37(4)$ | 0.04 .3 |  |
|  | 5.317 .560 | +37.047 | 0.13(3) | 0.107 |  |
|  | $8679.230$ | 512.3+4 | w |  |  |
|  | $9+06.0 .30$ | 532.183 | 0.06 (1) |  |  |
|  | 10180.700 | 555.05.t | 0.0) 4 (1) |  |  |
|  | 10900.160 | 580.162 | W | (0.021 |  |
|  | 12045.100 | 619.147 | W |  |  |
|  | 12232.340 | 620.408 | H |  |  |
|  | 12789.810 | 6-49.081 | $0.21(+1$ | 0.000 |  |
| 28.506 .320 | 8.38 .220 | $36+.619$ | 0.011(1) |  |  |
|  | 1489.160 | .373.486 | $0.039(+)$ |  |  |
|  | 22.37 .970 | . $38+.235$ | 0.150) | 0.270 |  |
|  | $2688.690$ | $391.009$ | $0.00 .3(8)$ | 0.090 |  |
|  | $3+\varphi 9.120$ | $40.3 .809$ | 0.11111 | 0.150 |  |
|  | 4386.030 | $+18.813^{\circ}$ | । | 1 |  |
|  | 8079.230 | $510.659$ | $0.027(4)$ |  |  |
|  | 11659.800 | 602.370 | (0.018(5) |  |  |
|  | 11798.600 | 607.450 | $0.015(5)$ |  |  |
|  | 122.32.340 | 023.892 | 0.020(6) |  |  |
|  | 12566.800 | 6.37.192 | $0.02+(7)$ |  |  |
|  | 1.3777 .050 | (6)0.452 | (0.025(9) | 0.010 |  |
| $28.4+5.430$ | 8.38 .220 | 302.121 | 1 | 1 |  |
|  | $1+89.160$ | 370.806 | $0.7688)$ | 0.547 |  |
|  | 22.37 .970 | 381.+6.3 | (1)24.3) | 0.247 |  |
|  | 2688.690 | 388.1.38 | 0. $37(+)$ | 0.26 .5 |  |

Table 2. (comtinued).


Table 2. (com luded).

| Wpper level eneryy <br> (cm ') | Lower level energy (cm') | Tramsition wavelengeth (1171) | Relative intemsity |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | This work | MCS ${ }^{\prime \prime}$ | $\mathrm{XSQCiB}{ }^{\prime \prime}$ |
| 29.387 .869 | $9+06.6 .30$ | 510.309 | (0.15(4) | 0.176 |  |
|  | 12045.170 | $589.7 .39^{\prime \prime}$ | (0.0.304 91 | 0.01 .3 |  |
|  | 12232.340 | $596.323^{\prime \prime}$ |  | 0.007 |  |
|  | 12789.810 | 616.8 .34 | $0.01 .3(4)$ | 0.004 |  |
|  | 1.5897 .540 | 76.3 .172 |  | 0.0003 |  |
|  | $1+89.160$ | 358.337 | 0.321(6) | 0.58 .5 |  |
|  | 22.37 .970 | 368.221 | (0.11(3) |  |  |
|  | 3490.120 | 386.159 | $0.091 .3)$ |  |  |
|  | 5317.560 | +15.33.3 | 1 | , |  |
|  | 8679.230 | 482.756 | $0.032(7)$ |  |  |
|  | 1.3777 .050 | 6.40.4)4 | $0.0712)$ | 0.017 |  |

"Refs. 6 and 7. The uncertanties are vated 6 be in the range of $1.5-25$;
"Ref. 14. The tabulated relatise imensities have been deribed from the calendated tramsition probabilities
Tramsition pumped by laver.
"(laresolsed limes in this work.
'Blended line in Refs. 6 and 7.

Fig. 6. Histograms showing the level of agrement of our relative-intensity data with previous work. The abseissa is the difference between our measurement and a previous one. expressed in units of the standard deviation of that difference. (a) Comparisen with rets. 6 and 7. (h) Comparion with ref. It.


## 4. Results

The results of our relative intensity measurements for radiative transitions in sin 11 are presented in Table 2. For each upper level, the intensity of the strongest branch that we observed is set to 1 . Where possible, comparisons with the measurements of Meggers et ald $|7|$ are presented, as well as
with HFR calculations by Xu et al.. |14] taken from the DREAM database [15]. An overall picture of the comparison is given in Fig. 6. which displays histograms of the differences between our results and those of Meggers et al. $|6.7|$ and $X u$ et al. | $|+|$; these differences are in units of the standard deviation of the difference. Also included are best-fit Gaussian distributions. In Fig. Ga (Meggers et al.), we have somewhat arbitrarily used the upper limit of their stated $15-25 \%$ aceuracy. The agreement is quite good for transitions with wavelengths $\lambda<550$ nm, but there is a systematic shift for transitions with $\lambda>550 \mathrm{~nm}$. Figure $6 h$ ( Xu et all.) shows better agreement in both wavelength ranges $\lambda<550 \mathrm{~mm}$. The presence of a systematic shift for $\lambda>550$ mm in only one of the comparisons suggests that the disagreement for this wavelength range is not due to a systematic error in our efficiency calibration. A number of interesting examples that exhibit the advantages of this new method can be drawn from Table 2. In the case of the $28997.14 \mathrm{~cm}^{-1}$ level, the 385.33 nm transition to the $3052.65 \mathrm{~cm}^{-1}$ level had never been experimentally observed before, and its relative intensity camot be determined from measurements on a discharge lamp light source, because it is completely overlapped by a strong line in SmI 1 at 385.33 mm .

As another example, the transition at 396.301 nm was assigned by Meggers et al. $|6.7|$ to the upper energy level $25552.801 \mathrm{~cm}^{1}$, and was the strongest branch from that level, with the lower level at $326.640 \mathrm{~cm}^{-1}$. We saw no trace of this line in the spectrum for this upper level, but it appeared in our specta as the strongest branch from the level at $27464.199 \mathrm{~cm}^{-1}$. and must have $22.37 .970 \mathrm{~cm}^{-1}$ as its lower level. The difference in transition energy for these two assignments corresponds to a wavelength difference of only 0.001 mm . Nevertheless, highly selective laser excitation removes any ambiguity about the correct assigmment. This assignment agrees with the predictions of $X u$ et al. $|1+|$.

Tables 3 and 4 present our BR measurements, along with spontaneous-emission transition probabilities $g_{u} A_{1 \prime}$ and $\log g_{1} f_{t / \prime}$ values obtained by combining the BRs with our previously measured lifetime data $|16|$. Table 3 includes comparisons with the data of $X u$ et al. $|14|$ and Corliss and Bozman $|8|$ while Table + includes comparisons with the data of Saffman and Whaling $|9|$. Transitions are identified by the upper-level energy angular momentum $I$ and air wavelength, tiken from the earlier references. When transitions not previously attributed to the upper level were observed, the air wavelengths were calculated from tabulated level energies | 11, 12|. The transition probabilities and the oscillator strengths were calculated using the well-known formulas for electric dipole transitions

$$
\begin{equation*}
A_{\prime \prime \prime}=\frac{R_{\prime \prime}}{\tau_{u \prime}} \tag{3}
\end{equation*}
$$

$g_{i} f_{t u}=\frac{1}{0.66702 \sigma_{\prime \prime}^{2}}, g_{u} A_{I \prime \prime}$
where $A_{\prime \prime}$ is the transition probability. $R_{U \prime}$ is the branching ratio, $\tau_{\| \prime}$ is the upper-state lifetime, $f_{t / \prime}$ is the absorption oscillator strength. $g_{n}$ and $g_{,}$ate the $2 J+1$ statistical weights of the upper and lower levels, respectively, and $\sigma_{u \prime}$ is the transition wave number (in cm ${ }^{-1}$ ) $2+1$.

## 5. Conclusions

We have measured $608 \log \left(g_{1} f_{i \prime \prime}\right)$ values for Sm II transitions over the wavelength range 358 876 mm . These tramsitions originate from 69) upper levels in the range $21655-29.388 \mathrm{~cm}^{-1}$. The log ( $g_{1}, f_{t, 1}$ ) values were obtained by combining measured relative intensities with previously measured radiative lifetimes. The uncertainties arose principally from systematics of the efficiency calibration of the optical detection system ( $7.1 \%$ ) with smaller statistical contributions. Highly selective laser excitation of only a single upper level (usually a single hypertine level) produces a simple fluorescence spectrum, removing any ambiguity in the assigment of transitions to a pair of energy levels.

Table 3. Transition probabilities and oscillator strengthe derived from branching-ratio and lifetime data. Data from this work are compared with those of refs. 8 and 14 . Branches that were ohserved but were too small to fit are indicated by the letter $w$. The insue of unohserved branches is discussed in the text.

| Upper level energy (cm) | . | Lifetime (ols) | Tramsition wavelength ( mm ) | Branching ratio | $g_{u} A_{u},\left(10^{\prime \prime} s^{1}\right)$ |  |  | $\underline{\log \left(g, I_{i u}\right)}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | This work | $\mathrm{XSQCB}^{\prime \prime}$ | $\mathrm{CB}^{\text {" }}$ | This work | XSQGB ${ }^{\prime \prime}$ | $\mathrm{CB}^{\prime \prime}$ |
| 21655.420 | 0.5 | $51.9(5)$ | 461.649 | $0.051(6)$ | $2.012)$ |  | 0.34 | -2.20 |  | $-2.96$ |
|  |  |  | 468.719 | $0.69(2)$ | $26.5(8)$ |  | 6.6 | -1.06 |  | -1.66 |
|  |  |  | 496.457 | $0.10 .319)$ | $4.0(4)$ |  | 1.1 | $-1.83$ |  | -2.39 |
|  |  |  | 508.707 | $0.054(5)$ | $2.1(2)$ |  | 0.75 | $-2.09$ |  | -2.5.3 |
|  |  |  | 688.499 | 0.016(3) | $0.6(1)$ |  |  | $-2.36$ |  |  |
|  |  |  | 764.507 | 0.09011 | $3.5(t)$ |  | 2.1 | -1.52 |  | $-1.76$ |
|  |  |  | 885.974 |  |  |  |  |  |  |  |
| 21702.330 | 1.5 | +1).2(2) | 460.6 .51 | $0.21(2)$ | 21(2) | $26(8)$ | 3.5 | $-1.18$ | - 1.14 | -1.96 |
|  |  |  | 467.690 | 0.47(3) | 46(3) | 39(12) | 12 | $-0.82$ | 0.94 | $-1.39$ |
|  |  |  | +79.158 | 0.11(1) | 11(1) | +.4(2.2) | 4.3 | $-1.43$ | -1.86 | $-1.83$ |
|  |  |  | 495.303 | $0.023(4)$ | $2.3(+)$ |  | 1.1 | -2.0x |  | $-2.39$ |
|  |  |  | 525.792 | w | w |  |  | w |  |  |
|  |  |  | 686.281 | 0.0.05 21 | $4.9(1.7)$ | (6.8(3.4) | 1.5 | -1.46 | $-1.38$ | $-1.96$ |
|  |  |  | 705.150 | (). $1+(3)$ | 14(3) | 17.51 | 3.7 | $-0.97$ | $-0.96$ | $-1.56$ |
|  |  |  | 923.190 |  |  | 2.211 .11 |  |  | -1.6t |  |
| 21904.119 | 1.5 | $70.81(1)$ | +56.407 | $0.098(8)$ | 5.5.5) |  | 0.7 .3 | $-1.76$ |  | -2.64 |
|  |  |  | +6.3.316 |  |  | $6.2(3.1)$ |  |  | $-1.75$ |  |
|  |  |  | +74.568 | 0.6920(2) | $39(1)$ | 31(9) | 9.1 | $-0.88$ | $-1.04$ | $-1.51$ |
| 21904.119 | 1.5 | $70.816)$ | +90.400 | w | $w$ |  |  | $w$ |  |  |
|  |  |  | 502.350 | $0.079(7)$ | 4.54 4 |  | 1.6 | 1.77 |  | -2.22 |
|  |  |  | $52(0.270$ | 0.033431 | 1.912) |  | 1.7 | -2.12 |  | 2.17 |
|  |  |  | 695.255 | $0.01 .3(2)$ | (1.7(1) |  |  | -2.29 |  |  |
|  |  |  | 750.239 | $0.04 .5(5)$ | $2.513)$ |  | 1.0 | -1.67 |  | $-2.05$ |
|  |  |  | 800.156 | $0.0+2(8)$ | $2 .+(4)$ | $2.8(1.4)$ | 0.95 | $-1.04$ | -1.64 | -2.04 |
|  |  |  | 878.060 |  |  | +.6(2.3) |  |  | $-1.37$ |  |
|  |  |  | 895.75. |  |  | +.5(2.3) |  |  | -1.36 |  |
|  |  |  | 906.302 |  |  | +.2(2.1) |  |  | $-1.38$ |  |
| 22248.320 | 2.5 | $33.88(9)$ | +56.(0) 2 | 0.107(8) | $19(2)$ |  | 3.2 | $-1.23$ |  | -2.00) |
|  |  |  | 460.939 | 0.4.3(2) | 77(4) |  | 10 | 0.60 |  | 1.48 |
|  |  |  | 481.581 | 0.23(2) | +1(3) |  | 9.3 | $-0.85$ |  | $-1.49$ |
|  |  |  | +93.809 | $0.058(5)$ | $10.3(9)$ |  | 3.5 | $-1 .+2$ |  | - 1.90 |
|  |  |  | 511.115 | $0.007(1)$ | 1.3(2) |  |  | 2.30 |  |  |
|  |  |  | 533.208 | $0.00+(1)$ | $0.8(2)$ |  |  | 2.47 |  |  |
|  |  |  | 661.488 | $0.006(1)$ | $1.012)$ |  |  | -2.19 |  |  |
|  |  |  | 679.001 | $0.040 x+1)$ | 8.2(7) |  | 2.7 | -1.24 |  | 1.7 .3 |
|  |  |  | 703.916 | $0.108(8)$ | $19(2)$ |  | 4.3 | $-0.85$ |  | -1.44 |
|  |  |  | 878.878 |  |  |  | 1.3 |  |  | -1.81 |
| 22875.410 | 3.5 | $39.9(1)$ | +5.3.6.51 | $0.1099(8)$ | 202) | 72(22) | 4.3 | 1.21 | -0.70 | - 1.88 |
|  |  |  | +67.459 | 0.4601 | 93(4) | 6+(19) | 27 | 0.52 | $-0.7 .3$ | -1.05 |
|  |  |  | 484.421 | $0.21(1)$ | +1(3) | 7.3(3.6) | 8.1 | -0.8. | -1.0.t | -1.54 |
|  |  |  | 495.237 | $0.079(6)$ | $16(1)$ | +.7(2.4) | 4.1 | $-1.23$ | 1.80 | $-1.82$ |
|  |  |  | 515.951 | 0.010(1) | 2.0121 |  |  | 2.10 |  |  |
|  |  |  | 540.701 | $0.00 .3(1)$ | $0.5(1)$ |  |  | -2.66 |  |  |
|  |  |  | 651.26 .3 | $0.004(1)$ | $0.8(2)$ |  |  | -2.29 |  |  |

Table 3. (comimued).

| Upper level energy ( $\mathrm{cm}{ }^{1}$ ) | $J$ | Lifetime (ns) | Transition wavelength ( nm ) | Branching ratio | $g_{4 \prime \prime} A_{\prime \prime \prime}\left(10^{\prime \prime} s^{\prime}\right)$ |  |  | $\log \left(g_{1} f_{1 \prime}\right)$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | This work | XSQGB ${ }^{\prime \prime}$ | $\mathrm{CB}^{\text {B }}$ | This work | XSQGB" | $\mathrm{CB}^{\prime \prime}$ |
| 23177.490 | 1.5 | 48.0(4) | 674.150 | 0.041(t) | 8.2(7) | 1565) | 2.8 | $-1.25$ | $-1.05$ | $-1.72$ |
|  |  |  | 704.221 | $0.095(7)$ | $19(1)$ | $28(8)$ | 5.2 | -0.85 | $-0.74$ | $-1.42$ |
|  |  |  | 870.840 |  |  | 3.0(1.5) | 3.2 |  | $-1.55$ | -1.4t |
|  |  |  | 891.370 |  |  | $2.4(1.2)$ |  |  | $-1.6 .3$ |  |
|  |  |  | +31.332 | $0.032(3)$ | 2.6(3) |  |  | $-2.13$ |  |  |
|  |  |  | +37.498 | 0.2312) | $19(1)$ | 7.3(3.7) | 5.5 | $-1.26$ | $-1.73$ | $-1.80$ |
|  |  |  | $4+7.517$ | $0.076(7)$ | $0.3(5)$ |  | 1.3 | -1.72 |  | -2.42 |
|  |  |  | 461.568 | $0.6+(2)$ | $53(2)$ | $59(18)$ | 8.4 | $-0.77$ | $-0.78$ | $-1.57$ |
|  |  |  | +72.139 | w | w |  | 0.81 | w |  | -2.57 |
|  |  |  | 487.9.36 | W |  |  |  |  |  |  |
|  |  |  | $6.38 .69+$ | $0.011(5)$ | $0.9(+1)$ | 7.0(3.5) |  | $-2.25$ | -1.44 |  |
|  |  |  | 684.800 | $0.016(7)$ | $1.3(6)$ |  |  | $-2.04$ |  |  |
|  |  |  | 812.508 |  |  | 1.4(7) | 0.65 |  | $-1.95$ | $-2.19$ |
| 23260.949 | 3.5 | $53.8(6)$ |  | $0.55(2)$ | $82(3)$ |  | 18 | -0.61 |  | -1.27 |
|  |  |  | $+.59 .181$ | $0.18(1)$ | $27(2)$ |  |  | $-1.06$ |  |  |
|  |  |  | $+7.5 .537$ | $0.029(3)$ | +.3(4) |  | 1.1 | $-1.87$ |  | -2.42 |
|  |  |  | +85.956 | 0.0) $0+15$ ) | $9.5(8)$ |  | 2.6 | $-1.47$ |  | $-2.04$ |
|  |  |  | 505.885 | $0.010(2)$ | 1.5(2) |  |  | -2.2. |  |  |
|  |  |  | 6.57 .067 | 0. $0.46(4)$ | $6.8(7)$ |  | 3.4 | -1.35 |  | -1.66 |
|  |  |  | 685.601 | 0.11(1) | 1712) |  | t.t | -0.92 |  | -1.51 |
|  |  |  | 891.356 |  |  |  | 7.8 |  |  | $-1.03$ |
| $236+6.900$ | +. 5 | +2.5(1) | +51.183 | 0.242) | $50(4)$ |  | 11 | -0.77 |  | -1.47 |
|  |  |  | +06.90) | 0.412) | $97(5)$ |  | 1.3 | $-0.50$ |  | $-1.38$ |
|  |  |  | +85. +37 | $0.07 .360)$ | 17(1) |  | 3.8 | $-1.22$ |  | $-1.87$ |
|  |  |  | $+96.19+$ | $0.098(8)$ | 23(2) |  | 7.7 | $-1.07$ |  | $-1.54$ |
|  |  |  | $519.0+3$ | $"$ | w |  |  | w |  |  |
|  |  |  | 667.922 | $(0.0)+7(+1)$ | 11(1) |  | 4.3 | -1.1.3 |  | -1.5t |
|  |  |  | 702.()+0) | 0.1+(1) | 32(3) |  | 6.4 | $-0.6 .3$ |  | $-1.33$ |
|  |  |  | 861.704 |  |  |  | $2.1)$ |  |  | -1.06 |
|  |  |  | 875.8 .34 |  |  |  | 2.8 |  |  | $-1.48$ |
| 230.59 .990 | 0.5 | 31.8(5) | +22.5.35 | $0.15(2)$ | $9.6(1.2)$ |  |  | $-1.59$ |  |  |
|  |  |  | 428.451 | $0.0+12)$ | $2.3(1.1)$ |  |  | -2.20 |  |  |
|  |  |  | 4.51 .510 | (0.7+(3) | +6(2) |  |  | -0.8.5 |  |  |
|  |  |  | (0)4.979 | $0.009(5)$ | 0.5(3) |  |  | $-2.52$ |  |  |
|  |  |  | 662.890 | $0.0388(9)$ | $2.4(6)$ |  |  | $-1.81$ |  |  |
|  |  |  | 760.7 .39 | 0.0312) | 1.71.0) |  |  | $-1.8 .3$ |  |  |
| $238+2.190$ | 2.5 | 33.6 (3) | +25.131 | $0.00+11)$ | $0.8(2)$ |  |  | $-2.68$ |  |  |
|  |  |  | +.3+.58.5 | $0.19(1)$ | 3+12) |  | 11 | -1.02 |  | -1.4) |
|  |  |  | +47.2+1 | 0.22(2) | 39(3) |  | 9.8 | $-0.94$ |  | $-1.53$ |
|  |  |  | +57.769 | (1). $2+2+2)$ | $76(4)$ |  | 13 | $-1.02$ |  | $-1.40$ |
|  |  |  | +72.003 | $0.09+(7)$ | 1711) |  | +.2 | -1.25 |  | -1.85 |
|  |  |  | +91.+30 | $0.015(2)$ | 2.6031 |  | 0.47 | -2.02 |  | $-2.77$ |
|  |  |  | 598.381 | $0.007(2)$ | 1.2(4) |  |  | $-2.18$ |  |  |
|  |  |  | 012.676 | " | W |  |  | $w$ |  |  |
|  |  |  | 6.32 .889 | $0.009(.3)$ | 1.0051 |  |  | -2.01 |  |  |
|  |  |  | $0.5+.977$ | 0.022(t) | $3.9(7)$ |  | 1.1 | -1.61 |  | $-2.1+$ |

Table 3. (cominutas).

| "pper lever encrey $\left(\mathrm{cm}^{1}\right)$ | . | L.ifetime (10.) | Tramsition wavelengh ( nm ) | Branching ratio | $\frac{\left.\left.x_{u} i_{u},(1)^{\prime \prime}\right)^{\prime}\right)}{}$ |  |  | $\log \left(g, f_{1 \prime}\right)$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | This work | XSQCi3" | $\mathrm{CB}^{1}$ | This work | $\mathrm{XsQc}^{\text {a }}$ | ( $\mathrm{B}^{\prime \prime}$ |
| 23962.250 | 1.5 | $22.5+(6)$ | 692.704 | $0.019(5)$ | $3.3(9)$ |  | 1.2 | -1.62 |  | -2.07 |
|  |  |  | 787.998 |  |  |  |  |  |  |  |
|  |  |  | 803.190 |  |  |  | 1.4 |  |  | $-1.87$ |
|  |  |  | 820.6 .31 |  |  |  |  |  |  |  |
|  |  |  | 830.088 |  |  |  | 0.91 |  |  | -2.03 |
|  |  |  | +22.971 | (0.31(2) | $5613)$ |  | 1.5 | -0.82 |  | $-1.39$ |
|  |  |  | +32.329 | (0.20) 2 ) | +7(3) |  | 12 | $-0.88$ |  | $-1.46$ |
|  |  |  | +55.206 | (0.3012) | 5+(3) |  | 9.1 | -.0.78 |  | $-1.55$ |
|  |  |  | +69.9.36 | $0.06 .5(5)$ | $11.5(9)$ |  | 4.0 | $-1 .+2$ |  | $-1.88$ |
|  |  |  | 649.860 | $0.055(7)$ | $9.7(1.2)$ |  | 2.3 | -1.21 |  | $-1.83$ |
|  |  |  | 750.287 |  |  |  |  |  |  |  |
|  |  |  | 76.3.793 |  |  |  | 1.9 |  |  | $-1.78$ |
|  |  |  | 821.806 |  |  |  | 2.3 |  |  | $-1.6 .3$ |
| 24013.561 | 1.5 | (0).1(2) | +16.314 | 0.200) | $11.5(9)$ |  |  | -1.52 |  |  |
|  |  |  | 422.055 | 0.048(0) | $2.8(t)$ |  |  | $-2.13$ |  |  |
|  |  |  | +31.372 | 0.15(1) | $8.7(7)$ |  |  | $-1.62$ |  |  |
|  |  |  | +5.4.205 | $0.6002)$ | $35(1)$ |  |  | $-0.97$ |  |  |
| $2+19+.381$ | 2.5 | $16.28(7)$ | +28.032 | 0.23(2) | 8.6 (6) |  | 1.9 | $-1.6 .3$ |  | - 2.27 |
|  |  |  | $+40.304$ | $0.23(2)$ | $8.616)$ |  | 18 | $\cdots$ |  | -1.27 |
|  |  |  | +50.50- | 0.4.3(2) | $15.8(8)$ |  | 4.1 | $-1.32$ |  | -1.90 |
|  |  |  | 464.86 .3 | $0.0 .38(6)$ | 1.4(2) |  |  | -2.35 |  |  |
|  |  |  | 483.068 | 0.12 .3601 | $0.5(2)$ |  |  | 2.54 |  |  |
|  |  |  | 586.027 | (1). $1+1$ (1) | $1.6(5)$ |  | 0.89 | -2.07 |  | $-2.34$ |
| $2+221.811$ | 0.5 | 15.5(2) | +18.377 | 0.30)2) | $39(3)$ |  | 12 | $-0.90$ |  | $-1.52$ |
|  |  |  | 440.3 .37 | 0.25(2) | 3212) |  | 9.4 | -1.0.3 |  | $-1.50$ |
|  |  |  | +49.9+8 | (1.+1(2) | 52(3) |  | 8.6 | -0.80 |  | $-1.58$ |
|  |  |  | 6.39.082 | 0. $)+4(7)$ | $5.7(9)$ |  | 1.7 | -1.46 |  | $-1.98$ |
|  |  |  | 721.807 | W | W |  |  | W |  |  |
|  |  |  | 758.8 .33 | w | 11 |  |  | W |  |  |
| 24257.369 | 4.5 | +6.00.3) | +.39.086 | 0.0 .3121 | $1.35(+)$ | $4(1.3)$ | 37 | $-0 .+1$ | $-0.91$ | $-0.97$ |
|  |  |  | +54.018 | $0.088(8)$ | $19(2)$ | 89(27) | 7.1 | $-1.23$ | 0.58 | $-1.60$ |
|  |  |  | +71.4(3) | 0.052(5) | 11011 | 14(4) | 2.9 | -1.4.3 | 1.34 | $-2.01$ |
|  |  |  | 481.602 | $0.058(6)$ | 12(1) | 7.54.3.8) | 3.3 | $\cdots 1.37$ | -1.60) | $-1.93$ |
|  |  |  | 503.098 | $0.009(3)$ | 1.9(7) |  |  | $-2.13$ |  |  |
|  |  |  | $6+1.748$ | (0.041(5) | 8.8(1.1) | $1.515)$ | 2.0 | $-1.26$ | $-1.05$ | $-1.91$ |
|  |  |  | 67.3181 | 0.1211) | 25(3) | $22(7)$ | 8.8 | -0.78 | -0.8+ | -1.22 |
|  |  |  | 710.200 | $0.01012)$ | $22(4)$ |  |  | $-1.79$ |  |  |
|  |  |  | 751.8.31 | w | W |  |  | W |  |  |
|  |  |  | 777.272 | H | W |  |  | W |  |  |
|  |  |  | 818.628 | W | " | 5.1(2.6) |  | W | 1.32 |  |
|  |  |  | 8.31 .370 | W | W | $8.6(4.3)$ |  | W | - 1.08 |  |
|  |  |  | 871.786 | w | W | $1.9(9)$ | 3.4 | W | $-1.70$ | $-1.42$ |
|  |  |  | $875.7+1$ | $w$ | 4 | 3.2(1.6) |  | W | - 1.47 |  |
| 24.29 .520 | 1.5 | $2+.7(1)$ | 409.225 | $0.34(2)$ | 55(3) | $62(19)$ | 2.3 | $-0.86$ | -0.88 | -1.23 |
|  |  |  | +14.771 | $0.104(8)$ | 17(1) |  | 7.4 | $-1.36$ |  | -1.72 |
|  |  |  | +23.766 | 0.2+(2) | 39(2) | 8.4(4.2) | 12 | $-0.98$ | -1.72 | $-1.50$ |

Table 3. (cominured).


Table 3. (comtinucd).

| Upper level enerey (cil) | . | Lifetime (INS) | Tramsition wavelength ( mm ) | Branching ratio | $g_{4} i_{1 \prime \prime}\left(10^{\prime \prime} s^{\prime}\right)$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | This work | $\mathrm{XSQCiB}{ }^{\prime \prime}$ | $\mathrm{CB}^{\prime \prime}$ | This work | XsQcib ${ }^{\text {c }}$ | $\mathrm{CB}^{\prime \prime}$ |
| $248+8.471$ | 2.5 | 112(1) | +5.4.39.4 | 0.30) 21 | 11517) |  | 22 | - 0.4 .5 |  | -1.17 |
|  |  |  | +71.77.3 | $0.10017)$ | 39(3) |  | 9.1 | $-0.88$ |  | -1.52 |
|  |  |  | 492.381 | $0.013(1)$ | $5.0(+)$ |  | 2.6 | -1.74 |  | -2.03 |
|  |  |  | 62-4.4.3 | w | $\cdots$ |  | 1.9 | w |  | $-1.95$ |
|  |  |  | $65+276$ | $0.025(2)$ | $9.8(8)$ |  |  | -1.20 |  |  |
|  |  |  | 728.149 | $0.017(2)$ | $6.8(6)$ |  | 2.5 | -1.27 |  | $-1.69$ |
|  |  |  | 767.246 |  |  |  |  |  |  |  |
|  |  |  | 775.507 |  |  |  | 2.4 |  |  | $-1.67$ |
|  |  |  | 802.509 |  |  |  | 2.5 |  |  | $-1.0 .3$ |
|  |  |  | $85+.322$ |  |  |  | 2.6 |  |  | $-1.54$ |
|  |  |  | 407.68 .5 | $0.12690)$ | $6.8(5)$ |  | 2.2 | $-1.77$ |  | - 2.25 |
|  |  |  | +16.371 | 0.14(1) | 7.3(5) |  | 2.7 | -1.72 |  | -2.16 |
|  |  |  | 427.974 | 0.42(2) | $23(1)$ |  |  | -1.21 |  |  |
|  |  |  | +37.605 | $0.02512)$ | $1.3(1)$ |  |  | - 2.42 |  |  |
|  |  |  | 468.267 | 0.17 (1) | $8.8(6)$ |  | 3.4 | - 1.54 |  | $-1.95$ |
|  |  |  | 564.388 | 0.017121 | $0.9(1)$ |  |  | $-2.36$ |  |  |
|  |  |  | 577.087 | 0.010021 | $0.8(1)$ |  |  | -2.37 |  |  |
|  |  |  | $59+.986$ | 0.0)2012) | $0.1(1)$ |  |  | -3.19 |  |  |
|  |  |  | 614.467 | 0.0)12) | 0.6(1) |  |  | -2.48 |  |  |
|  |  |  | 647.554 | 0.011(2) | $0.6(1)$ |  |  | $-2.43$ |  |  |
|  |  |  | 697.040 | $0.0055(3)$ | $0.2(2)$ |  |  | -2.75 |  |  |
|  |  |  | 715.358 | $0.007(+1$ | $0.4(2)$ |  |  | -2.57 |  |  |
|  |  |  | $730.0 \% 0$ | $0.022(5)$ | 1.2(3) |  |  | 2.13 |  |  |
|  |  |  | 743.120 | 0.0) $+(5)$ | $0.8(3)$ |  |  | -2.20 |  |  |
|  |  |  | 758.018 | (0.022(7) | 1.2(3) |  |  | - 2.00) |  |  |
| 24028.801 | 2.5 | 25.4 (9) | +06.354 | ().32(2) | $70(5)$ |  | 14 | -0.72 |  | -1.45 |
|  |  |  | +14.983 | (1)2312) | $54(4)$ |  | 21 | $-0.85$ |  | -1.26 |
|  |  |  | +26.508 | $0.10(1)$ | 38(3) |  | 14 | -0.99 |  | $-1.4 .3$ |
|  |  |  | +36.072 | 0.23111 | $5.3(4)$ |  | 1.5 | $-0.82$ |  | $-1.36$ |
|  |  |  | +49.512 | 0.012212 | $2.9(+)$ |  | 0.67 | -2.06 |  | $-2.69$ |
|  |  |  | +60.512 | $0.051(4)$ | 12(1) |  | 2.2 | $\cdots 1.40$ |  | -2.15 |
|  |  |  | 611.448 | W | W |  |  | 11 |  |  |
|  |  |  | 677.866 | W | W |  | 3.8 | W |  | $-1.58$ |
|  |  |  | 761.393 |  |  |  | 1.3 |  |  | $-1.95$ |
| 2515.5 .539 | 1.5 | $3+4.95$ | .390.001 | (1).3+12) | 39(3) |  | 39 | -1.133 |  | $-1.04$ |
|  |  |  | +1)+. 271 | 0.38(3) | +4(3) |  | 20 | $-0.97$ |  | -1.32 |
|  |  |  | +12.811 | $0.022(3)$ | $2.6(4)$ |  |  | - 2.18 |  |  |
|  |  |  | +2+.739 | $0.0 .38(4)$ | +. +1.5$)$ |  | 1.4 | -1.92 |  | $-2.41$ |
|  |  |  | +3.3.67+ | $0.10+6(5)$ | $5.3(6)$ |  |  | -1.83 |  |  |
|  |  |  | +46.96.5 | $0.079(7)$ | 9.1(9) |  |  | $-1.57$ |  |  |
|  |  |  | 6.38 .98 .3 | $0.05(1)$ | $5.6(1.1)$ |  | 2.5 | $-1.47$ |  | -1.82 |
|  |  |  | 687.708 |  |  |  |  |  |  |  |
|  |  |  | 704.913 | O.) $01+4$ | +.4(t. 1 ) |  |  | $-1.48$ |  |  |
| 25175.320 | 2.5 | $81(3)$ | +02.322 | $0.0 .3(2)$ | 47(2) |  | 24 | -0.94 |  | -1.23 |
|  |  |  | +10.779 | $0.046(5)$ | 3. 4 ( +1 |  | 1.6 | -2.06 |  | -2.38 |
|  |  |  | +22.069 | $0.027(+)$ | $2.063)$ |  |  | -2.27 |  |  |

Table 3. (cominuced).

| Upper level energy (cm ') | J | Lifetime (n.s) | Transition wavelength (imin) | Branching ratio | $g_{1 \prime} A_{u \prime}\left(10^{\prime \prime} s^{\prime}\right)$ |  |  | $\log \left(h_{1}, f_{1 \prime \prime}\right)$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | This work | $\mathrm{XSQGB}^{\prime \prime}$ | $\mathrm{CB}^{\prime \prime}$ | This work | XSQGB ${ }^{\prime \prime}$ | $\mathrm{CB}^{\prime \prime}$ |
| 25178.449 | 1.5 | 23.5(2) | +31.4.33 | $0.028(4)$ | $2.1(3)$ |  |  | -2.23 |  |  |
|  |  |  | +4.4.58+ | $0.054(6)$ | 4.0(5) |  |  | -1.92 |  |  |
|  |  |  | 461.207 | $0.018(+)$ | 1.4(3) |  |  | $-2.36$ |  |  |
|  |  |  | 554.162 | w | w |  |  | w |  |  |
|  |  |  | 583.6 .33 | (0.09 (1) | 6.4 (9) |  | 3.5 | $-1.48$ |  | $-1.75$ |
|  |  |  | 666.722 | 0.11(2) | 7.9 (1.6) |  | 1.7 | $-1.28$ |  | $-1.95$ |
|  |  |  | 397.053 | $0.25(2)$ | +2(3) |  | 20 | $-1.01$ |  | -1.33 |
|  |  |  | +102.272 | $0.027(3)$ | 4.6(5) |  | 2.4 | -1.95 |  | $-2.23$ |
|  |  |  | +10.727 | $0.103(8)$ | $18(1)$ |  | 23 | -1.35 |  | -1.24 |
|  |  |  | +22.532 | $0.60(2)$ | 101(4) |  | 30) | $-0.57$ |  | $-1.10$ |
|  |  |  | +31.374 | (0.029(3) | $4.9(6)$ |  | 5.2 | $-1.86$ |  | -1.84 |
| $25.30+.090$ | 3.5 | 22.2(6) | $+19.786$ | 0.007(1) | 2.6 (3) |  | 1.3 | $-2.17$ |  | $-2.46$ |
|  |  |  | +33.414 | 0.20)(2) | 72(7) |  | 4) | -0.69 |  | $-0.94$ |
|  |  |  | +42.052 | 0.23(2) | 81(7) |  | +6) | -0.62 |  | -0.87 |
|  |  |  | +58.48.3 | 0.12(1) | +4(4) |  | 18 | $-0.85$ |  | -1.24 |
|  |  |  | +77.923 | $0.00+(1)$ | 1.4(2) |  |  | -2.31 |  |  |
|  |  |  | 579.278 | w | W |  |  | w |  |  |
|  |  |  | (6)1.343 | w | W |  |  | $w$ |  |  |
|  |  |  | 628.991 | 0.0)(07(1) | 2.7151 |  | 2.3 | $-1.80$ |  | $-1.87$ |
|  |  |  | 732.706 | 0.4.3(3) | 156(12) |  |  | 0.10 |  |  |
|  |  |  | 764.798 |  |  |  | 2.4 |  |  | $-1.68$ |
|  |  |  | 811.714 |  |  |  | 1.2 |  |  | $-1.93$ |
| 25.361 .449 | 1.5 | $16.8(2)$ | 394.188 | 0.27(2) | $6.3(4)$ |  | 35 | $-1.8 .3$ |  | $-1.08$ |
|  |  |  | 399.331 | 0.23 (2) | $5.5(4)$ |  | 21 | $-0.88$ |  | $-1.30$ |
|  |  |  | +07.062 | $0.08 .3(6)$ | 20(2) |  | 8.2 | -1.31 |  | $-1.69$ |
|  |  |  | +27.994 | $0.16 \times 1)$ | 39)(3) |  | 7.2 | -0.97 |  | -1.70 |
|  |  |  | 440.9.34 | $0.20 \times 1)$ | +8(3) |  | 16 | $-0.8 .5$ |  | $-1.32$ |
|  |  |  | 626.729 | $0.05+16)$ | $1.3(1)$ |  | 9.3 | $-1.12$ |  | $-1.26$ |
|  |  |  | 67.3 .535 | W | w |  |  | w |  |  |
|  |  |  | 690.029 |  |  |  | 1.0 |  |  | -2.14 |
|  |  |  | 698.417 | W | W |  |  | w |  |  |
| 25.385 .359 | 5.5 | +2.2(2) | 431.893 | $0.69(2)$ | $195(6)$ | 182(18) | (6) | -0.26 | -0.32 | $-0.78$ |
|  |  |  | +47.648 |  |  |  |  |  |  |  |
|  |  |  | 465.511 | $0.08(1)$ | $2+(3)$ | 7.5(3.8) | 4.9 | $-1.11$ | $-1.64$ | $-1.79$ |
|  |  |  | 476.1)7.3 | $0.011(3)$ | $3.110)$ |  |  | $-1.98$ |  |  |
|  |  |  | 498.172 | $0.007(4)$ | $2.0(1.0)$ |  | 3.2 | $-2.12$ |  | $-1.93$ |
|  |  |  | 025.059 | $0.025(3)$ | $7.2(8)$ | $4.8(2 .+1$ | +. 11 | -1.37 | $-1.59$ | $-1.0 .3$ |
|  |  |  | 0.58 .971 | $0.086(8)$ | $2+(2)$ | $21(6)$ | 11 | $-0.80$ | $-0.91$ | $-1.14$ |
|  |  |  | 693.040 | $0.015(2)$ | +.f(0) | 6.6(3.3) | 1.8 | -1.50 | $-1.36$ | $-1.88$ |
|  |  |  | 7.35 .399 | 0.0) $0+(2)$ | 1.165 |  |  | -2.06 |  |  |
|  |  |  | 749.408 | $0.008(2)$ | $2.3(6)$ |  |  | $-1.71$ |  |  |
|  |  |  | 793.713' | $0.015(4)$ | $4.21 .0)$ |  | 2.5 | $-1.40$ |  | $-1.62$ |
|  |  |  | 796.90) |  |  |  |  |  |  |  |
|  |  |  | 8.38 .776 | $0.018(7)$ | $5.2(1.9)$ | $1.3(t)$ | 2.7 | $-1.26$ | $-0.91$ | $-1.55$ |
|  |  |  | $8+8.001$ | $0.0+11)$ | 12(3) | $25(8)$ | 6.3 | -0.89 | $-0.61$ | -1.17 |

Table 3. (comtinticd).

| Upper level emergy (cim') | . | Lifetime (11) | Transition wavelength (min) | Branching ratio | $\underline{k_{1 \prime} i_{1 \prime \prime}\left(10^{\prime \prime}>{ }^{\prime}\right)}$ |  |  | $\log \left(g_{1}, f_{1,}\right)$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | This worh | XSQCB ${ }^{\prime \prime}$ | $\mathrm{CB}^{7}$ | This Hork | XSQ(iB" | CB ${ }^{\text {" }}$ |
| 25+17.141 | 2.5 |  | 398.445 | $0.0 .37(+)$ |  |  |  |  |  |  |
|  |  |  | +100.7.38 | 0.20 (1) |  |  |  |  |  |  |
|  |  |  | 417.803 | 0.49 (2) |  |  |  |  |  |  |
|  |  |  | +26.976 | 0.12(1) |  |  | 1.1 |  |  | -2.50 |
|  |  |  | +39.8.54 | 0. $011+(5)$ |  |  |  |  |  |  |
|  |  |  | 456.118 | (). $1+(1)$ |  |  | 0.59 |  |  | -2.7t |
|  |  |  | 558.746 | w |  |  |  |  |  |  |
|  |  |  | 593.715 | w |  |  |  |  |  |  |
|  |  |  | 624.549 | $w$ |  |  |  |  |  |  |
|  |  |  | 671.017 | $w$ |  |  |  |  |  |  |
|  |  |  | 700.979 | $w$ |  |  |  |  |  |  |
|  |  |  | 712.982 | w |  |  |  |  |  |  |
|  |  |  | 726.685 | $w$ |  |  |  |  |  |  |
|  |  |  | 7.3 .091 | $w$ |  |  |  |  |  |  |
| 25552.801 | 1.5 | 79(1) | 390.302 |  |  |  |  |  |  |  |
|  |  |  | 40.4.505 | 0.46(2) | 23(1) |  | 17 | $-1.25$ |  | $-1.38$ |
|  |  |  | +15.951 | $0.17(1)$ | 8.76 ( $)$ |  | 3.2 | $-1.65$ |  | $-2.08$ |
|  |  |  | +24.517 | $0.34(2)$ | 17(1) |  | 3.8 | -1.3.3 |  | $-1.99$ |
|  |  |  | 4.37.2+4 | $0.029(3)$ | 1.5(1) |  |  | $-2.38$ |  |  |
|  |  |  | 588.970 | W | $w$ |  |  | w |  |  |
|  |  |  | 619.300 | w | " |  |  | W |  |  |
|  |  |  | 675.061 | w | w |  |  | u |  |  |
|  |  |  | 089.20.4 | W | W |  |  | w |  |  |
| 25.565 .971 | 3.5 | 31.11.5) | +104.290 | $0.32(2)$ | $83(5)$ |  | 27 | -0.69 |  | $-1.18$ |
|  |  |  | +1.5.220 | 0.30)2) | $78(5)$ |  | 37 | $-0.69$ |  | $-1.122$ |
|  |  |  | +28.549 | $0.21(1)$ | $5+(+)$ |  | 1.7 | $-0.8 .3$ |  | -2.34 |
|  |  |  | $+36.992$ | $0.067(6)$ | 17(1) |  | 0.8 | $-1.31$ |  | --1.71 |
|  |  |  | $472.01 .3$ | $0.0 .31(3)$ | $7.9(9)$ |  | 1.8 | - -1.58 |  | $-2.21$ |
|  |  |  | 618.795 | $w$ | W |  | 2.1 | w |  | -1.92 |
|  |  |  | 6+4.793 | $0.0 \text { On (0) }$ | $5.0(2.0)$ |  |  | $-1.50$ |  |  |
|  |  |  | 684.470 | $0.05(1)$ | 1.3(3) |  | 0.1 | $-1.16$ |  | $-1.37$ |
|  |  |  | 705.493 | W | W |  | 2.0 | W |  | $-1.83$ |
|  |  |  | 726.155 |  |  |  |  |  |  |  |
|  |  |  | $7.39 .398$ |  |  |  |  |  |  |  |
|  |  |  | $79+.81 .3$ |  |  |  | 2.2 |  |  | $-1.08$ |
| $25.597 .0 \% 9$ | 4.5 | 14.2(1) |  | (0.019(3) | $1+(2)$ |  | 5.1 | $-1.46$ |  | $-1.88$ |
|  |  |  | $+27.967$ | 0.18(1) | 12699 |  | 39 | $-0.46$ |  | $-10.97$ |
|  |  |  | $+43 .+32$ | (). $+6 \times 2)$ | . $22+1515$ |  | (6) | -0.122 |  | $-0.75$ |
|  |  |  | +52.391 | 0.21(2) | 147(10) |  | 22 | -0.3.5 |  | $-1.16$ |
|  |  |  | +71.307 | $0.07 .3(7)$ | $51(5)$ |  | 15 | -0.77 |  | -1.30 |
|  |  |  | +92.950 | $0.012(t)$ | 8.363 .01 |  | 1.7 | $-1.52$ |  | $-2.22$ |
|  |  |  | 648.455 | 0.018(3) | 1.3(2) |  | 3.7 | $-1.109$ |  | -1.04 |
|  |  |  | 68.2986 | $0.012(4)$ | $8.512 .6)$ |  | 3.1 | -1.22 |  | - 1.67 |
|  |  |  | 703.918 | $\mathbb{N}$ |  |  |  | W |  |  |
|  |  |  | 72.4.080 | 0.017171 | 12151 |  | 7.3 | $-1.10 .3$ |  | $-1.24$ |
|  |  |  | 737.066 |  |  |  | 3.3 |  |  | $-1.57$ |

Table 3. (comimued).

| Upper level energy (coll ${ }^{1}$ ) | . | Lifetime (ns) | Transition wavelength ( mI ) | Branching ratio | $g_{4 \prime} A_{\prime \prime},\left(10^{\prime} \leqslant{ }^{\prime}\right)$ |  |  | $\log \left(g_{1} f_{1 / 4}\right)$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | This work | XSQGB" | $\mathrm{CB}^{1 /}$ | This work | XSQGB ${ }^{\prime \prime}$ | $\mathrm{CB}^{\prime \prime}$ |
| 25664.971 | 6.5 | +4.4(2) | 78.3 .72 .3 |  |  |  | 3.5 |  |  | -1.49 |
|  |  |  | 792.813 |  |  |  | 13 |  |  | $-0.93$ |
|  |  |  | 824.094 |  |  |  | 2.3 |  |  | $-1.63$ |
|  |  |  | 870.6 .36 |  |  |  | 2.0 |  |  | $-1.65$ |
|  |  |  | $+42.113$ | $0.38(2)$ | 119(6) |  | 3.3 | $-0.46$ |  | -1.01 |
|  |  |  | +59.528 | 0.3.3(2) | $105(6)$ |  |  | $-0.48$ |  |  |
|  |  |  | +91.326 | $0.113(9)$ | 36(3) |  | 20 | -0.89 |  | -1.13 |
|  |  |  | 614.899 | (0.00)3(1) | $0.9(4)$ |  |  | -2..30 |  |  |
|  |  |  | $6+7.0+6$ | (0.0) $2+(.3)$ | 7. 4 (8) |  | 1.9 | $-1.33$ |  | $-1.93$ |
|  |  |  | 686.110 | (1).122(9) | .38(3) |  |  | -0.57 |  |  |
|  |  |  | 720.578 | $0.003(2)$ | 1.0(7) |  |  | $-2.09$ |  |  |
|  |  |  | 819.550 | 0.024(7) | 7.6(2.2) |  | 2.8 | -1.11 |  | $-1.55$ |
|  |  |  | 828.927 | W | w |  | 2.9 | $w$ |  | $-1.53$ |
|  |  |  | 86.3 .289 | W | w |  | 3.5 | $w$ |  | $-1 .+1$ |
| 2.5790 .150 | 3.5 | 57.3(3) | 400.6 .57 | $0.098(7)$ | 1+(1) |  | 6.2 | $-1.48$ |  | $-1.83$ |
|  |  |  | +11.390 | 0. $2+(2)$ | $3+(2)$ |  | 14 | $-1.07$ |  | -1.46 |
|  |  |  | +24.470 | 0.42(2) | $58(3)$ |  | 21 | $-0.80$ |  | -1.24 |
|  |  |  | +32.751 | $0.047(+)$ | $6.6(5)$ |  | 1.5 | -1.74 |  | $-2.36$ |
|  |  |  | +48.486 | $0.010(1)$ | 1.4(1) |  |  | $-2.39$ |  |  |
|  |  |  | +67.069 | $0.056(+)$ | $7.9(6)$ |  |  | -1.59 |  |  |
|  |  |  | $5+7.335$ | $0.01+(2)$ | $2.0(2)$ |  |  | $-2.05$ |  |  |
|  |  |  | 584.260 | $0.025(3)$ | $3.5(4)$ |  | 2.1 | -1.75 |  | $-1.97$ |
|  |  |  | 610.326 | $0.026(3)$ | $3.6(4)$ |  |  | -1.69 |  |  |
|  |  |  | 6.40.461 | $0.010(3)$ | $1.4(4)$ |  |  | $-2.08$ |  |  |
|  |  |  | 674.124 | $0.0 .56(6)$ | $7.9(8)$ |  |  | -1.27 |  |  |
| 259.39 .869 | 6.5 | 62.4(3) | +36.802 | $0.20(1)$ | + 1 (1.3) |  | 18 | $-0.90$ |  | $-1.28$ |
|  |  |  | +53.79.4 | $0.51(2)$ | 11+(5) |  | 27 | -0.4. |  | -1.08 |
|  |  |  | 484.776 | $0.18(1)$ | +0)(3) |  | 8.4 | -0.85 |  | $-1.53$ |
|  |  |  | 6.35 .735 | $0.016(5)$ | 3.6(1.0) |  |  | -1.66 |  |  |
|  |  |  | 673.405 | 0.10)(1) | 23(2) |  | 8.4 | -0.81 |  | -1.25 |
|  |  |  | 801.488 |  |  |  | 3.0 |  |  | -1.54 |
|  |  |  | 84.3 .271 |  |  |  | 5.2 |  |  | $-1.25$ |
| 25980.320 | 2.5 | $19.9(4)$ | . 389.697 | $0.31(2)$ | $93(6)$ |  | 59 | $-0.68$ |  | $-0.87$ |
|  |  |  | 397.627 | 0.17(1) | 51(4) |  | 32 | -0.92 |  | $-1.11$ |
|  |  |  | 408.195 | 0.02+42) | 7.3(7) |  | +.6 | -1.74 |  | -1.94 |
|  |  |  | +16.947 | 0.21(1) | ( $6+(4)$ |  | 29 | -0.77 |  | $-1.12$ |
|  |  |  | +29.218 | (1.1+(1) | +2(3) |  | 1.3 | $-0.94$ |  | $-1.45$ |
|  |  |  | +44.691 | $0.017(2)$ | $5.0(5)$ |  | 1.7 | $-1.82$ |  | $-2.30$ |
|  |  |  | (0)3.322 | $0.010(2)$ | $3.0(5)$ |  | 1.9 | $-1.79$ |  | $-1.99$ |
|  |  |  | 6.32 .752 | $0.046(+1)$ | $1+(1)$ |  | 7.9 | $-1.08$ |  | $-1.32$ |
|  |  |  | 661.761 | $0.006(2)$ | $1.7(6)$ |  |  | $-1.96$ |  |  |
|  |  |  | 669.472 | $0.008(2)$ | $2.4(6)$ |  |  | $-1.79$ |  |  |
|  |  |  | 685.451 | 0.012(3) | 3.5(8) |  | 1.7 | $-1.60$ |  | -1.92 |
|  |  |  | 74.5.311 | $0.05(1)$ | $1+(3)$ |  | 3.7 | $-0.92$ |  | -1.51 |

Table 3. (cominured).

| Upper level energy ( cm$)^{1}$ ) | . | lifetime (15) | Tramsition wavelength ( nm ) | Branching ratio | $g_{u} A_{u}\left(10^{\prime \prime} \times{ }^{\prime}\right)$ |  |  | $\log \left(g_{1}, f_{14}\right)$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | This work | XSQCi3" | $\mathrm{CB}^{\prime \prime}$ | This work | XSQCi ${ }^{\prime \prime}$ | $\mathrm{CB}^{\prime \prime}$ |
| $26(0)+6.350$ | 4.5 | $20.9(8)$ | +.34.780 | $0.29(2)$ | 1+1(10) |  | 42 | $-0.40$ |  | $-0.93$ |
|  |  |  | +4.3.389 | $0.50(2)$ | $237(14)$ |  | 62 | $-0.15$ |  | $-0.7+$ |
|  |  |  | +61.5+4 | 0.1+(1) | 67(6) |  | 12 | $-0.67$ |  | $-1.42$ |
|  |  |  | 482.286 | $0.003 .5(5)$ | 1.7(2) |  |  | $-2.23$ |  |  |
|  |  |  | 555.391 | $0.0020 \times 3)$ | $1.0(2)$ |  |  | -2.35 |  |  |
|  |  |  | $575.6+1$ | $0.002+(t)$ | 1.2(2) |  |  | -2.24 |  |  |
|  |  |  | 600.806 | $0.0(0)+2(5)$ | 2001 |  |  | -1.97 |  |  |
|  |  |  | 6.30 .118 | 0.010)(1) | +.6(5) |  | 2.4 | $-1.56$ |  | $-1.84$ |
|  |  |  | 723.703 | $0.01+(1)$ | 6.6(7) |  | 1.9 | -1.29 |  | $-1.84$ |
|  |  |  | 754.1.37 | 0.02502 |  |  | 3.4 |  |  | $-1.54$ |
|  |  |  | $757.095^{\prime}$ |  |  |  | 3.4 |  |  | -.1.54 |
|  |  |  | 76.5 .575 | $0.009(1)$ | $4.5(6)$ |  | 1.6 | $-1.1+1$ |  | $-1.86$ |
| 20.080 .6 .31 | 3.5 | $7022)$ | 395.953 | 0.2201 | 2512) |  |  | -1.23 |  |  |
|  |  |  | +06.4.31 | 0.20 (1) | 22(2) |  |  | - 1.26 |  |  |
|  |  |  | 419.193 | $0.32(2)$ | 360) |  |  | $-1.12]$ |  |  |
|  |  |  | +22.598 | $0.050(5)$ | 5.7151 |  |  | $-1.78$ |  |  |
|  |  |  | 460.688 | $0.086(7)$ | $9.8(9)$ |  |  | - 1.51 |  |  |
|  |  |  | $57+.309$ | $0.009(5)$ | 1.005 |  |  | -2.30 |  |  |
|  |  |  | 628.523 | $0.013(7)$ | $1.5(8)$ |  |  | $-2.06$ |  |  |
|  |  |  | 692.962 | 0.03 (1) | 3.5(1.6) |  |  | 1.60 |  |  |
|  |  |  | 711.980 | $0.08(2)$ | $9.2(2.4)$ |  |  | -1.15 |  |  |
| 26159.600 | 3.5 | 93(4) | $39+8.811$ | 0.79 (3) | 68( +1 |  | 26 | -0.80 |  | $-1.21$ |
|  |  |  | +105.229 | $0.022(5)$ | $1.9(4)$ |  |  | - 2.34 |  |  |
|  |  |  | 425.939 | $0.037(5)$ | 3.2(5) |  | 2.0 | -2.06 |  | -2.27 |
|  |  |  | +4.17.3 | $0.0 .3+(5)$ | $2.9(5)$ |  |  | $-2.07$ |  |  |
|  |  |  | +59.144 | $0.011(+)$ | $0.9(4)$ |  |  | -2.54 |  |  |
|  |  |  | 551.918 | 0.010170 | $0.916)$ |  |  | $-2.41$ |  |  |
|  |  |  | 571.912 | $0.028(9)$ | $2.4(x)$ |  |  | $-1.92$ |  |  |
|  |  |  | 689.475 | $0.07(3)$ | 5.8(2.8) |  |  | $-1.38$ |  |  |
| 26190.920 | 2.5 | 39.3(3) | 386.52+ | $0.110(8)$ | 1711) |  | 12 | -1.42 |  | 1.56 |
|  |  |  | $39+.32+$ | 0.29 (2) | +4(3) |  | 22 | 0.99 |  | -1.29 |
|  |  |  | +04.71.5 | $0.33 \times 2)$ | $50.3)$ |  | 27 | 0.91 |  | -1.18 |
|  |  |  | 413.317 | 0.0.4.5(4) | $6.8(6)$ |  | 3.9 | -1.76 |  | -2.01 |
|  |  |  | +25.372 | $0.0 .300 .3)$ | $5.6(5)$ |  |  | -1.82 |  |  |
|  |  |  | 40.504 | $0.03 .3(3)$ | $5.1(5)$ |  | 1.5 | -1.8.3 |  | $-2.37$ |
|  |  |  | 595.750 | $0.027(5)$ | +.2(7) |  | 2.4 | 1.05 |  | -1.90 |
|  |  |  | 62+.429 | $0.03916)$ | 6.01010 |  |  | 1.46 |  |  |
|  |  |  | 6.52 .66 .3 | $0.031(8)$ | +.711.2) |  |  | --1.52 |  |  |
|  |  |  | 064.904 | W | $\cdots$ |  |  | 11 |  |  |
|  |  |  | $69+.62+$ | $0.06(1)$ | $9.7(1.9)$ |  |  | -1.15 |  |  |
| 26214.051 | 2.5 | $60 \times 1)$ | 386.179 | 0.1+(1) | $12.5(9)$ |  |  | $-1.55$ |  |  |
|  |  |  | 393.90-4 | $0.0388 .3)$ | $3.5(3)$ |  | 1.8 | - 2.05 |  | $-2.37$ |
|  |  |  | +(0). 3.37 | $0.057(5)$ | $5.2(4)$ |  |  | --1.90 |  |  |
|  |  |  | +12.922 | 0.32(2) | 2912) |  | 11 | $-1.1 .3$ |  | --1.57 |
|  |  |  | +2+.954 | $0.28(2)$ | $2629)$ |  | 8.0 | 1.16 |  | $-1.67$ |
|  |  |  | +40.116 | 0.16(1) | $1.5(1)$ |  |  | $-1.36$ |  |  |

Table 3. (cominuted).


Table 3. (cominucid).

| lpper level energy (coll) | J | Lifetime (as) | Tramsition <br> Wavelength <br> (1101) | Branching ratio | $h_{n \prime \prime} i_{t \prime}\left(10^{\prime \prime}, ~{ }^{\prime}\right)$ |  |  | Ioge (g, $f_{1 / 1}$ ) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | This work | XSQCiB ${ }^{\text {c }}$ | $\mathrm{CB}^{\prime \prime}$ | This work | $\mathrm{XSQCiB}{ }^{\prime \prime}$ | $\mathrm{CB}^{\prime \prime}$ |
| $2(0.599 .080$ | 1.5 | 17.9(2) | 6.59 .005 | W | W |  |  | W |  |  |
|  |  |  | 676.6 .52 | $0.039(8)$ | 5.9(1.3) |  | 2.0 | -1.39 |  | $-1.86$ |
|  |  |  | 688.495 | 0.0.3+(9) | 5.2(1.4) |  |  | -1.44 |  |  |
|  |  |  | 697.485 | 0.03, 1 ) | +.2(1.5) |  |  | -1.51 |  |  |
|  |  |  | 725.711 | 0.060) | $9.7(2.51$ |  | 1.5 | -1.12 |  | -1.92 |
|  |  |  | .375.846 | $0.12(1)$ | 27(3) |  | 19 | -1.24 |  | -1.39 |
|  |  |  | .388.076 | $0.21(2)$ | $48(4)$ |  | 35 | $-0.97$ |  | -1.10 |
|  |  |  | 398.590 | $0.05 .3(6)$ | 12(1) |  | 6.0 | $-1.55$ |  | $-1.85$ |
|  |  |  | +06.4.8 | 0.19(2) | +2(3) |  |  | $-1.98$ |  |  |
|  |  |  | +18.110 | 0.18(1) | +(0)(3) |  | 23 | $-0.98$ |  | $-1.23$ |
|  |  |  | 513.626 | 0.01760 | $3.9(1.4)$ |  |  | $-1.82$ |  |  |
|  |  |  | 621.696 | $0.03(2)$ | $7.3(3.3)$ |  |  | $-1.37$ |  |  |
|  |  |  | 6.30.51- | $0.04(2)$ | 8.0 (3.6) |  |  | -1.32 |  |  |
|  |  |  | 6.3.5.72.3 | $0.0602)$ | $12(t)$ |  |  | $-1.13$ |  |  |
|  |  |  | $6+2.8 .36$ | 0.08(2) | 17(t) |  |  | $-0.97$ |  |  |
| 26723.869 | 1.5 | 47(1) | 675.467 | $0.0 .3(3)$ | 7.2(5.8) |  | 2.5 | -1.31 |  | $-1.76$ |
|  |  |  | . 378.720 | $0.16(1)$ | 13.31 |  | 14 | $-1.55$ |  | -1.52 |
|  |  |  | 386.205 | 0.4.9(2) | 38(2) |  | 30 | $-1.07$ |  | -1.17 |
|  |  |  | 40.4.406 | $0.22(2)$ | 18(1) |  |  | $-1.35$ |  |  |
| 26820.811 | 4.5 | 35.3 (3) | +15.9+10 | 0.18(1) | $15(1)$ |  | 4.5 | -1.40 |  | $-1.93$ |
|  |  |  | 394.6.51 | 0.19011 | $55(+)$ |  | 21 | $-0.89$ |  | -1.30 |
|  |  |  | +100.0.7.3 | 0.28(2) | $80(5)$ |  | 36 | 0.70 |  | - 1.05 |
|  |  |  | 420.612 | 0.28(2) | $79(5)$ |  | 30) | $-0.68$ |  | -1.10 |
|  |  |  | +28.605 | (1.14(1) | 39(3) |  | 16 | $-0.97$ |  | $-1.35$ |
|  |  |  | + +5.611 | $0.0 .39(3)$ | $11.19)$ |  | 4.3 | --1.48 |  | -1.90 |
|  |  |  | 464.916 | $0.011(2)$ | $3.2(5)$ |  |  | $-1.90$ |  |  |
|  |  |  | 574.086 | $0.01 .3(3)$ | $3.7(8)$ |  |  | $-1.74$ |  |  |
|  |  |  | (6)0.792 | $0.01 .5(3)$ | $4.2(10)$ |  |  | $-1.6 .5$ |  |  |
|  |  |  | 6.30.317 | $0.0132(5)$ | $9.1(1.4)$ |  |  | -1.27 |  |  |
|  |  |  | 66.5 .16 .3 | w | " |  | 3.2 | W |  | $-1.68$ |
|  |  |  | 712.511 | W | " |  | 4.0 | " |  | $-1.52$ |
| 26828.289 | 5.5 | $27.3(+)$ | +20.480 | $0.0015(1)$ | 2.0131 | 4)(12) | 2.3 | $-2.28$ | $-1.03$ | -2.21 |
|  |  |  | +36.203 | 0.11(1) | +9(4) | $11(3)$ | . 38 | -0.8.5 | -1.54 | $-0.96$ |
|  |  |  | $+4.5 .+6.3$ | (0.21(2) | 94( 8 ) | 290(29) | 57 | -0.55 | -0.11 | $-0.77$ |
|  |  |  | 464.754 | 0.0.3+(3) | $1511)$ |  | +.4 | -1.32 |  | -1.8+ |
|  |  |  | 573.83 .3 |  |  | $3.111 .5)$ |  |  | - -1.88 |  |
|  |  |  | (001.7.39 |  |  | 8.04.0) | 2.4 |  | 1.43 | $-1.88$ |
|  |  |  | 60.4 .8 .32 |  |  | +.0(2.0) |  |  | -1.65 |  |
|  |  |  | 712.132 |  |  | 2.6 (1.3) |  |  | $-1.78$ |  |
|  |  |  | 748.197 | 0.24(3) | 104(1) 1 ) |  | 4.8 | 0.106 |  | - 1.40 |
|  |  |  | 756.0005 | $0.09(2)$ | +117) | 5.0 (2.5) | 2.2 | -0.40 | -- 1.45 | $-1.73$ |
|  |  |  | $78+.483^{\prime}$ | 0.31( +1 |  |  | $2.1)$ |  |  | $-1.7 .3$ |
|  |  |  | 786.362 |  |  | 1.1(5) | 3.8 |  | $-202$ | $-1.46$ |
|  |  |  | $91+.599$ |  |  | 1.5(8) |  |  | $-1.78$ |  |
|  |  |  | 978.890 |  |  | $2+(7)$ |  |  | -0.52 |  |

Table 3. (comtinucd).

| Tpper level energy (cm ') | . | Lifetime (ns) | Transition wavelength ( 1101 ) | Branching ratio | $g_{u} A_{u \prime \prime}\left(10^{6} s^{\prime}\right)$ |  |  | $\underline{\log \left(5, f_{i /}\right)}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | This work | XSQGB" | $\mathrm{CB}^{\text {/ }}$ | This work | XSQGB ${ }^{\text {² }}$ | $\mathrm{CB}^{\text {b }}$ |
| 20880.600 | 5.5 | 48.4(6) | $+19.557$ | $0.008(1)$ | $2.1(2)$ |  |  | $-2.26$ |  |  |
|  |  |  | +35.210 | $0.35(2)$ | $87(5)$ |  |  | $-0.61$ |  |  |
|  |  |  | +44.427 | 0.4.5(2) | $112(6)$ |  |  | $-0.48$ |  |  |
|  |  |  | +6.3.627 | $0.087(7)$ | 22(2) |  |  | -1.16 |  |  |
|  |  |  | 549.257 | $0.007(1)$ | 1.7(3) |  |  | $-2.12$ |  |  |
|  |  |  | 572.122 | $0.011(1)$ | 2.6 (3) |  |  | -1.89 |  |  |
|  |  |  | 627.950 | $0.009(1)$ | $2.3(3)$ |  |  | -1.86 |  |  |
|  |  |  | (6)2..527 | $0.009(2)$ | $2.3(4)$ |  |  | -1.82 |  |  |
|  |  |  | 673.876 | $0.002(1)$ | $0.6(2)$ |  |  | -2.41 |  |  |
|  |  |  | 712.105 | $0.009(2)$ | $2.3(4)$ |  |  | $-1.76$ |  |  |
|  |  |  | 74.5.279 | $0.020(3)$ | +.9(7) |  |  | $-1.39$ |  |  |
|  |  |  | 781.276 |  |  |  |  |  |  |  |
|  |  |  | 78.3 .140 | $0.03+(.5)$ | 8.4,1.1) |  |  | -1.11 |  |  |
| 26974.670 | 2.5 | 54.4(7) | 375.156 | $0.005(7)$ | $10.5(8)$ |  | 7.5 | $-1.66$ |  | -1.80 |
|  |  |  | 382.499 | $0.087(7)$ | $9.6(8)$ |  |  | $-1.68$ |  |  |
|  |  |  | 392.209 | $0.082(7)$ | 9.1 (7) | 7.5(3.8) | 3.9 | $-1.68$ | $-1.79$ | $-2.04$ |
|  |  |  | +00.344 | $0.24(2)$ | 27(2) | 57(17) | 13 | $-1.19$ | $-0.90$ | $-1.52$ |
|  |  |  | +11.044 | 0.21(1) | 23(2) | $21(6)$ | 8.9 | -1.24 | $-1.30$ | $-1.6 .5$ |
|  |  |  | +25.855 | $0.29(2)$ | 32(2) | $9.3(4.7)$ | 9.9 | $-1.06$ | $-1.63$ | $-1.57$ |
|  |  |  | 528.152 | W | W | 3.2(1.6) |  | w | -1.92 |  |
|  |  |  | 54.3.447 | w | W |  |  | w |  |  |
|  |  |  | 6.58 .750 | $w$ | w | $0.2(1)$ |  | w | $-1.85$ |  |
|  |  |  | 812.342 |  |  | 1.4(7) |  |  | $-1.88$ |  |
| 27107.619 | 3.5 | +1.4(2) | . 380.56 .3 | 0.13(1) | 25(2) |  | 16 | $-1.26$ |  | $-1.47$ |
|  |  |  | 390.23 .3 | $0.025(5)$ | 4.9(9) |  | 3.4 | $-1.95$ |  | $-2.11$ |
|  |  |  | +01.98.3 | $0.070(7)$ | 14(1) |  | 5.6 | $-1.48$ |  | $-1.87$ |
|  |  |  | +(1)9.40.3 | $0.16(1)$ | 31(2) |  | $1+$ | $-1.11$ |  | $-1.45$ |
|  |  |  | +23.4.57 | $0.49(2)$ | 9 $4(4)$ |  | 31 | $-0.60$ |  | $-1.08$ |
|  |  |  | 4.39 .987 | 0.060(7) | 12(1) |  | 4.6 | $-1.47$ |  | $-1.88$ |
|  |  |  | $5+2.491$ | 0.012(3) | $2.4(6)$ |  |  | $-1.97$ |  |  |
|  |  |  | 619.122 | $0.018(0)$ | 3.4(1.1) |  |  | -1.71 |  |  |
|  |  |  | 663.721 | 0.0) +11 ) | $6.8(1.9)$ |  |  | $-1.35$ |  |  |
|  |  |  | 687.529 | W | w |  | 1.7 | w |  | $-1.93$ |
| 27165.350 | 2.5 | $(0+1.3)$ | 372.490 | $0.3002)$ | 2812) | $20(6)$ | 21 | -1.24 | $-1.45$ | $-1.36$ |
|  |  |  | 379.729 | $0.20(2)$ | $19(2)$ |  | 21 | $-1.38$ |  | $-1.34$ |
|  |  |  | 389.356 |  |  |  |  |  |  |  |
|  |  |  | 397.310 | $0.0+9(7)$ | $4.6(7)$ |  |  | $-1.90$ |  |  |
|  |  |  | 408.437 | 0.21(2) | 20(2) | $9.1(+6)$ | 11 | -1.31 | $-1.70$ | $-1.57$ |
|  |  |  | 422.424 | $0.07 .5(8)$ | $7.1(8)$ |  | 2.6 | -1.72 |  | $-2.16$ |
|  |  |  | 509.010 | $0.048(7)$ | $4.5(7)$ |  |  | $-1.75$ |  |  |
|  |  |  | 522.885 | 0.10(1) | 9.3 (1.1) |  |  | -1.42 |  |  |
|  |  |  | 5.37 .871 | $0.017(6)$ | 1.6(5) |  |  | -2.15 |  |  |
|  |  |  | $799.9+7$ |  |  | $1.5(8)$ |  |  | $-1.92$ |  |

Table 3. (comtintred).

| Upper level enerey ( cm$)^{1}$ ) | J | liferime (IIS) | Tramsition wavelength (min) | Branching ratio | $\left.r_{1} A_{a},(1)^{\prime \prime}=1\right)$ |  |  | $\underline{\log \left(g_{1}, f_{1,1}\right)}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | This work | XSQCiB" | $\mathrm{CB}^{17}$ | This worh | $\mathrm{XSQCBB}^{\prime \prime}$ | $\mathrm{CB}^{\prime \prime}$ |
| 27188.301 | 3.5 | $26.9(+)$ | .379.398 | 0.32(8) | $95(23)$ |  | 80 | $-0.69$ |  | $-0.76$ |
|  |  |  | 389.008 | 0.10051 | +6(1.5) |  | 32 | $-0.98$ |  | -1.14 |
|  |  |  | 400.08 .3 | 0.02 (1) | 7.1(3.0) |  | 4.2 | $-1.77$ |  | -1.9) |
|  |  |  | 418.155 | 0.0)(3) | $25(9)$ |  | 12 | -1.20 |  | -1.54 |
|  |  |  | 423.015 | $0.08(3)$ | $23(8)$ |  | 8.9 | -1.20 |  | -1.62 |
|  |  |  | +38.4.30 | 0.10) +1 | 30(11) |  | 15 | -1.06 |  | $-1.35$ |
|  |  |  | 540.126 | $0.010)(6)$ | 3.()(1.7) |  |  | -1.89 |  |  |
|  |  |  | 587.810 | 0.023(1) | $5.9(3.3)$ |  | 1.9 | -1.52 |  | $-2.01$ |
|  |  |  | 610.04.3 | $0.041 .3)$ | $12(8)$ |  | 3.3 | -1.17 |  | $-1.73$ |
|  |  |  | 6.33.021 | 0.02(2) | 7.115.6) |  |  | -1.37 |  |  |
|  |  |  | 660. 18.3 | (1.10)5) | 30(1.3) |  | 7.1 | -0.71 |  | $-1.34$ |
|  |  |  | $608.4+5$ | 0. $0.4(3)$ | 12(9) |  |  | $-1.08$ |  |  |
| 2720.3 .250 | 7.5 | 29.2321 | +28. 179 | 0.8012) | $4.37(9)$ |  | 120 | 0.08 |  | $-0.50$ |
|  |  |  | 618.289 | $0.015(1)$ | $8.2(8)$ |  | +, 5 | 1.3 .3 |  | $-1.59$ |
|  |  |  | 6.56.929 | $0.15(1)$ | $81(7)$ |  | $2+$ | -0.28 |  | $-0.81$ |
|  |  |  | 758.591 | $0.010(1)$ | $5.5(6)$ |  | 6.8 | - 1.32 |  | $-1.23$ |
|  |  |  | 78.3 .509 | $0.029(3)$ | 160) |  | 8.5 | -0.8.3 |  | $-1.11$ |
| 27284.689 | 2.5 | 17.312) | .370.841 | 0.14(1) | $48(4)$ | $35110)$ | $2+$ | -1.01 | 1.19 | $-1.30$ |
|  |  |  | 378.015 | $0.01 .312)$ | $4.5(5)$ |  |  | $-2.01$ |  |  |
|  |  |  | 387.554 | 0.1+(1) | +7(3) |  | 30 | $-0.98$ |  | $-1.18$ |
|  |  |  | +(1).4.455 | 0.2+(2) | $8+(5)$ | $145(15)$ | 70 | -0.68 | -0.49 | $-0.76$ |
|  |  |  | +20.305 | 0.32(2) | $11.3(6)$ | $1(1)+10)$ | 57 | 0.53 | -0.61 | $-0.82$ |
|  |  |  | 519.042 | $0.000 \times 2)$ | 2.15 (5) | $2.9(1 .+1$ |  | -2.07 | $-1.99$ |  |
|  |  |  | 615.692 | $0.0160 .3)$ | $5.5(1.2)$ | $3.0(1.8)$ |  | -1.50 | -1.72 |  |
|  |  |  | 619.815 | (0.021(t) | 7.2(1.3) |  |  | 1.38 |  |  |
|  |  |  | 629.181 | $0.0311+1$ | 11(1) | 2.+(1.2) | 8.11 | 1.20 | - 1.92 | -1.32 |
|  |  |  | 6.39.828 | $0.021(4)$ | 7.3(1.5) |  |  | $-1.35$ |  |  |
|  |  |  | 6+5.502 | $0.02 \mathrm{~S}(5)$ | $9.6(1.6)$ | $12(4)$ | 2.3 | -1.22 | -1.15 | $-1.83$ |
|  |  |  | 679.258 | $0.027(6)$ | 9.4(2.1) |  | 2.5 | $-1.19$ |  | $-1.77$ |
|  |  |  | 699.26.3 |  |  | $2.2(1.1)$ |  |  | - 1.80 |  |
|  |  |  | 792.380 |  |  | $2.0(10)$ |  |  | $-1.78$ |  |
|  |  |  | 892.059 |  |  | $1.36(6)$ |  |  | -1.87 |  |
|  |  |  | 972.534 |  |  | $3 .+(1.7)$ |  |  | -1.36 |  |
| 27.309 .7 .30 | 4.5 | 38(2) | 387.178 | 0.2.312) | 6165 |  | 42 | $-10.87$ |  | -1.02 |
|  |  |  | 398.742 | 0.11.3(9) | 304, 31 |  | 18 | $-1.15$ |  | $-1.36$ |
|  |  |  | +12.135 | 0.18(1) | $t(x)$ |  | 21 | $-0.93$ |  | -1.27 |
|  |  |  | +36.107 | 0.1.311) | . $3+1.31$ |  | 12 | 1.01 |  | $-1.47$ |
|  |  |  | +54. 580 | 0.0 .30131 | $7.9(9)$ |  | 1.7 | 1.61 |  | -2.29 |
|  |  |  | 583.6+3 | $0.0 .37(8)$ | 9.612 .11 |  |  | -.1.31 |  |  |
|  |  |  | 611.468 | $0.105(1)$ | 1+1.3) |  | 2.8 | 1.11 |  | -1.81 |
|  |  |  | 60.3.062 | 0.17(1) | 11(t) |  | 2.4 | 1.12 |  | -1.80 |
|  |  |  | 685.519 | $0.19(2)$ |  |  | 5.0 |  |  | $-1.45$ |
|  |  |  | $690.98+$ |  |  |  | 2.5 |  |  | -1.7.t |

Table 3. (comtimu'd).

| Upper level energy ( $\mathrm{cm}^{1}$ ) | J | Lifetime (ns) | Transition wavelengh ( nm ) | Branching ration | $3_{1 \prime} A_{4}\left(100^{\prime} s^{\prime}\right)$ |  |  | $\underline{\log \left(g_{4}, f_{1 \prime}\right)}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | This, work | XSQGB ${ }^{\prime \prime}$ | $\mathrm{CB}^{\prime \prime}$ | This work | $\mathrm{XSQGB}^{\text {a }}$ | $\mathrm{CB}^{\prime \prime}$ |
| $2746+.199$ | 3.5 | $30.9(8)$ | 375.466 | $0.017(2)$ | $3.8(5)$ |  |  | $-2.10$ |  |  |
|  |  |  | $38+.876$ | $0.050(5)$ | 12(1) | 27(8) |  | $-1.57$ | $-1.24$ |  |
|  |  |  | 396.301 | 0.33 (2) | $70(+)$ |  |  | $-0.78$ |  |  |
|  |  |  | +0.3.510 | (0.31(2) | $67(t)$ | $26(8)$ | . 39 | -0.79 | $-1.21$ | $-1.03$ |
|  |  |  | +17.156 | $0.19(1)$ | +1(3) | $8.6(+.3)$ | 22 | $-0.97$ | $-1.66$ | $-1.24$ |
|  |  |  | +33.189 | $0.010(1)$ | $2.1(3)$ |  |  | $-2.22$ |  |  |
|  |  |  | 5.32.19.3 | $0.010(2)$ | 2.2(t) |  |  | -2.04 |  |  |
|  |  |  | 553.73.4 | $0.000(2)$ | 1.4(4) |  |  | -2.21 |  |  |
|  |  |  | 578.426 |  |  | 6.7(3.3) |  |  | $-1.49$ |  |
|  |  |  | 602.57 .3 |  |  | +.5(2.2) |  |  | $-1.6 .3$ |  |
|  |  |  | 605.74 .5 |  |  | $5.3(2.7)$ |  |  | $-1.55$ |  |
|  |  |  | 622.152 |  |  | 6.1(3.0) |  |  | $-1.47$ |  |
|  |  |  | 6.32 .560 | $0.035(5)$ | 7.5(1.1) | $0.5(2)$ |  | $-1.35$ | $-1.58$ |  |
|  |  |  | $6+8.370$ | $0.016(4)$ | 3.5(9) | 12(4) |  | $-1.66$ | $-1.15$ |  |
|  |  |  | 6.50 .3 .37 | $0.029(5)$ | 6.3 (1.2) | 3.3(1.7) |  | $-1.39$ | $-1.69$ |  |
|  |  |  | 671.073 | w | w |  |  | $w$ |  |  |
|  |  |  | 818.022 |  |  | 1.7(8) |  |  | $-1.76$ |  |
| 27695.961 | 6.5 | $24.6(5)$ | +20.291 | $0.067(6)$ | $38(t)$ | 67(20) | 38 | $-1.00$ | $-0.80$ | $-1.00$ |
|  |  |  | +46.7.34 | 0.902(9) | $513(12)$ | 592(59) | 140 | 0.19 | 0.19 | -0.39 |
|  |  |  | 602.174 | $0.00062)$ | 3. 4 (9) |  |  | $-1.73$ |  |  |
|  |  |  | 628.563 |  |  |  |  |  |  |  |
|  |  |  | 702.57t |  |  |  |  |  |  |  |
|  |  |  | 7.34.475 |  |  |  |  |  |  |  |
|  |  |  | 757.810 | $0.025(4)$ | $1+(3)$ | 17(5) | 4.6 | -0.90 | $-0.94$ | -1.40 |
|  |  |  | 902.242 |  |  | $1.8(9)$ |  |  | $-1.7 .3$ |  |
|  |  |  | 970.224 |  |  | +6(1+) |  |  | $-0.28$ |  |
| 28072.330 | 3.5 | $9.96(9)$ | 367.082 | 0.31(2) | 248(14) |  | 150 | -0.30 |  | $-0.52$ |
|  |  |  | 376.071 | (0.20(1) | 163 (1) |  | 120 | -0.46 |  | $-0.60$ |
|  |  |  | 393.84 .3 | w | w |  | 1.8 | $w$ |  | $-2.38$ |
|  |  |  | 406.8 .32 | $0.107(8)$ | $86(6)$ |  | 4 | $-0.67$ |  | $-0.96$ |
|  |  |  | +22.066 | 0.22(1) | $176(11)$ |  | 48 | $-0.3 .3$ |  | $-0.89$ |
|  |  |  | +86.5.39 |  |  |  |  |  |  |  |
|  |  |  | +99.203 | $0.037(t)$ | 30(3) |  | 11 | -0.95 |  | -1.37 |
|  |  |  | 515.504 | 0.104(9) | 88377 |  | 58 | $-0.48$ |  | $-0.63$ |
|  |  |  | 581.260 |  |  |  |  |  |  |  |
|  |  |  | 599.465 | $0.022(6)$ | 18(5) |  | 4.8 | $-1.02$ |  | $-1.59$ |
|  |  |  | 6.3 .760 |  |  |  | 5.7 |  |  | $-1.48$ |
|  |  |  | $6+4.753$ |  |  |  |  |  |  |  |
|  |  |  | 699.3+0 |  |  |  |  |  |  |  |
| 28151.400 | 5.5 | $29.3(4)$ | 385.791 | 0.10(1) | +2(4) |  | 32 | $-1.03$ |  | -1.14 |
|  |  |  | .398.314 | (0.24(2) | $97(7)$ |  | 46 | -0.64 |  | $-0.96$ |
|  |  |  | +12.395 | 0.20) 2 ) | $82(6)$ |  | 46 | $-0.68$ |  | $-0.93$ |
|  |  |  | +20.662 | 0.14(1) | $59(5)$ |  | 18 | $-0.81$ |  | -1.33 |
|  |  |  | +37.82+ | $0.23(2)$ | $93(7)$ |  | 61 | $-0.57$ |  | $-0.76$ |
|  |  |  | 611.065 | 0.0) $+4(6)$ | $18(2)$ |  | 8.5 | $-1.00$ |  | $-1.32$ |
|  |  |  | $687.2+2$ | $0.05(1)$ | $18(4)$ |  | 6.t | $-0.89$ |  | -1.35 |
|  |  |  | 712.237 | w | $w$ |  | 3.0 | $w$ |  | - 1.65 |

Table 3. (crminuted).

| Hpper level encrgy ( $\mathrm{cm}{ }^{1}$ ) | . | Lifetime (10.) | Tramsition wavelengh (1110) | Branching ratio | $\left.g_{u} A_{u},\left(10^{\prime \prime}\right)^{\prime}\right)$ |  |  | $\log \left(g_{1}, f_{14}\right)$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | This work | XSQCiB" | $\mathrm{CB}^{3}$ | This work | XSQCiB" | $\mathrm{CB}^{\prime \prime}$ |
| $2 \times 191.961$ | 4.5 | 37(1) | . $37+.387$ | 0.3812) | $1(1)+(7)$ |  |  | -0.66 |  |  |
|  |  |  | 385.188 | 0.15(2) | +1(4) |  | 29 | -1.04 |  | -1.19 |
|  |  |  | +(1).861 | 0.047 (9) | 13(2) |  | 1.3 | $-1.51$ |  | $-1.49$ |
|  |  |  | +19.9+5 | 0.16(2) | $t+(4)$ |  | 18 | 0.94 |  | -1.33 |
|  |  |  | $+37.0 .47$ | $0.106(1)$ | 1603) |  | 3.1 | -1.33 |  | -2.16 |
|  |  |  | 512.344 | w | W |  |  | W |  |  |
|  |  |  | 532.18 .3 | $0.0 .3 .3(7)$ | $9 .(1)$ |  |  | -1.42 |  |  |
|  |  |  | 555.054 | $0.022(7)$ | $5.9(2.0)$ |  |  | -1.56 |  |  |
|  |  |  | 580.162 | w | W |  | 1.6 | W |  | $-2.18$ |
|  |  |  | 619.147 | w | W |  |  | W |  |  |
|  |  |  | 626.408 | w | W |  |  | W |  |  |
|  |  |  | 649.081 | 0.14(2) | 38(5) |  | 6.1 | -0.62 |  | $-1.42$ |
| 28.250 .320 | 3.5 | $35.7(2)$ | 364.619 | $0.000(1)$ | 1.3(2) |  |  | $-2.57$ |  |  |
|  |  |  | 37.3 .486 | $0.02 .3(2)$ | $5.1(5)$ |  |  | -1.97 |  |  |
|  |  |  | $38+.23 .5$ | $0.089(7)$ | $20(2)$ |  | 18 | $-1.36$ |  | $-1.39$ |
|  |  |  | 391.009 | $0.0 .38(+1)$ | $8.6(10)$ |  | 5.6 | -1.71 |  | $-1.89$ |
|  |  |  | +0.3.809 | $0.071(7)$ | $10(1)$ |  | 9.6 | - 1.41 |  | $-1.6 .3$ |
|  |  |  | +18.813 | $0.65(2)$ | $1+6(5)$ |  | 70 | -0.42 |  | -0.74 |
|  |  |  | 510.6 .59 | 0.0216 .31 | $4.7(6)$ |  |  | $-1.73$ |  |  |
|  |  |  | 602.370 | $0.017(5)$ | $3.8(1.1)$ |  |  | $-1.69$ |  |  |
|  |  |  | 607.450 | $0.01+(5)$ | $3.1(1.0)$ |  |  | $-1.76$ |  |  |
|  |  |  | 62.3.892 | 0.()19(6) | +.4(1.3) |  |  | $\cdots 1.59$ |  |  |
|  |  |  | 6.37.192 | 0.02+(7) | $5.3(1.5)$ |  |  | -1.49 |  |  |
|  |  |  | 690.4.42 | $0.027(9)$ | 0.012 .11 |  |  | $-1.37$ |  |  |
| $28+4.4 .30$ | 3.5 | 12.5(2) | 302.121 | 0.2312) | 147(10) |  | 1.30 | -0.54 |  | -0.60) |
|  |  |  | 370.800 | $0.18(1)$ | $11+(8)$ |  | 65 | $-0.0 .3$ |  | $-0.87$ |
|  |  |  | $3 \times 1.463$ | $0.058(5)$ | .37(3) |  | 31 | -1.09 |  | $-1.17$ |
|  |  |  | $.388 .138$ | $0.092(7)$ | $59(5)$ |  | 33 | $-0.88$ |  | . 1.12 |
|  |  |  | $400.748$ | $0.0676(6)$ | $+3+1$ |  | 32 | $-0.98$ |  | $-1.11$ |
|  |  |  | $+1.5 .521$ | $0.17(1)$ | $107(8)$ |  | 10 | $-0.56$ |  | $-0.90$ |
|  |  |  | +77.865 | W | w |  |  |  |  |  |
|  |  |  | 490.07.3 | 0.06121 | $35(9)$ |  | 4.9 | $-0.90$ |  | $-1.75$ |
|  |  |  | 515.77 .3 | 0.11111 | $7.3(8)$ |  | 11 | -0.55 |  | $-1.36$ |
|  |  |  | $595.583$ | ().()+11) | $25(9)$ |  |  | 0.88 |  |  |
|  |  |  | $757.225$ |  |  |  |  |  |  |  |
| 28.540 .119 | 5.5 | 21.5(7) | $380.089$ | 0.14(1) | $80(7)$ |  | 59 | . 0.70 |  | $-0.89$ |
|  |  |  | $392.2 .39$ | $0.36 \times 2)$ | 201(13) |  | 170 | -0.3.3 |  | $-0.40$ |
|  |  |  | $405.886$ | $0.10 \%(9)$ | $56(5)$ |  | $31$ | $-0.86$ |  | $-1.11$ |
|  |  |  | $+13.892$ | $0.02 .365$ | $13.3)$ |  | $3.7$ | $-1.48$ |  | $-2.02$ |
|  |  |  | +.30.495 | $0.0)^{2}(9)$ | $52(5)$ |  | 24 | $-0.8 t$ |  | $-1.17$ |
|  |  |  | $522.49)$ | 0.012121 | $6.5(1.4)$ |  |  | - 1.57 |  |  |
|  |  |  | 54.5.524 | 0.010131 | $5.6(1.8)$ |  |  | $-1.60$ |  |  |
|  |  |  | 568.672 | 0.0 .31151 | $18(3)$ |  |  | $-1.107$ |  |  |
|  |  |  | 590.88 .3 | 0.02060) | 15,3) |  | 7.7 | -1.10 |  | $-1.38$ |
|  |  |  | (r)K.079) | 1 | $w$ |  |  | W |  |  |
|  |  |  | 0.36. 8.27 | $0.0 .37(8)$ | $21(5)$ |  | 4.9 | $-0.90$ |  | $-1.52$ |

Table 3. (coms lided $)$.

"Rel. It.
"Rel. 8.
"Unerowed linen in this work.

Table 4. Tramsition probabilities and oscilfator strengths derived from branching-ratio and lifetime data. Data from this work are compared with these of ref. 9. Branches that were observed but were too small to tit are indicated by the letter $w$. The issue of unobserved branches is diseussed in the text.

| Upper level energy$\text { (cill }{ }^{1}$ | Lifetime (ns) | . | Tramsition wavelength ( mm ) | $g_{4} \lambda_{u}\left(100^{\prime \prime} s^{\prime}\right)$ |  | $\log \left(g_{1} f_{1 \prime}\right)$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | This work | SW" | This work | SW ${ }^{\prime \prime}$ |
| 27695.961 | $24.6(5)$ | 6.5 | +20.291 | 38(4) | 160 | $-0.998$ | $-0.37 .3$ |
|  |  |  | +46.7.34 | 513(12) | 672 | (0.187 | 0.300 |
|  |  |  | 602.174 | 3. $+(0.9)$ | 3.4 | $-1.7 .32$ | $-1.74 .5$ |
|  |  |  | 628.56 .3 |  |  |  |  |
|  |  |  | 702.574 |  |  |  |  |
|  |  |  | 7.3.47.5 |  | 18 |  | $-0.8 .36$ |
|  |  |  | 757.810 | $1+(3)$ | 28 | $-0.905$ | -0.629 |
|  |  |  | $902.2+2$ |  |  |  |  |
|  |  |  | 970.224 |  |  |  |  |
| 28072.330 | 9.96 (9) | 3.5 | 367.082 | $2+8(1+1)$ | 120 | $-0.300$ | $-0.618$ |
|  |  |  | 376.1071 | $16.3(1)$ | 92 | $-0.462$ | $-0.710$ |
|  |  |  | 393.843 | W | 1.8 | W | $-2.398$ |
|  |  |  | 406.8 .32 | $86(6)$ | 38 | $-0.670$ | -0.189 |
|  |  |  | +22.066 | 176(11) | 29 | $-0.328$ | -1.114 |
|  |  |  | +86.5.39 |  | 14 |  | $-2.301$ |
|  |  |  | +99.203 | $3043)$ | 11 | $-0.952$ | $-1.377$ |
|  |  |  | 515.504 | 83.71 | $1+$ | $-0.479$ | -1.244 |
|  |  |  | 581.266 |  |  |  |  |
|  |  |  | $599 .+6.5$ | $18(5)$ | $+0$ | -1.022 |  |
|  |  |  | $623.766$ |  | $+.0$ |  | $-1.6 .38$ |
|  |  |  | $0+4.75 .3$ |  |  |  |  |
|  |  |  | (0)9.340 |  | 51 |  | $-0.42 .5$ |
| $28997.1+1$ | 9.01.5) | +. 5 | 36.3.+27 | $5+2(+1)$ | 300 | 0.0 .31 | -0.230 |
|  |  |  | 373.597 | $269(25)$ | 160 | -0.2+9 | $-0.475$ |
|  |  |  | .385.329 | 3173) |  | -1.162 |  |
|  |  |  | $+22.186$ | 17(4) | +.2 | -1.3.32 | $-1.950$ |
|  |  |  | $+77.108$ | w | 1.8 | 11 | $-2.211$ |
|  |  |  | +19.2.3.39 | $32(10)$ |  | $-0.938$ |  |
|  |  |  | $510.309$ | 112(27) | 7.3 | $-11.357$ |  |
|  |  |  | $589.7 .39$ |  | 6.1 |  | $1 .+98$ |
|  |  |  | 590.323 |  | 6.8 |  | $-1.440$ |
|  |  |  | 616.8 .34 | $12(t)$ | 3.6 | 1.181 | 1.087 |
|  |  |  | 76.3.177 |  | 2.9 |  | $-1.596$ |

"Rel"

## References

1. (i.M. Wahloren. Phys. Sor. T. 100. 22 (2002).
2. E. Bićmont and P. Quinet. Plys. Ser. T. 105. 38 (20003).
3. (C.R. Cowley, T. Ryabchikona, I: Kupha, D.J. Bord. G. Mathys, and W.P. Bidelman. Mon. Not, R. Auron. Soc. 317. 299 (2000).
4. S. Valledair: Space Sci. Rev. 85. 161 (1998).
5. J.J. Cury. E.A. Den Hartog. and J.E. Lawler. J. Opt. Soc. Am. B, 14. 2788 (1907).
6. W.E. Megers. ('.H. Cortiss, and B.E: Scribner. NBS Monograph 32. Parts I and II. II.S. (iovermment

Printing Office, Washington, DC. 1961.
7. W.F. Meggers. C.H. Corliss, and B.E. Scribner. NBS Monograph 145. Parts I and II. W.S. Government Printing Office, Washington. DC. 1975.
8. C.H. Corliss and W.R. Borman. Monograph 53. L'.S. National Bureau of Standards. Washington. DC.
9. L. Satfinam and W. Whaling. J. Quantum. Spectrose. Radiat. Trams. 21. 93 (1979).
10. T. Andersen. O. Poulsen. T.S. Ramamujam, and A.P. Petkov. Sol. Phys. 44. 257 (1975).
11. R.I. Kuruce and B. Bell. Atomic line data. Kuruč CD-ROM No. 23. Smithsonian Astrophysical Ohservatory, Cambridge, Mass, 1995.
12. hup://cfa-www.harvard.edu/amdata/ampdata/kuruc/23/sckur.html
13. A. Kastherg. P. Villemoes, A. Arnesen. F. Heijhenskjöld, A. Langereis, P. Jungner, and S. Limatus. Z. Phys. D. 28. 289 (1993).
14. H.L. Xu. S. Svanberg. P. Quiner. H.P. Garmir. and E. Biemont. J. Phys. B: At. Mol. Phys. 36. 4773 (200.3).
15. http://w. 3. umh.ac.be/~astro/dream.shml
16. T.J. Scholl. R.A. Holt, D. Masteman, R.C. Rivest, S.D. Resner, and A. Sharikova. Cam. J. Phys. 80. 1621 (2002).
17. Z.. Zhiguo, Z..S. Li, H. Lundherg. K.Y. /hang, Z..W. Dai, J. Zhanhui, and S. Svanherg. J. Phys. B: At. Mol. Opt. Phys. 33. 521 (20)0)
18. W. Demeroder. Laser spectrocenpy. Springer. Berlin. I990.
19. S.L. Kaufman. Opt. Commun. 17. 309 (1976).
20. J.L. Hall and S.A. Lee Appl. Phys. Ledt. 29. 367 (1976).
21. L.H. Cadwell. Am. J. Phys. 64. 917 (199)
22. P.M. Kock. I..I) (Gardner, and J.E. Baylield. In Beam-foil spectroseopy. Vol. 2. Edited by I.A. Sellin and D.J. Pegg. Plenum. New York. 1976, p. 829.
23. 1.. Kaly and R. Shepheral. J. Phys. E: Sci. Instrum. 16. 295 (1983).
24. W.C. Martin and W.L. Wiese. In Atomic, molecular. \& optical physios handbook. Edited be G.W.F. Drake. AIP. New York. 1996.

## Appendix A. Fiber array design

In this experiment it is very important that the observed LIF intensities be accurately proportional to the Einstein A coefficients for spontaneous emission. Excitation of ions by a linearly polarized laser beam produces unequal populations in the \%eman sublevels of the upper state, chatacterized as an alignment, resulting in an anisotropic radiation pattern. The practical impossibility of constructing an impartial $4 \pi$-solid-angle l. If detector introduces a potential bias into branching-ratio measurements. In this Appendix. we show that this soure of systematic error can be eliminated by careful design of the detection system, and present two diflerent solutions to the problem, both of which were implemented in our apparatus.

Consider atransition from agisen upper level $\|$ with angular-momentum quantum numbers $J_{14} . M_{1 \prime}=$
 $1 . \ldots . I_{1}$. We take the - -axis atong the direction of the electric tied of the laser radiation. The upperlevel populations $P\left(M_{i t}\right)$ created by absorption of laser photons will be unequal, and atre assumed to be completely arbitary: The electrie-dipole selection rules allow a given sublevel $M_{\text {a }}$ (odecay to at most) thee lower levels, $M_{t}=M_{I \prime}+\Delta M$ where $\Delta M=0 . \pm 1$. with relative probabilities given $\mid$ A. 1 by the syuared Clebsch-Gordant conticients $\left|\left\langle I_{1}, M_{1}, I . \Delta M \mid I_{1}, M_{t}\right\rangle\right|^{2}$. These three $\Delta M=0$. $\pm 1$ tramsitions have electric-dipole angular distributions $|\mathrm{A} .1|$ given by

(Al)

The total rate of spontaneons emionion from a particular sublevel $M_{a}$ via the branch $" \rightarrow 1$ is given by the product $P\left(M_{11}\right) I_{1 / 1}$. To calculate the rate of emission into the solid angle sin $\theta$ d $f$ d $\phi$. we
multiply this by the electric-dipole angular-distribution function. which can be obtained by summing the three $\Delta M=0 . \pm 1$ angular distributions weighted by the corresponding squatred Clebsch-Gordan coefiticients. The radiation pattern is independent of the arimuthal angle $\psi$. Thus

The total detected intensity $I_{\text {total }}$ can then be obtained by integrating the product of this angular distribution with the angular efficiency function of the detector, $\mathscr{F}(\theta, \phi)$ and summing over $M_{\|}$

Suppose we had a detector that responded impartially over the fill $4 \pi$ solid angle, i.e., $f(\theta, \phi)=$ constant $\equiv f_{0}$. Then, becaluse
$\int_{0}^{27} \mathrm{~d} d \int_{0}^{7} \sin (\theta) \sin \theta \mathrm{d} \theta=1$
for (III) $\Delta M$

$$
\begin{align*}
& =\sum_{M_{u}:-J_{u}}^{J_{u}} P\left(M_{u}\right) A_{1 \prime \prime}+\left.0 \sum_{, M-1,11}\left|\left\langle I_{11}, M_{u}, 1, \Delta M\right|, J_{1}, M_{1}\right)\right|^{2} \\
& =\sum_{M_{u}==I_{u \prime}}^{I_{u}} P\left(M_{\| \prime}\right) A_{u \prime} \varepsilon \| \tag{A5}
\end{align*}
$$

in which we have used the orthonormality of the Clebsch-Gordan coefficients. Since the total population $\sum_{M_{u}} P\left(M_{u}\right)$ is the same for all branches from a common upper level we obtain a total intensity proportional to the Einstein A coefficient. The challenge in the present experiment is to obtain the correct intensities without having an impartial $4 \pi$-steradian detector.

We have found two experimental designs that overome this difficulty. The first makes use of a detector placed at the "magic" angle that hats been applied in fields as diverse as electron energy-loss spectroscopy (EELS)|A.2|. NMR spectroscopy $\mid$ A.3] . and Raman scattering from liquids $\mid$ A. 4 | . This is simply the angle $\theta_{\text {magic }}=\cos ^{1}(1 / \sqrt{3}) \approx 54.7$ at which $\sin ^{2} \theta_{\text {matic }}=1 / 2\left(1+\cos ^{2} 0_{\text {magic }}\right)$. At this angle $S_{, ~}^{1, N}$ ( $\theta_{\text {mavic }}$ ) $=1 / 4 \pi$ for amy $\Delta M$ and can be removed from the sum; the orthonomality of the Clebsch-Gordan coeflicients then yields
and is thus proportional to the Einstein $A$ coefficient. In our LIF detector, one set of fibers is arranged at polar angles close to $\theta_{\text {magic. }}$

A second solution to the problem is suggested by the solid-angle integration in (A.4). If we were to simply arrange a ring of fibers tinformly distributed in $\theta$. we would have an approximate experimental realization of the integral f $\mathrm{d} \theta$ : however, if instead we dispose the fibers non-uniformly in such a manner as to have a density of fibers $\mathrm{d} N / \mathrm{d} \theta \propto \sin \theta$, the collected signal from a single ring of fibers will in effect perform the corred $4 \pi$ solid-angle integration $f \mathrm{~d} \theta \sin \theta$ "in hardware".

Numerical studies of both of these techniques verified that neither employment of a finite acceptance angle centred at the magic angle nor the finite approximation to the sin $\theta$ density distribution had an appreciable effect on obtaining accurate BRs. As a further check, we interchanged the roles of the two sets of fibers in the experiment and found no significant change in the measured BRs, as discussed above.

## References

A.I. E.U. Condon and G.H. Shortley. The theory of atomic spectra. Cambridge University Press. London. 1967. Chap. 4 . Sect. 5.
A.2. Y. Sum and J. Yuan. Phys. Rev. B. 71. 125109-1 (2005).
A.3. I.J. Lowe. Phys. Rev. Leti. 2. 285 (1959).
A.4. L.J. Kaufman, J. Heo, L.D. Ziegler, and G.R. Fleming. Phys. Rev. Lett. 88. 207402-1 (20)2).


[^0]:    Received 3 December 2005. Accepted 15 May 2006. Published on the NRC Research Press Web site at http://cjp.nrc.ca/ on 16 September 2006.
    S.J. Rehse, R. Li, T.J. Scholl, A. Sharikova, R. Chatelain, R.A. Holt, and S.D. Rosner. ${ }^{1}$ Department of Physics and Astronomy, University of Western Ontario, London, ON N6A 3K7, Canada.
    ${ }^{\prime}$ Corresponding author (e-mail: rosner@uwo.ca).

[^1]:    (1) 2060 NRC C amada

