
Spectrochimica Acta Part B 87 (2013) 161–167

Contents lists available at ScienceDirect

Spectrochimica Acta Part B

j ourna l homepage: www.e lsev ie r .com/ locate /sab
A comparison of multivariate analysis techniques and variable selection strategies in
a laser-induced breakdown spectroscopy bacterial classification

Russell A. Putnam a,1, Qassem I. Mohaidat b, Andrew Daabous a,1, Steven J. Rehse a,⁎
a Department of Physics, University of Windsor, Windsor, Ontario N9B 3P4, Canada
b Department of Physics, Yarmouk University, Irbid 21163, Jordan
⁎ Corresponding author. Tel.: +1 519 253 3000; fax:
E-mail addresses: putnamr@uwindsor.ca (R.A. Putna

(Q.I. Mohaidat), daabousa@uwindsor.ca (A. Daabous), r
1 Fax: +1 519 973 7075.

0584-8547/$ – see front matter © 2013 Elsevier B.V. All
http://dx.doi.org/10.1016/j.sab.2013.05.014
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 15 November 2012
Accepted 12 May 2013
Available online 20 May 2013

Keywords:
Laser-induced breakdown spectroscopy
Bacterium
Discriminant function analysis
Partial least squares discriminant analysis
Multivariate analysis
Laser-induced breakdown spectroscopy has been used to obtain spectral fingerprints from live bacterial spec-
imens from thirteen distinct taxonomic bacterial classes representative of five bacterial genera. By taking
sums, ratios, and complex ratios of measured atomic emission line intensities three unique sets of indepen-
dent variables (models) were constructed to determine which choice of independent variables provided op-
timal genus-level classification of unknown specimens utilizing a discriminant function analysis. A model
composed of 80 independent variables constructed from simple and complex ratios of the measured emission
line intensities was found to provide the greatest sensitivity and specificity. This model was then used in a
partial least squares discriminant analysis to compare the performance of this multivariate technique with
a discriminant function analysis. The partial least squares discriminant analysis possessed a higher true
positive rate, possessed a higher false positive rate, and was more effective at distinguishing between highly
similar spectra from closely related bacterial genera. This suggests it may be the preferred multivariate tech-
nique in future species-level or strain-level classifications.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Since the initial demonstrations of bacterial identification with
laser-induced breakdown spectroscopy (LIBS) in 2003, significant
progress has been made in the use of multivariate chemometric anal-
yses to classify unknown bacterial LIBS spectra [1–4]. Over the last
five years we and others have demonstrated a sensitive and specific
identification of live bacterial biospecimens utilizing a discriminant
function analysis (DFA) to classify LIBS spectra [5–8]. The intensities
of strong specific elemental atomic emission lines normalized by the
total observed spectral power have been utilized as independent vari-
ables in this multivariate analysis [9]. The selection of specific spectral
lines to serve as independent variables in the multivariate analysis is
known as variable down-selection [10]. However it is not yet known
whether the use of down-selected variables or the entire LIBS spec-
trum provides optimal discrimination and classification of unknown
LIBS spectra, and this is an ongoing area of investigation [11,12]. It
is also not known which multivariate analysis technique, if any, pro-
vides superior classification given a choice of independent variables,
and multiple chemometric algorithms are still widely utilized for bac-
terial identification including principal component analysis (PCA),
linear discriminant analysis (LDA), partial least squares discriminant
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m), q.muhaidat@yu.edu.jo
ehse@uwindsor.ca (S.J. Rehse).

rights reserved.
analysis (PLS-DA), neural network (NN) analysis, partial least squares
(PLS) regression, and support vector machine classification (SVM)
[13–18].

To investigate these various strategies, we have compared the use
of three different down-selected variable models consisting of emis-
sion intensities, the sum of observed intensities from the elements
P, Ca, Mg, Na, and C, and complex ratios of those intensities in identi-
cal external validation tests. Variables were down-selected from
bacterial LIBS spectra obtained from five different genera and 13 dis-
tinct taxonomic classes of species and strains [8]. Model performance
was quantified by calculating truth tables (and the resulting sensitiv-
ity and specificity) from the external validation tests. Lastly, the down
selected variable model which provided the most accurate classifica-
tion was tested in a PLS-DA multivariate analysis to provide a direct
comparison with the performance of the DFA.

2. Experimental

2.1. Experimental setup

The LIBS apparatus used to obtain the bacterial spectra, as well as
our bacterial sample preparation and mounting protocols, have been
described at length elsewhere [5,19]. Briefly, 1064 nm infrared laser
pulses 10 ns in duration were used to ablate the bacterial specimens
mounted on a 0.7% nutrient-free agar substrate in an argon environ-
ment. LIBS emission was collected 2 μs after the ablation pulse and
dispersed in an Échelle spectrograph, and the spectra were recorded
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Fig. 1. A representative LIBS spectrum of a bacterial target ablated in an argon environment at atmospheric pressure. The atomic emission lines used in the bacterial discrimination
indicated by an “*” in Table 3 are indicated in this spectrum. Emission features that were seen but were unused in the discrimination are indicated with a superscript “u”.
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by an intensified charge-coupled device (ESA3000, LLA Instruments,
GmbH). Pulse energies were approximately 10 mJ/pulse and each
spectrum was averaged from spectra acquired at five sampling loca-
tions, each approximately 100 μm in diameter. Approximately 7500
bacterial cells in total were ablated for each spectrum [5]. A represen-
tative LIBS spectrum of a bacterial target ablated on an agar substrate
in an argon atmosphere is shown in Fig. 1. This spectrum is the aver-
aged accumulation of five separate sampling locations. Five spectra
were acquired at each sampling location, thus twenty-five laser
pulses were used to obtain this spectrum.

The bacteria were chosen to represent a fairly wide taxonomic
range. Spectra were acquired from representative Gram-negative phe-
notypes (Escherichia coli and Enterobacter cloacae), Gram-positive
Table 1
Identities of the 32 data sets used to construct a spectral library composed of 669 bacterial

Genus Bacterial ID

1: Escherichia 1: E. coli ATCC 25922
1: E. coli ATCC 25922
1: E. coli ATCC 25922
1: E. coli ATCC 25922
2: E. coli O157:H7 (EHEC)
3: E. coli C
3: E. coli C
3: E. coli C
3: E. coli C
3: E. coli C
3: E. coli C
3: E. coli C
3: E. coli C
4: E. coli HF4714
5: E. coli Hfr-K12

2: Enterobacter 6: E. cloacae ATCC 13047
3: Staphylococcus 7: S. saprophyticus

8: S. aureus
4: Streptococcus 9: S. mutans

10: S. viridans
10: S. viridans
10: S. viridans
10: S. viridans
10: S. viridans
10: S. viridans

5: Mycobacterium 11: M. smegmatis WT
11: M. smegmatis WT
11: M. smegmatis WT
11: M. smegmatis WT
11: M. smegmatis WT
12: M. smegmatis TE
13: M. smegmatis TA
phenotypes (two species of Staphylococci and two species of Streptococ-
ci), and the atypical acid-fast Mycobacterium phenotype (three strains
ofMycobacterium smegmatis). In total, LIBS spectra from 13 unique bac-
terial strains were obtained in 32 completely distinct experiments (e.g.
cultured in different media, grown on different days over the course of
18 months, and exposed to different environmental stresses) [8]. This is
shown in Table 1.

The five representative bacterial genera that were tested are listed
in the first column of Table 1 and the thirteen bacterial taxonomic
groups tested (e.g. E. coli strain C, E. coli strain HF4714, Staphylococcus
aureus, Staphylococcus saprophyticus) are listed in column two. The 32
distinct experiments that were performed yielded the 32 data sets
shown in column three of Table 1. Each distinct experiment was
LIBS spectra.

Data set

1: E. coli ATCC 25922
2: E. coli ATCC 25922/E. cloacae (10:1)
3: E. coli ATCC 25922/E. cloacae (100:1)
4: E. coli ATCC 25922/E. cloacae (1000:1)
5: E. coli O157:H7
6: E. coli C
7: E. coli C — cultured on MacConkey agar
8: E. coli C — starved for 1 day
9: E. coli C — starved for 4 days
10: E. coli C — starved for 6 days
11: E. coli C — starved for 8 days
12: E. coli C — autoclaved
13: E. coli C — UV exposed/killed
14: E. coli HF4714
15: E. coli Hfr-K12
16: E. cloacae ATCC 13047
17: S. saprophyticus
18: S. aureus
19: S. mutans
20: S. viridans
21: S. viridans — starved for 1 day
22: S. viridans — starved for 6 days
23: S. viridans — starved for 9 days
24: S. viridans — UV exposed/killed
25: S. viridans — autoclaved
26: M. smegmatis WT — 90% dilution
27: M. smegmatis WT — 60% dilution
28: M. smegmatis WT — 50% dilution
29: M. smegmatis WT
30: M. smegmatis WT — 100% concentration
31: M. smegmatis TE
32: M. smegmatis TA



Table 3
The 80 independent variables used in ratio model two (RM2).

P213.618 (p1)a p1/na1 p4/c mg2/na2
P214.914 (p2)a p1/na2 p4/mg1 mg3/c
P255.326 (p3)a p2/c p4/mg2 mg3/ca1
P253.560 (p4)a p2/mg1 p4/mg3 mg3/ca2
C247.856 (c)a p2/mg2 p4/ca1 mg3/ca3
Mg279.553 (mg1)a p2/mg3 p4/ca2 mg3/na1
Mg280.271 (mg2)a p2/ca1 p4/ca3 mg3/na2
Mg285.213 (mg3)a p2/ca2 p4/na1 ca1/c
Ca393.361 (ca1)a p2/ca3 p4/na2 ca1/na1
Ca396.837 (ca2)a p2/na1 mg1/c ca1/na2
Ca422.666 (ca3)a p2/na2 mg1/ca1 ca2/c
Na588.995 (na1)a p3/c mg1/ca2 ca2/na1
Na589.593 (na2)a p3/mg1 mg1/ca3 ca2/na2
p1/c p3/mg2 mg1/na1 ca3/c
p1/mg1 p3/mg3 mg1/na2 ca3/na1
p1/mg2 p3/ca1 mg2/c ca3/na2
p1/mg3 p3/ca2 mg2/ca1 c/na1
p1/ca1 p3/ca3 mg2/ca2 c/na2
p1/ca2 p3/na1 mg2/ca3 mg3/mg1
p1/ca3 p3/na2 mg2/na1 mg3/mg2

a Indicates a line used in the “lines” model.
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performed with one aliquot of bacteria prepared separately from the
others and thus each data set represents completely unique experi-
mental data. For example, data set 6, “E. coli C” which would have
yielded approximately 20 spectra and data set 12, “E. coli C —

autoclaved” which would have yielded another 20 spectra, were all
obtained from aliquots ultimately derived from the same mother
strain of bacteria, but tested many months apart from each other,
grown from completely different cultures each using freshly prepared
nutrient media, and handled differently. In this case one of the ali-
quots was placed in a microbiological autoclave prior to testing to
render the sample inactive. Also, the LIBS apparatus would have
been cycled dozens of times in between the acquisition of these
data sets (including the cleaning of optics, realignment of beams,
and adjusting of laser pulse energy for use in other experiments)
This point should be emphasized, as the high degree of reproducibil-
ity through time evidenced by the chemometric classification of these
spectra suggests that these results were not very sensitive to uncon-
trollable experimental fluctuations that would be expected in mea-
surements taken over such a long period of time and with bacterial
specimens handled in such disparate ways. We believe this is an indi-
cator of the highly robust nature of the LIBS-based identification
method.

Twenty to thirty spectra were obtained in approximately 30 min
in each experiment yielding the data sets shown for a total of 669
LIBS spectra. The number of spectra obtained in any one experiment
was limited only by the ability to translate the laser spot around the
approximately 1 cm2 bacterial deposition. Although efforts were
taken to try to obtain highly similar spectra from each bacterial depo-
sition, no data “outliers” were omitted from our data sets and efforts
were made to maximize the number of spectra from every bacterial
deposition rather than to standardize the number of spectra taken.

2.2. Models for chemometric analysis (lines, RM1, and RM2)

The three independent variable models that were tested are
referred to here as the “lines” model, ratio model one (RM1), and
ratio model two (RM2). The lines model was the simplest of the
three, having been used in all our previous work. It consisted of the
intensities of thirteen strong emission lines normalized by the total
spectral power of the LIBS spectrum. The intensity of a line was
taken to be the total integrated area under the curve of the
background-subtracted emission line profile and the total spectral
power was the sum of the thirteen intensities. The identities of the
thirteen lines are provided in the detailed discussion of RM2 below
and are shown in the spectrum in Fig. 1.

RM1 consisted of 24 independent variables, shown in Table 2. The
first five variables were the sums of the measured intensities for each
element including the sum of four phosphorus lines, one carbon line,
three magnesium lines, three calcium lines, and two sodium lines. No
distinction was made between lines from neutral and singly-ionized
species in these sums. This strategy was briefly investigated, but
Table 2
The twenty-four independent variables used in ratio model one
(RM1).

P (sum) Mg/Ca
C (sum) Mg/Na
Mg (sum) Ca/Na
Ca (sum) Ca/(P + Mg)
Na (sum) Mg/(Ca + P)
P/C P/(Ca + Mg)
P/Mg Ca/(C + Na)
P/Ca Mg/(C + Na)
P/Na P/(C + Na)
C/Mg (Ca + P + Mg)/C
C/Ca (Ca + P + Mg)/Na
C/Na (Ca + P + Mg)/(C + Na)
was found to add little to the analysis. Aside from the fact that these
lines were highly robust and exhibited excellent signal-to-noise in
the bacterial LIBS spectrum, these five specific elements (P, C, Ca,
Mg, and Na) are very important to bacterial function and physiology,
and thus to the LIBS-based identification. This has been discussed by
us in depth previously [9].

The remaining nineteen variables were composed of ratios of
these sums (ten independent variables) and also unique combina-
tions of the summed intensities forming complex ratios (nine inde-
pendent variables). This approach has been utilized with success by
Gottfried et al. to discriminate LIBS spectra obtained from explosive
residues [14,20].

RM2 consisted of 80 independent variables, shown in Table 3. The
first thirteen variables were merely the intensities of the thirteen
strong emission lines used in the lines model (indicated by an aster-
isk). These variables are identified by their element symbol and
their wavelength in nanometers, as well as a shorthand identifier in
parentheses. The remaining 67 variables were simple ratios of these
thirteen intensities. Although complex ratios of these variables can
be constructed as was done in RM1, this quickly raised the total num-
ber of independent variables in the model to such a large number that
it was deemed not practical both for computational reasons and to
avoid over-determining the data. It was decided that when the
dimensionality of the original data was not reduced significantly
then the benefits of performing a down-selection were reduced and
the more appropriate model would be to use the entire spectrum.
This was not done by us due to the size of the spectrum (>54,000
channels) and the presence of spectral “gaps” in the spectrum due
to optical design constraints within the Échelle spectrometer. Only
down-selected models were investigated.

2.3. Chemometric analysis techniques

Two multivariate chemometric analysis techniques were com-
pared for discrimination between different bacterial genera based
on the LIBS emission spectra. The two techniques compared in this
study were a discriminant function analysis (DFA) performed with
SPSS v.19 (IBM, Inc.) and a partial least squares discriminant analysis
(PLS-DA) performed with the PLS_toolbox v6.7.1 running under
Matlab v7.6 (Eigenvector Research, Inc.). These two analysis tech-
niques were compared using the down selected variables in RM2.

DFA is a multivariate analysis technique that uses independent vari-
ables (atomic emission intensities) to calculate a dependant variable
(bacterial identity) to classify or discriminate between two or more
groups [21]. The independent variables (contained in the model) are
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used to construct a set of discriminant functions which maximize
the variance between known data sets in a library. These discriminant
functions are then used to calculate discriminant function scores
which determine the identity of an unknown spectrum. In our DFA
comparison, the library was composed of five genera of bacteria, as
shown in column one of Table 1.

In each test of the DFA all the spectra in each of the 32 data sets
(typically 20–30 spectra per data set) were withheld and classified
one-by-one by a DFA library composed of the other 31 data sets.
Therefore 32 separate tests were performed. This is known as exter-
nal validation, because each spectrum was tested against a library
where no other spectra acquired at the same time or under the
same conditions were present. In comparison, a cross-validated test
only removes one spectrum at a time from the library and will
most likely return overly-optimistic results. Because only one data
set existed for E. cloacae ATCC 13047, this data set could not be with-
held for external testing, but the genus remained in the analysis to
provide a possible “false positive” result for similar bacteria. Thus
each spectrum, with no similar spectra in the training library, was
classified as belonging to either genus Escherichia, Enterobacter,
Staphylococcus, Streptococcus, or Mycobacterium in a series of 31 sep-
arate tests of the library. There is no “null test” in this analysis, as
every unknown spectrum must be assigned to one of those five
groups.

PLS-DA is a multivariate technique that finds the maximum vari-
ance between two groups. PLS-DA takes a set of independent vari-
ables as determined by our models and constructs latent variables
to maximize the variance between the two groups. The latent vari-
ables are predictor variables which are used to classify each spectrum.
The PLS-DA then calculates a discrimination line (or this can be
user-determined) to predict the class of each spectrum based on
Bayesian statistics by minimizing the number of false positives and
negatives [22]. In all of our results, the Bayesian-determined discrim-
ination line was utilized for spectral classification. The identity of
unknown spectra was then predicted based on this discrimination
line in the pre-compiled library. It is essentially a yes or no test
where one genus was grouped as the “yes group” and the remaining
four genera were grouped together as a “no group.” For example, we
could utilize this PLS-DA to determine if an unknown spectrum
belonged to genus Staphylococcus or not. If it was classified as “no,”
the PLS-DA did not tell us which of the other four genera it most
closely resembled. This analysis therefore allowed for a null test. All
unknown samples were classified in a PLS-DA test specific for each
genus, and if the test group was classified as belonging to the “no
group” for each model, it remained unknown and was not classified
as belonging to any genus. In this test of the PLS-DA, every spectrum
in the 31 data sets (again excluding E. cloacae) was tested in five dif-
ferent PLS-DAmodels, one for each genus. Because each of the 31 data
sets was withheld from the library in turn, this resulted in 155 sepa-
rate tests being performed. No preprocessing was used on the lines or
Table 4
Truth table results for three independent variable models utilized in a genus-level discrimi

Lines model Ratio model 1

Escherichia True False Escherichia Tr
Positive 89.97% 4.28% Positive 96
Negative 95.72% 10.03% Negative 92

Staphylococcus True False Staphylococcus Tr
Positive 62.16% 2.55% Positive 51
Negative 97.45% 37.84% Negative 98

Streptococcus True False Streptococcus Tr
Positive 83.82% 2.24% Positive 88
Negative 97.76% 16.18% Negative 99

Mycobacterium True False Mycobacterium Tr
Positive 89.61% 1.27% Positive 89
Negative 98.73% 10.39% Negative 98
ratio models in the PLS-DA since the variables had already been
down-selected from the whole spectrum model.

3. Results and discussion

3.1. Model comparison: lines, RM1, and RM2

The DFA technique was used to compare the three independent
variable models described in Section 2.2. The accuracy of classification
was reported in the form of truth tables which provide true positive
and negative results, as well as false positives and negatives. As men-
tioned earlier, since there was only one set of Enterobacter data no ex-
ternal validation could be performed so there are no truth tables for
this genus. Results were tabulated for every spectrum, then totaled
for each genus. The truth tables for the three models are shown in
Table 4.

In each of the DFA results, four discriminant functions (DF1
through DF4) were constructed to determine the classification of
each spectrum. When using the lines model DF1 accounted for ap-
proximately 74% of the variance among the data as determined by av-
eraging over the 31 tests. DF2 accounted for 20% of the variance in the
data on average, while DF3 and DF4 played a less-important role (ac-
counting for less than 6% of the combined variance). In these analyses
the independent variables C, Mg279, and Mg280 played important
roles in the construction of both DF1 and DF2 as revealed by their
structure matrix scores, while all four P lines accounted for much
less of the variance.

When using RM1, DF1 captured less of the variance of the data
than in the lines model accounting for 71% of the variance. DF2
accounted for 19% of the variance in the data while DF3 and DF4
played a more important role in discriminating between genera (ap-
proximately 10% of the total variance in the data). When using RM1,
the independent variables containing ratios with phosphorus played
a much larger role in the construction of DF1. P/(C + Na) and P/C
were the variables contributing most significantly to the construction
of DF1 as determined by the structure matrix. Since Na plays little to
no role in bacterial discrimination (often being a residue from the nu-
trition medium) these two variables are highly similar and in the fu-
ture it may be possible to eliminate complex ratios containing Na
such as P/(C + Na). Calcium ratios such as Ca/(C + Na) were signif-
icant in the construction of DF1 and DF2. Truth table results for the
RM1 model are shown in Table 4.

When using RM2, DF1 on average accounted for approximately
68% of the variance of the data, DF2 accounted for 18%, DF3 for 9%,
and DF4 for 5% of the variance of the data. As expected, when a great-
er number of independent variables were used, the DFA was able to
construct more effective discriminant functions (less of the variance
accounted for by just one function). DF3 and DF4 played a larger
role in discriminating between the classes (14% of the variance),
when using RM2 than the other models, but still constituted a
nant function analysis of bacterial LIBS spectra.

Ratio model 2

ue False Escherichia True False
.32% 7.95% Positive 95.65% 9.17%
.05% 3.68% Negative 90.83% 4.35%
ue False Staphylococcus True False
.35% 1.70% Positive 54.05% 0.51%
.30% 48.65% Negative 99.49% 45.95%
ue False Streptococcus True False
.24% 0.41% Positive 95.59% 1.02%
.59% 11.76% Negative 98.98% 4.41%
ue False Mycobacterium True False
.61% 1.06% Positive 88.31% 1.06%
.94% 10.39% Negative 98.94% 11.69%



Table 5
Truth table results for two multivariate techniques (DFA and PLS-DA) utilized in a
genus-level classification of bacterial LIBS spectra.

DFA: RM2 PLS-DA: RM2

Escherichia True False Escherichia True False
Positive 95.65% 9.17% Positive 89.63% 15.95%
Negative 90.83% 4.35% Negative 84.05% 10.37%

Staphylococcus True False Staphylococcus True False
Positive 54.05% 0.51% Positive 86.49% 5.85%
Negative 99.49% 45.95% Negative 94.15% 13.51%

Streptococcus True False Streptococcus True False
Positive 95.59% 1.02% Positive 99.26% 13.32%
Negative 98.98% 4.41% Negative 88.68% 0.74%
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relatively small fraction of the total variance. The independent vari-
ables Ca2/C, Ca1/C, and Ca3/C played the largest role in constructing
DF1 to discriminate between genera, with a large structure matrix
value for all 31 tests. P played a much smaller role in the construction
of the functions and many of the P lines and ratios had low correla-
tions with DF1–DF3. A graphical representation of the first two dis-
criminant function scores of all the spectra in an external-validation
DFA performed on data set 32 (M. smegmatis strain TA) is shown in
Fig. 2. The “unknown” bacterial spectra are represented by the “x”
symbols and 34 of 34 unknown spectra were correctly classified as
Mycobacterium, even though the model contained no other spectra
from strain TA. Truth table results for RM2 are shown in Table 4.
Mycobacterium True False Mycobacterium True False
Positive 88.31% 1.06% Positive 96.10% 4.08%
Negative 98.94% 11.69% Negative 95.92% 3.90%

Sensitivity 91.4 ± 16.4% Sensitivity 93.1 ± 10.3%
Specificity 97.5 ± 9.4% Specificity 90.6 ± 21.3%
3.2. Chemometric technique comparison: DFA vs. PLS-DA

Based on its performance in the DFA model comparison tests, RM2
was used in a comparison of the two analysis techniques of PLS-DA
and DFA. Utilizing RM2, the PLS-DA was performed as described in
Section 2.3 and a truth table of the results is shown in Table 5 (with
the DFA truth tables for RM2 repeated for ease of comparison). A
graphical representation of the external-validation PLS-DA performed
on data set 32 (M. smegmatis strain TA) is shown in Fig. 3. Again, the
“unknown” bacterial spectra are represented by the “x” symbols. In
Fig. 3(a) 34 of 34 unknown spectra were correctly classified as Myco-
bacterium in a “Mycobacterium” test where all other data sets were
grouped as “non-Mycobacterium.” In Fig. 3(b) the same 34 spectra
were tested in a “Streptococcus” test and 34 of 34 were correctly iden-
tified as not belonging to genus Streptococcus (a true negative). The
34 spectra were tested against the other genera as well (not
shown). In all cases the discrimination line was chosen by the
PLS_toolbox to minimize the number of false positives and negatives
in the library (model), as mentioned earlier. The sensitivity and spec-
ificity of each method were calculated and are given on the bottom of
Table 5. Sensitivity equals the number of true positives divided by the
6
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DF1

Fig. 2. The first two discriminant function scores of all the spectra in an external-
validation DFA utilizing ratio model two (RM2) performed on data set 32 (M.
smegmatis strain TA). The “unknown” bacterial spectra are represented by the “x”
symbols and 34 of 34 unknown spectra were correctly classified as belonging to genus
Mycobacterium, even though the model contained no other spectra from strain TA.
total number of true positives and false negatives times 100% and
specificity equals the number of true negatives divided by the total
number of true negatives and false positives times 100%.

The 80 independent variables used in RM2 were used in the
PLS-DA. These 80 down-selected independent variables were further
reduced to 20 latent variables (LVs). An investigation of the PLS-DA
was conducted to compare the number of LVs and the corresponding
rates of true positives and true negatives. Using a leave-one-out anal-
ysis performed by the PLS_toolbox, the PLS-DA chose the number of
latent variables to be consistently 4 or 5 for all the tests. Using various
data sets of Mycobacterium and Escherichia the latent variables were
then manually set from 0 to 20 and the number of true positives
and true negatives respectively were observed and plotted as a func-
tion of the number of LVs. Fig. 4 shows the rates of true positives
as a function of the number of LVs for data sets 26, 28, and 32
(M. smegmatis strain WT — 90% dilution, M. smegmatis strain WT —

50% dilution, and M. smegmatis strain TA). Data set 26 showed that
true positives increased up to 14 LVs, data set 28 showed increased
true positives up to16 LVs, and data set 32 showed increased true
positives to only 3 LVs. Similar results were seen for other data sets
and the true positives and true negatives were maximized for all
data sets when at least 20 LVs were used. For each test run thereafter
the number of LVs was forced to 20 in the PLS-DA. Ongoing research
is being conducted to further maximize the number of latent vari-
ables while considering the root mean squared error of calibration.

4. Discussion

A comparison of the DFA performed with the three different
models consisting of lines, RM1, and RM2 showed that RM2 yielded
the overall highest true positive and true negative rates with true
positive rates of 95%, 54%, 95%, and 88% for the four genera and true
negative rates of 91%, 99%, 99%, and 99%. Overall the sensitivity was
91.4 ± 16.4% and the specificity was 97.5 ± 9.4%. The sensitivity
and specificity were obtained by averaging the results from the 31
tests and the standard deviation is reported as the uncertainty. RM1
performed similarly, but slightly worse than RM2, with RM2 offering
a noted improvement in the performance of the Staphylococcus and
Streptococcus tests. In comparison, the lines model performed worst
with true positive rates of 90%, 62%, 83%, and 83% for the four genera
and true negative rates of 96%, 97%, 98%, and 98%. Although many of
these true positive rates are similar, it can be seen that the rates of
false positives and false negatives were reduced substantially by the
use of RM2. Having 80 independent variables allowed for more vari-
ance of the data to be expressed resulting in a better statistical classi-
fication of the unknown bacterial spectra. It should be mentioned that
prior knowledge of which elemental lines contributed most signifi-
cantly to accurate classification when using the lines model allowed
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the construction of appropriate ratios in RM2 which then resulted in
the improved classification demonstrated by RM2.

In the DFA tests it was shown that a DFA was able to effectively
classify a sample between five different genera. Lower sensitivity
was seen with Staphylococci data sets, but this is not indicative of
any issues related specifically to Staphylococci or to the multivariate
techniques. This was merely a result of there being only two repre-
sentative Staphylococci data sets to include in the analysis, as can be
seen in Table 1, with one of these data sets being among the earliest
experiments performed in the construction of the spectral library. It
is believed that the addition of newer and more varied Staphylococci
spectra will increase the sensitivity and specificity of this genus to
values seen in other genera. When the DFA was given an unknown
bacterial spectrum using any of the 31 libraries tested it was able to
classify the bacteria as one of the five classes with high sensitivity,
whereas our PLS-DA was effective in determining if the unknown
spectrum belonged to a specific class or not. If information is needed
about whether an unknown bacterium is or is not a certain class,
PLS-DA is the preferred method (i.e. in an online test of beef products
searching for spectra consistent with the presence of entero-
hemorrhagic E. coli). If the bacterial type needs to be known from
among multiple competing possibilities (i.e. in a clinical diagnostic)
DFA is probably the preferred technique, although it must be said
that it is possible to efficiently run a number of PLS-DA tests in
sequence to arrive at a statistical classification of the unknown spec-
trum. Therefore both analyses can perform both functions, if neces-
sary. In our classification tests PLS-DA yielded higher sensitivity
(93.1%) than the DFA (91.4%) with a smaller uncertainty on this
value, but possessed lower specificity (90.6%) than the DFA (97.5%)
with a larger uncertainty. Importantly, marked improvement was
demonstrated by the PLS-DA with the problematic Staphylococci
data sets. PLS-DA was able to identify more bacteria correctly,
possessing a higher true positive rate but identified more bacteria
incorrectly, possessing a higher false positive rate than the DFA.
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PLS-DA seems to be more effective at distinguishing bacteria from
similar genera. For example, M. smegmatis and E. coli are similar in
composition and were identified incorrectly as each other more com-
monly in the DFA than in the PLS-DA. PLS-DA was able to statistically
find the variance between LIBS spectra from similar bacteria and reli-
ably discriminate them. It may therefore be true that a DFA is more
effective in genus-level discrimination on bacterial specimens with a
wide range of potential identities, but discrimination at the species-
or strain-level once the genus is accurately identified may require
the use of PLS-DA. Work is ongoing to investigate this possibility.

5. Conclusion

We have shown that a sensitive and specific genus level classifica-
tion of LIBS spectra from live bacterial specimens can be performed
with a DFA or a PLS-DA using several different independent variable
models. The three models constructed from down-selected indepen-
dent variables possessed similar sensitivities and specificities when
utilized in a genus-level five-class DFA, but the model consisting of
80 independent variables constructed from the normalized emission
intensities of thirteen lines of P, Ca, Mg, Na, C, and complex ratios of
those intensities performed best. It possessed a sensitivity of 91.4%
and a specificity of 97.5%. All results were obtained using external-
validation tests. When this model was utilized in a PLS-DA, it pos-
sessed a sensitivity of 93.1% and a specificity of 90.6%. The number
of latent variables required for efficient classification using this
model was investigated, and chosen to be 20 in all subsequent tests.

It is apparent that both multivariate techniques provide effective
classification of unknown bacterial LIBS spectra. From the perfor-
mance in this five genus classification, it is possible that DFA may be
an appropriate technique to use when the identity of a specimen is
completely unknown and genus-level discrimination is required.
More precise identification at the species-level or strain-level may
be subsequently performed with a PLS-DA, which demonstrated im-
proved performance at discriminating highly similar spectra. Ulti-
mately, the sensitivity and specificity of the two techniques were
similar in this investigation, although they classify based on funda-
mentally different mathematical principles. Because the same spec-
tral library was efficacious in both techniques, it is possible that
both analyses could be performed simultaneously on an unknown
sample to provide an independent verification of specimen identity.
It is likely that computational processing power would easily allow
such a verification, as the classification of one unknown spectrum
against a pre-compiled library model is performed rapidly by both
techniques. Such a confirmation will need to be investigated in future
work.
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