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ABSTRACT 

 

Laser-induced plasmas are easy to produce high-temperature sources 

(~50,000 K) of highly-excited atoms and ions for use in atomic spectroscopy 

experiments. Emission from the plasma, when dispersed in a high-resolution 

échelle spectrometer, can be used to measure the relative intensity of all 

emission lines from hundreds of thermally-populated energy levels. Our recent 

work has focused on measuring the relative intensities of emission lines from 

neutral, singly-ionized, and doubly-ionized species of rare-earth metals due to 

their significant importance to astronomers and astrophysicists for their over-

abundances in “chemically peculiar” and galactic halo stars. Experimental 

parameters have been extensively studied to characterize plasma emission for 

these species at various observation times after the laser pulse, at various 

background pressures, various laser pulse energies, and various target 

compositions. Recent work has consisted of incorporating an optical 

parametric oscillator to resonantly excite specific energy levels within the 

plasma, increasing emission line intensity and eliminating line blending. 
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CHAPTER 1: Introduction 

 

1.1 Motivation  

 The focus of this work is to make atomic measurements on atoms and ions 

produced in a laser-induced plasma. This work is motivated by an astrophysics 

application where there is currently a lack of accurate atomic data. This atomic data, 

in particular accurate experimentally-measured lanthanide (rare-earth metal) 

transition probabilities, are frequently requested by some astrophysicists [1]. The 

lanthanides are observed in the spectra from galactic halo and “chemically peculiar” 

(CP) [2, 3] stars and accurate transition probabilities are required to determine the 

lanthanide abundances in those stars.  

 Accurately determining lanthanide abundances in these stars will help 

astrophysicists better understand the supernovae nucleosynthesis process in which 

elements heavier than iron are formed. In some cases, over-abundances of 

lanthanides relative to iron are observed and accurate atomic data is required to 

correct discrepancies in the calculated abundances [3, 4]. Lanthanides are of such 

importance that a new database was created for reporting lanthanide atomic data 

such as transition probabilities (Database on Rare-earths at Mons University, 

DREAM). This work focuses on four lanthanides: neodymium (Nd), gadolinium (Gd), 

samarium (Sm), and praseodymium (Pr).   

1.1.1 Nucleosynthesis 

 There are multiple types of nucleosynthesis. Galactic nucleosynthesis is the 

process in which elements heavier than hydrogen are formed in celestial bodies. This 

work focuses on atoms that are formed in one specific type of galactic 

nucleosynthesis, supernovae nucleosynthesis. Supernovae nucleosynthesis is the 

process in which elements heavier than iron are formed during the death of stars. 

These elements can only be formed in supernovae due to the amount of energy 

required for their production [5]. In supernovae nucleosynthesis there are two 

process that can occur for production of elements heavier than iron, the s(low)-

process and r(apid)-process.  The r-process and s-process occur by neutron capture 
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and differ by the neutron capture rate as their name implies. The r-process results 

from a high rate of neutron capture and forms a very neutron rich isotope that will 

decay via beta-minus decay to a stable isotope with the same atomic weight. This r-

process is rapid due to the neutron capture occurring at a higher rate than the beta 

decay. Multiple neutrons will be absorbed before beta decay occurs and thus the 

formation of new atoms does not need to follow any specific pattern for production 

of heavy elements. This leads into the discussion of the s-process, where the neutron 

capture occurs at a much slower rate than the beta-minus decay and thus only one 

neutron is captured before the beta-minus decay occurs (if the beta-minus decay will 

result in a stable isotope). In the s-process, the production of heavy elements must 

follow a specific path due to beta-minus decay occurring before secondary neutron 

capture. The lanthanide elements provide a convenient test system because they form 

a contiguous series of highly similar heavy (high-Z) elements. By accurately 

measuring the stellar abundances (reflective of what was formed in the supernovae 

nucleosynthesis) of many such heavy elements these processes can be better 

understood and modeled.  

1.2 Laboratory Astrophysics 

 High-resolution absorption spectra from stars are becoming increasingly 

available [4]. In the absorption spectra of certain stars, absorption lines from 

lanthanide ions are observed. In order to determine the abundance of these 

lanthanides in the stellar photosphere, the transition probabilities of the observed 

lines are required as the “strength” of the observed line is dependent on the 

abundance (amount present in the star) and transition probability. In order to 

experimentally determine an accurate transition probability a branching fraction (or 

“branching ratio”) and an excited state lifetime are needed. Of course, because the 

atoms present in the stars are identical to the atoms in the laboratory on Earth, 

branching fractions and radiative lifetime measurements acquired in a laboratory 

experiment can be used to calculate absolute transition probabilities which can then 

be applied to interpret absorption spectra from stars to accurately determine the 

observed lanthanide abundances. 
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1.2.1 Branching Fractions 

 In order to calculate a transition probability a branching fraction is required. 

A branching fraction indicates the probability for an atom in an excited state to decay 

via a specific spontaneous emission decay route (one transition) relative to the 

probability of decaying along all possible decay routes (all allowed transitions.) The 

sum of all the branching fractions for all the allowed transitions out of an excited state 

must equal one, as the total probability for decay is one. All transitions do not have 

equal probability of occurring and thus branching fraction measurements are 

required in order to determine the “strength” of the various transitions out of an 

excited state. Put another way, the relative branching fractions determine the number 

of atoms that will decay via one transition or another in a collection of atoms. Figure 

1 shows an energy level diagram for singly-ionized neodymium showing the eight 

allowed transitions to lower energy levels from the 6p 6K9/2 upper energy level at 

23229.99 cm-1. This particular level was studied extensively in this thesis. Each of the 

eight transitions has some probability of occurring determined by the transition 

branching fractions. Thus for each upper energy level, all branching fractions must be 

reported. This implies that to make such measurements, all transitions must be 

observed. Equation 1.1 shows how a branching fraction is defined. 

𝛽𝑗𝑖 =
𝐴𝑗𝑖
∑𝐴𝑗𝑖

 (1.1) 

A branching fraction for a transition from an upper state j to a lower state i, βji, 

is equal to the Einstein A-coefficient for spontaneous emission of that transition, Aji, 

divided by the sum of all Einstein A-coefficients for transitions exiting the upper 

energy level and ending in different lower levels, i. The Einstein A-coefficient, Aji, 

represents the probability per unit time (s-1) that an atom in state j will decay 

spontaneously to state i.  Equation 1.2 shows how a branching fraction may be 

determined. 

𝛽𝑗𝑖 =
𝐼𝑗𝑖
∑ 𝐼𝑗𝑖

 (1.2) 

 The branching fraction βji of the transition from state j to state i is also equal 

to the transition’s observed relative emission intensity, Iji, divided by the sum of all 
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observed relative emission intensities from all transitions exiting the upper energy 

level j and ending in different lower levels i. In this thesis, by measuring all the Iji from 

an excited state, I will directly determine the branching fractions βji of all decay 

transitions starting in that upper state j. Equation 1.3 shows how the radiative 

lifetime of the upper state j, which is denoted τj, is related to the Einstein A-

coefficients for spontaneous emission. 

𝜏𝑗
−1 =∑𝐴𝑗𝑖

𝑖

 (1.3) 

A radiative lifetime can be thought of as the time an atom will remain in a given 

upper energy level before it decays. More accurately, it is the inverse of the sum of the 

Einstein A-coefficients (which are transition rates) for all the transitions out of an 

upper energy level. Combing equations 1.1 and 1.3 then gives us Equation 1.4. 

𝛽𝑗𝑖

𝜏𝑗
= 𝐴𝑗𝑖  (1.4) 

Therefore, an experimentally determined transition probability for 

spontaneous emission (Einstein A coefficient) can be determined by dividing an 

experimentally determined branching fraction with an experimentally measured 

0.00 cm-1 
513.32 cm-1 
1650.19 cm-1 

3066.75 cm-1 

4437.55 cm-1 

6005.27 cm-1 

6931.90 cm-1 
7524.74 cm-1 

23229.99 cm-1 

6s 6I7/2 
6s 6I9/2 

6s 4I9/2 

6s 4I11/2 

5d 6L11/2 

5d 6K9/2 
5d 6K11/2 

5d 6I7/2 

6p 6K9/2 

Figure 1.1 Singly-ionized neodymium energy level diagram showing the eight lower 

energy levels which have allowed spontaneous emission transitions from the 6p 6K9/2 

upper energy level at 23229.99 cm-1.   
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upper state lifetime. In this thesis, only the branching fractions βji will be measured. 

We will utilize the experimental lifetimes of others to calculate transition 

probabilities.  In some studies the product gjAji or just gA is reported, where gj is the 

multiplicity, or number of degenerate energy levels, of the upper state j. In other 

studies, and of more use to astronomers, an oscillator strength (gf value or more 

typically log gf) is reported. An oscillator strength is the number of classical 

oscillations equivalent to one real atom for a given transition. 

𝐴𝑗𝑖 =
2𝜋𝑒2

𝑚𝑒𝑐𝜀0𝜆2
𝑔𝑖
𝑔𝑗
𝑓𝑗𝑖  (1.5) 

Equation 1.5 shows how an Einstein A-coefficient is defined in terms of the 

oscillator strength, fji, the upper and lower energy levels degeneracies, gj and gi, the 

transition wavelength, λ, the mass of the electron, me, the speed of light, c, the electron 

charge e, and the permittivity of free space, ε0. 

1.2.2 Experimental Determinations of Branching Fractions 

 Laboratory astrophysics measurements, specifically branching fraction 

measurements, are determined by a number of different methods such as: laser-

induced plasmas, fast ion-beam laser experiments, and hollow cathode discharge 

lamps combined with Fourier Transform Spectroscopy (FTS) [4]. Laser-induced 

plasmas are produced by a high-energy pulsed laser that excites atoms and ions from 

a solid target. The excited atoms and ions in the plasma will decay to a lower energy 

state releasing photons and the resulting elemental emission is observed. This allows 

for quick and easy production of highly-excited atoms and ions and thus allows for 

transition probability measurements on hundreds of excited states and various 

ionization species all at once. In the fast ion-beam method, ions are created by an ion-

vapour source and accelerated towards a perpendicular or co-linear tunable laser 

beam. The laser frequency is adjusted to populate a specific upper energy level and 

emission is observed from the chosen energy level. This allows for measurement of 

one energy level at a time and only allows for measurement of energy levels within 

the tunable laser’s frequency range. Hollow cathode discharge lamps measurements 

are conducted by creating a large voltage across the cathode and anode. Atoms are 

ionized and accelerated towards the cathode. The ions impact the cathode and cause 
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ejection and ionization of ions from the cathode material. These ions (from the 

cathode) become excited and decay to lower energy states. The resulting ion 

emission, combined with interferometry and FTS, allows the determination of 

transition probabilities. A list of previous work is included and discussed in more 

detail in Chapter 6.  

 The use of laser-induced plasmas for this purpose has been proposed as a 

relatively new technique for transition probability measurements due to its ability 

(with limited sample preparation) to quickly and easily highly-excite atoms and ions 

and thus observe branching fractions on various species all with no change to the 

experimental setup. With only the change of a solid lanthanide target measurements 

on multiple lanthanides (including various ionization states, neutral - I, singly-ionized 

- II, and doubly-ionized - III) can be completed in a time span of a few minutes. 

1.3 Laser-Induced Breakdown Spectroscopy 

 This work will entail the use of laser-induced breakdown spectroscopy (LIBS) 

to make accurate atomic measurements. LIBS involves the focusing of a high-energy 

pulsed laser onto a target, which creates a weakly-ionized plasma to act as a source 

of highly-excited atoms and ions. LIBS rapid production of highly-excited atoms and 

ions allows for measurement and determination of atomic data. LIBS has just begun 

to be used for atomic measurements [6]. One of the benefits to using LIBS for atomic 

measurements is the ease of production of highly-excited atoms which in other 

techniques is not possible due to the energy required to populate a highly-excited 

state. A thorough description of LIBS is provided in Chapter 2. 

 LIBS can also be used to make radiative lifetime measurements. An 

experiment for radiative lifetime measurements was initiated during the atomic 

measurement work conducted in this thesis but will not be reported due to only 

proof-of-concept work being completed (this will be a future student’s project). To 

make a radiative lifetime measurement with a laser-induced plasma the light from 

the plasma is collimated and sent through a beam splitter. The two collimated beams 

of light from the plasma pass through narrow bandpass filters in which only photons 

from one specific transition may pass through each filter. For a radiative lifetime 
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measurement the filters are chosen to only allow light from a transition entering and 

a transition exiting an upper energy level to pass through. Using single-photon 

counting devices, photons resulting from the transition entering and exiting the level 

can be observed. Using fast-timing electronics and pulse analysis, the time between 

start and stop pulses (photon observations) are measured and the experiment is 

repeated to determine a radiative lifetime of an excited state under investigation. 

1.4 Scope of Thesis 

 The scope of this work is to improve an existing experimental apparatus and 

analysis technique to increase the accuracy of our transition probability 

measurements as well as making new measurements of neutral and doubly-ionized 

species by optimizing experimental parameters. 

 In Chapter 2 I discuss laser-induced breakdown spectroscopy theory to 

provide a better understanding of how atomic measurements may be made on a laser-

induced plasma. I will also describe several relevant effects that it is necessary to 

understand when using a laser-induced plasma for such atomic measurements. In 

Chapter 3 I discuss the experimental setup and the new components I designed and 

implemented to improve light collection. In Chapter 4 I discuss experimental 

parameter optimization to increase observed emission from specific species in the 

plasma, which results in an improved measurement of emission lines and the 

observation of previously unobservable emission lines. In Chapter 5 I discuss the data 

and error analysis of the spectroscopic data for measurement of transition 

probabilities. In Chapter 6 I report and discuss transition probability measurements 

made on our laser-induced plasmas. In Chapter 7 I introduce and discuss a new 

method, laser-induced breakdown spectroscopy – laser-induced fluorescence (LIBS-

LIF), for atomic measurements to minimize and alleviate certain problems associated 

with atomic measurements on laser-induced plasmas. In Chapter 8 I summarize the 

work presented in this thesis and discuss future work. In Appendix A I list programs 

used for automated data analysis. 
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CHAPTER 2: Laser-Induced Breakdown Spectroscopy 

 

 Laser-induced breakdown spectroscopy (LIBS) is a time-resolved 

spectroscopy of optical emission from a weakly-ionized (~10%) plasma generated by 

a high-energy pulsed laser. LIBS can be used as a qualitative and quantitative analysis 

technique on a variety of substrates (LIBS works equally as well on solids, liquids, and 

gases) as has been described in great detail in a number of recent authoritative books 

[1-4]. LIBS can be used for a wide variety of applications ranging from bacterial 

discrimination to explosive identification by measuring the atomic composition of the 

material [5, 6]. This chapter will give an introduction to LIBS and discuss some of the 

key concepts in laser-induced plasma spectroscopy. 

2.1 Plasma Production (Nanosecond Laser Regime) 

 When a high-energy nanosecond laser pulse is incident on a target, it acts to 

vaporize and atomize the target, followed by ionization and excitation of the created 

cloud of atoms. I used a Nd:YAG laser with a pulse duration of 10 ns and a wavelength 

of 1064 nm. Any wavelength could be used for LIBS as long as the wavelength is 

sufficiently absorbed by the target [1]. A pulsed laser is ideal for LIBS as it provides 

sufficient energy fluence to cause the breakdown [1] (atomization and liberation of 

electrons) of the target material. I will only discuss the nanosecond regime for plasma 

production since it was the only plasma production method used for my thesis (other 

regimes that exist are femtosecond and picosecond laser plasma production). 

 The high-energy fluence of the laser pulse causes melting and vaporization of 

the target material on a picosecond time scale. A small portion of a target material is 

ablated, which results in a crater a few microns deep and about a hundred microns in 

diameter (depending on the focused size of the laser pulse). The ablated material 

forms a cloud of atoms/molecules/fragments above the surface of the target. The 

cloud of atoms absorbs the remaining energy of the laser pulse through inverse 

bremsstrahlung and multiple photon excitations resulting in the rapid excitation and 

ionization of the atoms, creating a dense, but weakly-ionized plasma. Figure 2.1 
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shows the parameters for laser-induced plasmas compared to other common 

plasmas. Figure 2.2 schematically shows the laser-induced plasma formation process 

just described. The time from incident laser pulse to ionization of atoms is tens of 

nanoseconds and the temperature of the plasma at formation can exceed 50,000 K 

[2]. The plasma is elongated in the direction of the incident laser pulse due to the 

absorption of the laser pulse as shown in Figure 2.3 which is a photograph taken in 

our lab. The vaporized atoms travel outwards at supersonic speeds, which results in 

the formation of a shockwave. Over the first few hundred nanoseconds of plasma 

evolution, continuum emission dominates and no useful information can be obtained 

from the light emitted from the plasma. As the plasma cools, electrons recombine with 

ions and the atoms and ions decay to lower energy states. Ionized and then neutral 

emission from the ions and atoms in the plasma may be observed over the following 

Figure 2.1 Plasma regimes characterized by electron density and temperature with laser-

induced plasmas near the mid-range of temperature and high-end of electron density in 

comparison to other the other types of plasmas seen in this figure [7]. 
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tens of microseconds. The plasma consists of free electrons, ions, atoms, and 

molecules in varying ratios depending on the time evolution of the plasma to be 

discussed in Section 2.2. 

 

 

 

Figure 2.3 A laser-induced plasma on a metal target inside a vacuum chamber displaying 

the elongation of the plasma in the direction of the incident laser pulse (the laser was 

incident from above in this picture orientation). 

Figure 2.2 A LIBS plasma production schematic. (a) Shows the laser pulse incident on a 

target material. The target will absorb the laser energy causing melting, heating and 

vaporization. (b) The incident laser pulse has now ablated a small portion of the target 

material and produced a cloud of atoms above the target that will absorb the remaining 

energy of the laser pulse. (c) The plasma has now formed, it is very hot and dense, and the 

final energy of the laser pulse is absorbed. A shockwave and continuum emission is 

produced at formation of the plasma. (d) After a few hundred nanoseconds continuum 

emission has decreased and element-specific atomic and ionic emission is observed [1]. 
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2.2 Plasma Evolution 

 The plasma is very hot and very dense at its formation and continuum 

emission dominates for the first few hundred nanoseconds, as previously mentioned. 

This results in large background emission and no useful information is observed from 

the plasma. As the plasma begins to cool, background emission decreases and ionic 

emission can be observed. The ionization states observed as the plasma evolves can 

be estimated using the Saha-Boltzmann equation (Equation 2.1). This equation 

characterizes the fraction of atoms in each ionization state as a function of 

temperature, T, and electron density, Ne, both of which evolve in time. NI,k and NA,j are 

the number of atoms per unit volume in the kth and jth energy levels in corresponding 

ionization states I and A, me is the mass of an electron, kB is the Boltzmann constant, 

h is Planck’s constant, gI,k and gA,j are the multiplicity for the kth and jth energy levels 

in the I and A ionization states, χZ is the ionization potential, and Ek and Ej are the 

energies of the kth and jth levels. A constant Ne of 1024 cm-3 was used to produce a 

graph that approximated the fraction of atoms in a given ionization state as a function 

of temperature for the first few ionization states of neodymium (Figure 2.4). This 

calculation allowed for comparison of our plasma temperature and observed 

ionization states in various spectra. Changing our observation time after plasma 

formation allowed us to observe different plasma temperatures and thus compare the 

observed spectra to Figure 2.4.  

𝑁𝐼,𝑘
𝑁𝐴,𝑗

=
1

𝑁𝑒

2(2𝜋𝑚𝑒𝑘𝐵𝑇)
3/2

ℎ3
𝑔𝐼,𝑘
𝑔𝐴,𝑗

𝑒𝑥𝑝 [
−(𝜒𝑍 + 𝐸𝑘 − 𝐸𝑗)

𝑘𝐵𝑇
] (2.1) 

 Figure 2.5 shows a Nd III, Nd II, and Nd I LIBS spectrum obtained at various 

plasma temperatures by varying the observation time of the plasma. In our 

lanthanide targets, from 0.5 to 1 microsecond after the laser pulse doubly-ionized 

emission (e.g. from Nd III) is observed from the plasma with an average plasma 

temperature of approximately 15,000 K. Looking at Figure 2.4 and Figure 2.5, the 

black spectrum in Figure 2.5 corresponds to what is seen in Figure 2.4 for the fraction 

of atoms in the singly and doubly-ionized states at a temperature of approximately 

15,000 K. As the plasma cools, singly-ionized emission (from Nd II) is observed to 
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dominate from 1 to 3 microseconds with a plasma temperature of approximately 

12,000 K. At 12,000 K in Figure 2.4 we see singly-ionized species dominate with 

minimal doubly-ionized and neutral atoms present. This again correlates with what 

is observed in the red spectrum in Figure 2.5 with the majority of observed emission 

resulting from Nd II. The plasma continues to cool and electrons recombine with ions 

to form neutral atoms and neutral emission (from Nd I) increases in the plasma from 

3 to 13 microseconds with a plasma temperature of approximately 8,000 K at 3 

microseconds. This is again seen in Figure 2.5 in the blue spectrum that contains some 

Nd II emission and mostly Nd I emission by observing the plasma until 13 

microseconds. This correlates with the calculation in Figure 2.4 since 8,000 K is 

approximately the crossover point at which Nd I becomes the dominant species.  At 

13 microseconds Nd I must dominate since the plasma is observed to be 

approximately 4,000 K.  

 Beyond 13 microseconds emission from the plasma becomes unobservable 

with our atomic measurement setup. Molecular emission would be observed in most 

LIBS plasmas from approximately 7 microseconds onwards [2], but due to our plasma 

consisting of only one lanthanide species and argon gas no molecular emission was 

observed. An argon gas environment is used for plasma formation to increase ionic 

and atomic emission by creating a hotter and denser plasma in comparison to air. The 

increase in emission also results in an increased single-to-noise ratio when ablating 

targets in argon [2]. 

2.3 Factors Effecting Plasma Emission 

 There are key factors that need to be considered when atomic measurements 

are to be made in a laser-induced plasma. In order to determine the population of 

atoms in a given energy level the plasma needs to be in local thermodynamic 

equilibrium (LTE). LTE is an approximation to true thermodynamic equilibrium and 

allows the plasma to be characterized by a single value of electron density (Ne) and 

electron temperature (Te). Knowing these two critical parameters allows one to be 

able to calculate the velocity distribution of species, ionization populations, and 
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radiation distributions in the plasma [1]. The electron temperature and density also 

determine Stark effects (such as the broadening or shifting of emission lines), optical 

thinness, and collisional de-excitation [1], which could affect the measured branching 

fractions. Since the Ne and Te of the plasma are evolving with time, the plasma needs 

to be observed only in conditions of LTE to make atomic measurements.  

 Emission lines can be Stark-shifted and/or Stark-broadened if the electron 

density is large. A large electron density results in strong local electric fields and the 

shifting and splitting of observed energy levels. With a very large electron density 

broad emission lines are observed that decrease the accuracy of results as well as 
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Figure 2.4 Using the Saha-Boltzmann equation one can see the relative number of 

neodymium atoms and ions at different plasma temperatures, which agreed with our 

observed spectra at various delay times after plasma production. Changing the delay time 

allowed us to observe different temperatures and thus what ionization state(s) were 

present in the spectrum. This graph also demonstrates why it is most effective to only 

observe one ionization state at a time and thus optimize parameters for only that ionization 

state. The temperature at which certain ionization states are present depends on the 

electron density of the plasma as well as the ionization energies of the states as seen in 

Equation 2.1. This graph was calculated using neodymium atomic values and an Ne of 1024 

cm-3. 
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contributing to multiple other problems that will be discussed in Chapter 4 (i.e. the 

blending of emission lines which renders them unresolvable).  

 An optically thin plasma is required to make atomic measurements. To be 

considered “optically thin” all photons emitted from an excited energy level via 

spontaneous decay must not be reabsorbed by another atom before leaving the 

plasma. Thus, in an optically thick regime not all photons emitted via spontaneous 

emission are observed and the resulting measured branching fractions could be 

incorrect since the absorption of photons (and thus the measured “emission”) is 

dependent on the transition strength.  

 Being in a regime where no collisional de-excitation occurs is also imperative. 

If the ions and atoms are not spontaneously decaying, but are de-exciting due to 

collisions between atoms, branching fractions cannot be measured, as the observed 

Nd III (Black) 

Nd II (Red) 

Nd I (Blue) 

Figure 2.5 An Nd III, Nd II, and Nd I spectrum obtained at various plasma temperatures by 

varying the observation time of the plasma. These plasma spectra were not obtained at the 

same time and have been overlaid and scaled for clarity. The Nd III emission (black) was 

observed very shortly after plasma formation while the Nd II (red) and the Nd I (blue) 

spectra were observed at later times. This shows roughly the fraction of each ionization state 

present at different plasma temperatures and also demonstrates the decrease in plasma 

temperature with time. This is discussed more in Chapter 4. 
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emission will again change based on the plasma density and temperature. In a regime 

of LTE and optical thinness the electron density and temperature will allow for atomic 

measurements. A good test for optical thinness that is traditionally used in LIBS, 

although not in my experiment, is the oxygen test, where the intensities of each of the 

emission lines in the oxygen triplet at 777 nm are compared to each other. The 

intensity of the three emission lines are fixed in a ratio of 7:5:3 and any deviation of 

the ratios indicates that the plasma is not in a regime of optical thinness, or non-

collisional de-excitation. This test could not be used for our studies since all 

measurements were obtained in argon gas as previously mentioned but observing 

how lanthanide emission lines in a given energy levels are changing with various 

pressures could be conducted (which is the same test). 
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CHAPTER 3: Experimental Apparatus 

 

 Our laser-induced breakdown spectroscopy setup for atomic measurements 

consisted of a high-energy pulsed laser, various optical components, vacuum 

chamber, spectrometer, and computer. This chapter will describe the setup and 

component design of the LIBS experimental apparatus for atomic measurements. 

Figure 3.1 shows an overview of the LIBS experimental setup consisting of the 

aforementioned components to be described in detail in the following sections. This 

chapter will also discuss an optical parametric oscillator (OPO) that was used for a 

hyphenated LIBS technique that is discussed in Chapter 7. 

3.1 High-Energy Pulsed Laser 

 A neodymium-doped yttrium aluminum garnet (Nd:YAG) pulsed laser (Quanta 

Ray LAB-150, Spectra Physics) was used to produce the laser-induced plasma. The 

Nd:YAG laser has a 10 ns pulse duration, 10 Hz repetition rate, and operates at its 

fundamental frequency with a wavelength of 1064 nm. The laser outputs a maximum 

Figure 3.1 An overview schematic of the experimental setup for our atomic measurements 

apparatus. The setup contains a high-energy pulsed infrared laser, energy attenuating optics, 

directing and focusing optics, vacuum cube, optical fiber, échelle diffraction grating 

spectrometer, and control computer.  
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energy of 650 mJ per pulse. This pulse duration and energy results in a large peak 

power. For our atomic measurements the laser pulse energy is attenuated down to 

30 mJ per pulse through the use of a rotatable half-wave plate and polarizing beam 

splitter (Glan-Taylor calcite polarizer).  See Figure 3.2. With a laser pulse energy of 

30 mJ focused to a roughly circular spot with a diameter of 100 µm, an irradiance of 

1010 W/cm2 is achieved. This irradiance is in agreement with previously published 

breakdown threshold irradiances [1]. A half-wave plate rotates the polarization of 

linearly polarized light incident upon it. It has two different indices of refraction along 

perpendicular directions (fast and slow axes) arising from the crystal lattice 

structure.  The properties of a half-wave plate are such that when the light exits the 

crystal the polarization component of light parallel to the slow axis is one half 

wavelength retarded relative to the polarization component of light parallel to the 

fast axis. By careful choice of the orientation of the crystal the linear polarization of 

the incident laser pulse can be rotated by any angle through this induced phase shift 

between the two polarization components of light. 

 A polarizing beam splitter is placed after the half-wave plate that only 

transmits the vertical (p-polarized) polarized component of light and reflects the 

horizontally (s-polarized) polarized component. By rotating the half wave plate 

appropriately the polarization of the laser light is rotated sufficiently so that only 30 

mJ per pulse (as measured by an optical power meter, Coherent FieldMax II) is 

vertically polarized and thus transmitted through the polarizing beam splitter. The 

Figure 3.2 Spectra Physics Quanta Ray high-energy pulsed laser with half-wave plate, 

polarizing beam splitter, and power meter. 
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beam splitter directs the remaining energy of the laser pulse into a beam dump. The 

polarization of the beam is insignificant for production of the plasma and is only 

important in the energy attenuation of the beam. The laser pulse is directed into a 

vacuum chamber using high-damage threshold 1064 nm high-reflection dielectric-

coated mirrors (>99.9% of the 1064 nm light is reflected). The laser light is focused 

with an uncoated 75 mm diameter plano-convex lens with a focal length of 175 mm. 

The focused laser light passes through a 1064 nm anti-reflection coated vacuum 

window into the vacuum chamber and onto the target. A computer, with a fast-pulse 

generator that runs the spectrometer and analysis software (to be described in 

Section 3.3), controls the timing and firing of the laser. 

3.2 Vacuum Chamber  

 The target is contained inside a vacuum cube of volume 3500 cm3. Each side 

of the vacuum cube has a 6-inch circular ConFlat (CF) vacuum flange with 2.75-inch 

CF flange openings in the center for optical access (except for the bottom side which 

has a blank 6-inch flange). See Figure 3.3.  As mentioned in Section 3.1, attached to 

the front of the chamber is a 2.75-inch flange with an AR coated window for 

transmitting the incident laser light.  Attached to the back of the vacuum cube is a 

Pirani convection module pressure gauge (Kurt J. Lesker 300-series) monitoring the 

pressure inside the chamber calibrated for nitrogen gas. The pressure is monitored 

through the voltage required to keep a gold-plated tungsten filament at a constant 

temperature against thermal cooling by the gas environment. The vacuum chamber 

was filled with argon gas for increased light emission from the plasma. Since the 

pressure gauge is calibrated to nitrogen, the displayed pressure was converted to 

actual pressure using a piecewise function based on manufacture-calibrated 

specifications. 

 The vacuum chamber is evacuated with a mechanical vacuum pump (Varian 

DS-302). The pump is able to evacuate the chamber down to 3 mTorr (measured by 

two Varian thermocouple gauges), which is more than satisfactory for my research. 

The leak rate of the chamber after approximately 24 hours of pumping and then 

closing of all valves was 40 mTorr per hour, which is also satisfactory for my research. 
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Argon gas is slowly let into the chamber through a needle valve. With fine control of 

the shut off valve for the vacuum pump and needle valve for inflow of argon, the 

pressure is adjustable from 100 mTorr to atmosphere and is stable for hours at a time. 

 Attached to the top of the cube is a vacuum rotational feedthrough with a 

direct current (DC) motor mounted to the 6-inch flange. The target is screwed onto 

an 80-pitch screw drive driven by a hexagonal key (which is the DC motor drive shaft) 

inside the 80-pitch screw, see Figure 3.4. The screw turns within an 80-pitch sleeve 

Figure 3.3 The vacuum cube with rotational feedthrough, AR coated window, uncoated 

lens, Pirani pressure gauge, vacuum finger, and fiber optic cable.  
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rigidly attached to a support structure inside the chamber. As the motor spins the 

target rotates and translates linearly, thus the fixed laser spark ablates the target in a 

helical pattern resulting in a new area of the target ablated with subsequent laser 

pulses. This is necessary to keep the laser from “drilling” a crater into the target. The 

vacuum feedthrough flange was mounted on top of the cube with a single 6-inch Viton 

O-ring for ease of removal when changing targets as well as access into the vacuum 

cube. The right side of the chamber has a regular 2.75-inch flange window (unused in 

the experiment) for viewing inside the chamber.  

 The left side of the vacuum cube has a modified 2.75-inch flange with an inset 

vacuum finger that extends into the vacuum chamber, see Figure 3.5. I designed this 

flange/finger for improved light collection. The vacuum finger has a 1-inch diameter 

stainless steel tube attach to the flange with a quartz window mounted at the end of 

the tube to allow for positioning of the fibre closer to the plasma. The center of a 2.75-

Rotational DC Motor 

6-Inch CF Flange 

Rigid Support Structure 

80-Pitch Screw 

Metal Ablation Target 

80-Pitch Sleeve 

Figure 3.4 A schematic of the vacuum rotational feedthrough and target mounting system. 

A target is screwed onto the 80-pitch screw drive that passes through an 80-pitch screw 

sleeve that is driven by a rotational DC motor. 
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inch flange flat was bored out to a 1-inch diameter hole and a 1-inch diameter 

stainless steel tube was vacuum welded to the modified flange. The stainless steel 

tube protruded three and a half inches into the vacuum chamber from the inside 

surface of the modified flange. A custom-designed window holder was vacuum 

welded to the other end of the stainless steel tube. The window was inserted into the 

window holder and pressed against a rubber O-ring. A cover attached by screws into 

the end of the tube pressed the window against the O-ring and this formed a vacuum 

seal around the window. This allowed for cleaning and changing of the window at the 

end of the vacuum finger. The vacuum finger allowed for improved light collection by 

moving our optical fibre 9 centimetres closer to the plasma. Light is emitted 

isotropically from the plasma and therefore intensity drops approximately as one 

over the distance squared. Moving the optical fibre closer to the plasma allowed for 

capturing more light from the plasma and increased our sensitivity and accuracy by 

increasing the signal-to-noise ratio (SNR).  

3.3 Light Collection and Analysis 

 A 1-meter long UV-enhanced optical fibre is attached to an SMA connecter 

inside a 4-inch length, half-inch diameter tube positioned inside the vacuum finger.  

This allows the end of the fibre to be located millimetres from the quartz window at 

the end of the vacuum finger 20 mm from the plasma. The optical fibre is then 

attached to our échelle diffraction grating spectrometer. In our lab we have two 

spectrometers: an LLA Instruments ESA 3000 and LTB Aryelle Butterfly. Each 

Figure 3.5 The vacuum finger design schematic with a modified bored out 2.75-inch 

CF flange, 1-inch diameter stainless steel tube, and vacuum sealable window holder. 
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spectrometer has an échelle diffraction grating spectrograph and camera. All data 

was taken with the ESA 3000 spectrometer, which I will now explain in detail. 

 The ESA 3000 spectrometer consists of an échelle diffraction grating, 

dispersing prism, image intensifier, and charge coupled device (CCD). The light from 

the optical fibre is directed onto the échelle diffracting grating, a reflective surface 

with equally spaced grooves. The core of the optical fibre (600 micron diameter) acts 

as the entrance slit of this spectrometer. An échelle diffraction grating is 

characterized by a low groove density with a high angle of incidence optimized for 

high diffraction orders. In our échelle orders 29 to 129 are used and all overlap. The 

diffraction grating gives a 1-dimensional spread of light with longer wavelengths 

(infrared light up to 780 nm) contained in the lower orders and shorter wavelengths 

(ultraviolet (UV) light down to 200 nm) contained in the higher orders. The lower 

orders have a larger angular spread as well as a larger range of wavelengths; this 

results in decreased spectral resolution at the longer wavelengths. In fact, our 

spectrometer is optimized for high resolution in the ultraviolet. The manufacturer 

quotes spectrometer resolution as 0.005 nm at 200 nm and 0.019 nm at 780 nm. A 

cross-dispersing prism is used to separate the order overlap which results in a 2D 

spread of light, the 2 dimensions being order (which is also wavelength) and 

wavelength. The 2-dimensional array of light is then directed using a focusing mirror 

towards the image intensifier. See Figure 3.6 for the manufacturer-provided 

schematic of the optical path inside the échelle spectrometer. 

 The 2-dimensional array of light is incident on a circular image intensifier 

consisting of a photocathode, micro-channel plate, and phosphor screen. The photons 

diffracted and dispersed hit the photocathode and electrons are produced and 

accelerated towards the micro channel plate (MCP). The MCP then multiplies the 

number of electrons through a cascading event based on the voltage applied to the 

MCP. An amplification setting in the spectrometer software is used to vary the voltage 

applied to the MCP to control the number of electrons produced to use the full 

dynamic range of the phosphor screen without saturation. The increased number of 

electrons is then incident on a phosphor screen, which produces photons of one 

frequency proportional to the number of electrons incident on the screen. The 
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produced photons are then detected and recorded by a 2-dimensional 1024 by 1024 

array (24 x 24 μm2 pixel size) of charge-coupled devices (CCD).  

 Since the image of the entrance “slit” is circular and the CCD is square, a 

mapping of a circle to a square needs to be chosen. For optimal resolution in the 

ultraviolet regime, spectral gaps in the spectrometer resulted from the mapping of 

the image (circular) to the CCD array (square). At this optimal UV resolution, some 

light with longer wavelengths is dispersed and diffracted outside the CCD array; these 

are areas of missed light that we refer to as “spectral gaps,” see Figure 3.7. Mapping 

could be chosen to direct all light onto the CCD array but this will reduce resolution 

by increasing the range of wavelengths incident on each CCD pixel. The 2-dimensional 

Figure 3.6 Schematic of our échelle diffraction grating spectrometer. The incident light is 

collimated with a mirror, directed through a prism, and then incident on the diffraction 

grating. The diffracted light is then cross-dispersed by a prism and is imaged onto the CCD 

in the exit slit plane [2]. 
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CCD array pixel intensity values (proportional to incident photons) are the raw data. 

This 2D picture is known as an échellogram. The CCD array is readout by the 

computer that performs a spectral calibration to take into account the variation of the 

imaging systems response with wavelength and then stitches together all the échelle 

orders to produce a spectrum from the échellogram. 

 A computer controls the timing of the spectrometer with a fast pulse generator 

capable of nanosecond accuracy. TTL-pulses are sent from the pulse generator to 

control the flash-lamp and Q-switch of the high-energy pulsed laser as well as the 

image intensifier. In a graphical user interface (GUI) a gate delay is set to a desired 

time after plasma formation for observation. The gate delay sets the time between a 

TTL-pulse for Q-switch activation of the laser and a TTL-pulse for activation of the 

image intensifier. A gate width, which determines how long the camera intensifier 

window is “open” and thus how long the plasma is observed, is also set in the GUI. The 

nanosecond timing allows for any observation window length to be set anywhere in 

time. Typical gate delays are between 500 nanoseconds and 10 microseconds with 

gate widths ranging from 100’s of nanoseconds to 20 microseconds. This timing is 

shown schematically in Figure 3.8.  

3.4 Optical Parametric Oscillator 

 A second laser system, an optical parametric oscillator (OPO), was used in a 

hyphenated technique called LIBS-LIF (laser-induced breakdown spectroscopy – 

laser-induced fluorescence) as described in Chapter 7. An OPO is a high-energy 

tuneable pulsed laser with a continuously variable wavelength from approximately 

400 to 700 nm. The OPO uses a non-linear optical crystal and a laser pump source to 

produce the range of wavelengths, see Figure 3.9. 

 A second Nd:YAG laser, identical to the one described in Section 3.1, was used 

as the pumping source for the OPO. The Nd:YAG laser used for pumping the OPO 

incorporated a third harmonic generating (THG) crystal. The THG crystal triples the 

frequency (non-linear frequency conversion) of the laser and thus the pump laser has 

a wavelength of 355 nm. The 355 nm Nd:YAG laser outputs 220 mJ per pulse into the 

OPO.  



 

27 
 

  

Figure 3.7 Top: A zoomed in region of an échellogram displaying various peaks and 

diffraction orders shown by the green lines. Bottom: An échellogram of a deuterium-

tungsten lamp displaying the mapping of the diffraction pattern (green lines), circular 

image, and square CCD array. 
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  The OPO also contains a non-linear crystal. A desired wavelength of light is 

produced based on the orientation of the incident laser light on the non-linear crystal. 

The crystal lattice will produce two beams, a signal and idler beam from the incident 

laser light. The frequency of the signal and idler will sum to the frequency of the pump 

laser light. The energy output by the OPO is dependent on wavelength and varies in 

the range from 10 to 100 mJ per pulse. The spectral width of the OPO pulse is 6 

wavenumbers, which is sufficient for laser-induced fluorescence. The OPO beam is 

intrinsically highly divergent and not well collimated. The vertical beam divergence 

Figure 3.8 A timing diagram of the incident laser pulse, plasma evolution, and observation 

window characterized by delay time (τd) and gate width (τw). 
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Figure 3.9 The frequency tripled Nd:YAG laser (left) used to pump the OPO (right). 
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is specified at <25 mrad and the horizontal beam divergence is specified at <1 mrad 

resulting in an elliptically shaped beam. 

 The OPO setup is shown in Figure 3.10. An iris set to a 1 cm beam diameter is 

placed 10 cm away from the OPO beam exit. This iris is used to block secondary beams 

exiting from the OPO as well as various reflections. A 1 OD (optical density) neutral-

density half-inch circular filter is used to attenuate the beam down to one-tenth its 

initial energy. The initial OPO energy is much greater than what is required for our 

experiment as well as near the damage threshold for our optics. The beam is directed 

one meter down a thermoplastic polymer (ABS) containment tube towards a second 

iris that is manipulated based on experimental needs.  

 The beam then passes through a one-dimensional Keplerian telescope with 

two cylindrical lenses (plano-convex) to reduce the divergence the beam in the 

vertical direction. The second lens of this telescope was placed on a translation stage 

so that the lens position can be easily adjustable for optimal collimation of the beam 

in the far field. The beam was observed 10 metres from the second lens and the 

second lens was adjusted for optimal beam shape and collimation at this distance. 10 

metres is longer than the beam path to the target, which made this distance 

satisfactory for observation of collimation. The OPO beam diameter is dependent on 

the focal length of the two lenses used in the Keplerian telescope. The focal length of 

the first cylindrical lens is 75.6 mm and the focal length of the second cylindrical lens 

is 110 mm.  

 The collimated beam is then directed to a second lens with aluminum-coated 

mirrors. The second lens is a spherical lens with a focal length of 50 cm. This lens is 

used to defocus the beam prior to it encountering the final focusing lens.  This 

enlarges the size of the OPO beam at the plasma. This lens is needed as the OPO also 

must pass through the final focusing lens used to focus the 1064 nm Nd:YAG beam. 

Without this defocusing, the OPO beam is too small, a few hundreds of microns in 

diameter. The OPO beam needs to be similarly sized to the plasma at the target, which 

is a few millimetres. The beam is then directed with another Al-coated mirror 

towards a 70/30 visible beam splitter that overlaps the visible-wavelength OPO beam 

with the near-infrared Nd:YAG beam.  The beam splitter reflects 70% of the visible 
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OPO beam (at a 45 degree angle of incidence) and transmits 70% of the infrared beam 

due to the visible-wavelength thin-film coating. The OPO and 1064 nm Nd:YAG beams 

are aligned collinear using this beam splitter and therefore had a collinear 

ablation/fluorescence geometry at the plasma. The OPO beam was approximately 1 

by 3 mm in size at the plasma location. 

 The timing of the 355 nm Nd:YAG used for the pumping of the OPO was 

controlled using a delay generator (DG535, Stanford Instruments) synched to the 

flash-lamp output pulse of the 1064 nm Nd:YAG. This allowed both lasers to fire 

synchronously or with an adjustable delay set by the delay generator. The 1064 nm 

Nd:YAG laser was still controlled through the main spectrometer computer (with the 

fast-pulse generator), thus controlling the timing of both lasers and spectrometer. 
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Figure 3.10 The LIBS-LIF experimental setup with a frequency tripled Nd:YAG excitation 

laser (355 nm), OPO (400 to 700 nm), various optical components, Nd:YAG (1064 nm) 

ablation laser, and vacuum chamber. 
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CHAPTER 4: Experimental Parameter Optimization to 

Improve Branching Fraction Accuracy 

 

 The majority of the work for my thesis consisted of optimizing experimental 

parameters to increase the accuracy of the branching fraction measurements as well 

as allowing the measurement of new, previously unmeasurable branching fractions.  

Improving the accuracy of the measurements was key since the motivation for the 

application in astrophysics was to address the problem of inaccurate or nonexistent 

data [1]. One significant problem with the current technique was the inability to make 

good measurements of less intense emission lines (small branches). Many less 

intense emission lines did not have a sufficient signal-to-noise ratio (SNR) and/or 

signal-to-background ratio (SBR) for accurate measurements. This resulted in a large 

uncertainty in the measurement of the integrated area under the curve of the peaks.  

 To increase the accuracy of branching fraction measurements, the SNR and 

SBR were carefully observed as experimental parameters were changed. It was also 

imperative to verify that the measured branching fractions did not change as the 

experimental parameters were changed. As well, the lineshape, full width half 

maximum (FWHM), and overlap of emission lines were key factors in determining the 

optimal regime in which to make measurements.  The measurements obtained from 

the spectral data were the absolute intensities of the emission lines, which were 

determined from the integrated area under the curve calculated by the spectrometer 

software.  This is further discussed in Chapter 5. 

 This chapter will discuss the effects on the measurements of varying 

observation time (gate delay and gate width) of the plasma, the effects that varying 

the argon pressure had on plasma formation and observation, and the effect of using 

different types of lanthanide targets.  All parameter exploration studies were 

completed with neodymium due to the existence of good-accuracy results from 

several previous studies for comparison [2]. 
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4.1 Plasma Observation Timing 

 The first parameters studied were the timing for observation of the plasma 

after its formation (gate delay time) and the length of time to observe the plasma (gate 

width time). The plasma evolved rapidly in time and the light emitted changed 

drastically over time which greatly affected the spectra obtained. The plasma was 

very hot (>50,000 K) and dense at formation and contained many highly excited and 

energetic atoms. Immediately after its formation no useful information could be 

obtained as discussed in Chapter 2. After a short delay, once the continuum emission 

had decreased, doubly-ionized lanthanide species were observed at delay times of 

500 ns with a gate width of 500 ns (Figure 4.1). As the plasma cooled, expanded, and 

became less energetic, singly-ionized species became prevalent and dominated the 

plasma emission spectrum (Figure 4.2). The emission from the doubly-ionized 

species was nearly gone by about 1 μs and singly ionized species dominated from 1 

to 3 μs. Singly-ionized absolute emission intensities were less intense than the 

doubly-ionized emission, and the MCP amplification voltage was considerably lower 

when observing doubly-ionized emission at 500 ns due to the number of photons 

emitted. After 5 μs the singly-ionized emission had decreased substantially and 

neutral atom emission had increased.  Neutral atom emission dominated the plasma 

(Figure 4.3) until all emission has ceased or become unobservable, which was 

approximately 20 μs after formation. The neutral species absolute emission intensity 

was less intense than the singly-ionized and was therefore the least intense emission. 

The MCP amplification was raised considerably for neutral emission in comparison 

to the singly-ionized spectrum to use the full dynamic range of the imaging system. 

However, this also amplifies the noise. If one spectrum was obtained from 500 ns until 

13000 ns after plasma formation and the MCP amplification was set appropriately so 

as to not saturate the imaging system, neutral emission would be so faint that 

accurate branching fractions would be impossible (the spectrum would near identical 

to Figure 4.1). 

 It was clear that there were three regimes of data that could be acquired, 

doubly-ionized, singly-ionized, and neutral atom emission. Lanthanides have very 
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complex atomic structure and therefore thousands of emission lines (seen in Figure 

4.1-.3) that results in a “high density” of emission lines in the spectrum (Figure 4.4). 

In such areas of “high density” the emission lines begin to overlap resulting in two or 

more emission lines becoming unresolved and thus unmeasurable as seen in Figure 

4.4 between 388.875 and 389.081 nm. Taking data in three different experimental 

regimes, one for doubly-ionized, one for singly-ionized, and one for neutrals, 

decreased the overlapping of lines and increased our ability to make measurements 

on emission lines that would ordinarily be overlapped if we had used only one 

measurement for all ionization states. By choosing the gate delay time and gate width 

time appropriately, emission from specific species was maximized while minimizing 

emission from the others. This reduced the density of emission lines in each spectrum 

as well as allowed the maximum emission from each ionization state. Frequently, 

singly-ionized and neutral emission lines would have center wavelengths separated 

by less than their FWHM resulting in overlapped and unresolved lines. This is shown 

in Figure 4.5. Since all emission lines from an upper energy level need to be measured 

in order to calculate branching fractions, having non-overlapping emission lines was 

vital. 

 Data was acquired from 0.5 to 1 µs for doubly-ionized atoms (Figure 4.1), 1 to 

3µs for singly-ionized atoms (Figure 4.2), and from 3 to 13 µs for neutral atoms 

(Figure 4.3). The three regimes allowed for optimization of the MCP amplification 

voltage to use the full dynamic range of the imaging system, which also led to 

improved accuracy in the measurements. In no regime was there emission from only 

one ionization state, but it was possible to maximize the emission from the state of 

interest while minimizing the strength of emission from other ionization species. This 

allowed for an increase in the accuracy of measurements by minimizing emission line 

overlap. Molecular emission typically can be observed in LIBS plasmas at later delay 

times, but this was not observed in our spectra as a 99.9% Nd solid was used as the 

target and ablation was conducted in a pure argon atmosphere. This will be discussed 

more in Section 4.3. 
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Figure 4.1 A doubly-ionized neodymium LIBS spectrum with a gate delay of 500 ns and 

gate width of 500 ns. The majority of the doubly-ionized emission lines are between 200 

and 350 nm. 

Figure 4.2 A singly-ionized neodymium LIBS spectrum with a gate delay of 1000 ns and 

gate width of 1000 ns. The majority of the singly-ionized emission lines are between 350 

and 450 nm. 
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Figure 4.3 A neutral neodymium LIBS spectrum with a gate delay of 3000 ns and gate 

width of 10000 ns. The majority of the neutral emission lines are between 370 and 550 

nm. 

Figure 4.4 A “high density” (of emission lines) region of an Nd II spectrum showing overlap 

of multiple emission lines. The three emission lines between 388.875 nm and 389.081 nm (as 

well as others in this zoomed in region) are completely unresolved and unmeasurable. The x-

axis is wavelength in nm and the y-axis is emission intensity in arbitrary units.  
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Figure 4.5 Overlap of emission lines from different ionization states. An Nd II line at 470.655 

nm and a Nd I lines at 470.697 nm have overlapped and blended together. Since this spectrum 

was optimized for Nd II, the Nd I line was small enough that it did not affect the calculation of 

the Nd II line intensity and thus the Nd II emission line was measureable. The vertical black 

lines are markers for all Nd emission lines within the view range. 

Figure 4.6 The plasma plume at various argon pressures. The laser is vertically incident from 

above on a steel target. The plasma is more diffuse at the lower pressure of 0.06 Torr 

compared to the hotter denser plasma at 1.73 Torr. This trend continues up to atmosphere 

[2]. 

96 

 

 

 

calculating the standard deviation of 20 identical spectra. To give the reader an idea of the 

various plasma densities, pictures of the plume are shown in figure 2.12 at pressures ranging 

from 2.3 mbar to 0.08 mbar. The pictures were the result of a common point-and-click Kodak 

camera with typical exposure time of tenths of a second. It is clear that at 0.08 mbar the plume is 

very spread out and diffuse, whereas at 2.3 mbar the plume looks much brighter and the emission 

from the central region is very strong.  

 

Figure 2.12 above shows the plume at various pressures in an argon environment. 

It is evident that as pressure is decreased in the chamber, the plume becomes more 

diffuse and less dense.  

 

 

2.4.2 - Temporal Evolution 

The effect that delay time had on measurements of plasma was also investigated. Delay 

time is the amount of time between the initial laser pulse and spectroscopic observation of the 

plasma. Using a time-resolved  spectrometer  allows  me  to  vary  this  time  from  10’s  of  ns  after  the  

laser  pulse  to  10’s  of  microseconds.  A graph of the observed emission intensity as a function of 

delay time for a line of Nd I at 492.453 nm and Nd II at 536.147 nm is shown in Figure 2.13.   
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4.2 Argon Pressure for Plasma Formation 

 As a LIBS plasma evolves in time it expands and cools. Changing the pressure 

of the gas surrounding the plasma will change how rapidly or how far the plasma 

expands and thus is directly related to the thermal evolution of the plasma. This also 

impacts the observation timing of the plasma as discussed in section 4.1. It is clear 

from human eye observation of the plasma that pressure has a great effect on the 

expansion of the plasma as seen in Figure 4.6. 

 At near-vacuum pressures of a few mTorr of argon the plasma appeared less 

dense and larger whereas at atmospheric pressures the plasma appeared to be very 

small, dense, and quite bright. The size of the plasma obviously greatly affects the 

electron density of the plasma during its evolution. As mentioned in Chapter 2, the 

Stark-broadening of lines is easily observable at the higher pressures due to the 

increase in electron density (Figure 4.7). The emission lines become broader and thus 

begin to blend together with neighbouring lines. This starts to become a large 

problem when the density of emission lines becomes high, as mentioned in Section 

4.1. When lines broaden they may blend (overlap) together and become unresolvable. 

The blending of lines reduces the accuracy as well as making many lines 

unmeasurable depending on the severity of the overlap. Some lines could be manually 

fit if the blending is not too severe. A small overlapping of lines may result in an 

increased variation between spectra in the value of measured intensities, which in 

turn increases uncertainty in the measurement. A larger overlap typically makes both 

lines unmeasurable depending on the relative size of each emission line. If one line is 

considerably larger than the other, then only the small one will become unmeasurable 

(this can be seen in Figure 4.5 where only the small emission line is unmeasurable). 

It was apparent in our spectra that at lower pressures near vacuum the widths of the 

emission lines were limited by the imaging system as lowering the pressure below 1 

Torr did not further decrease the emission line width, seen in Figure 4.8. Obtaining 

spectra at lower pressures was highly desirable due to the reduced blending and 

increase in spectral resolution of the emission lines. Again, this increased the 

accuracy and number of measurable lines.  
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Figure 4.7 An emission line from an Nd II upper energy level at 430.357 nm at two 

different pressures. The red spectrum was obtained at a pressure of 760 Torr and the 

black spectrum was obtained at a pressure of 1 Torr. At atmospheric pressure the 

neighboring line to 430.357 nm has overlapped and become unresolvable but is clearly 

separated at 1 Torr.  

760 Torr 

1 Torr 

Figure 4.8 A singly-ionized iron emission line at various pressures.  The FWHM does not 

decrease below 1 Torr and is limited by the resolution of the imaging system. The 

narrowest, three overlapping spectra emission lines are at 0.4 Torr (red), 0.7 Torr (black), 

and 1 Torr (green). The broader three lines are at 10 Torr (orange), 186 Torr (purple), and 

513 Torr (blue).  
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 It also needed to be verified that the measured branching fractions did not 

change with pressure in the chamber. Observed changes of branching fractions could 

result from the broadening of lines and/or the opacity of the plasma due to the 

pressure-related changes in size (and electron and ion density) of the plasma. Due to 

the broadening at higher pressures many smaller emission lines become 

unmeasurable as the pressure was increased towards atmosphere, which made 

branching fraction measurements impossible at these pressures. Interestingly, some 

authors describe atmospheric pressure LIBS measurements for absolute transition 

strengths [4]. However, it was observed that our branching fractions did not change 

at lower pressures and agreed with previous measurements performed with the 

same technique (LIBS) and with ion beam-laser experiments. See Figure 4.10. Since 

the measurements did not change with pressure and agreed with previous 

measurements within uncertainty it was also verified that the measurements were 

taken in a regime of optical thinness and no collisional de-excitation. This will be 

further discussed in Section 4.3. Therefore, measurements were taken at 1 Torr for 

optimal achievable emission line width. 

4.3 Target Composition 

 As mentioned in Chapter 2, being in a regime of optical thinness and no 

collisional de-excitation is imperative to branching fraction measurements so that no 

photons are reabsorbed by the plasma and all energy levels have spontaneously 

decayed. Optical thickness and collisional de-excitation could result from a plasma 

that is too dense and too hot. Thus, the number of atoms or ions in the plasma (defined 

as Nion, the plasma ion density) has a large role in determining the opacity of the 

plasma and the rate of collisional de-excitation. To reliably change Nion by 

approximately an order of magnitude, two targets were prepared and used in the 

atomic measurement setup. One target was a pure 99.9% Nd solid and the other was 

a 10% (by weight) Nd powder/hot glue mixture (Figure 4.9). The 10% Nd by weight 

target proved to be problematic for making branching fraction measurements, as the 

emission lines were considerably smaller than when using the 99.9% solid target. All 

the smaller emission lines were unobservable, which resulted in almost no branching 
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fractions being calculated. Only a few of the upper energy levels with the strongest 

emission lines had branching fractions that were calculable (since all allowed 

transitions from of an upper energy level needs to be observed). The reduced 

emission from the upper energy levels also decreased the accuracy of the branching 

fractions that were calculable. Using the few upper energy levels with enough 

transitions visible, measurements were obtained using both targets.  Branching 

fractions were obtained and compared with previous measurements performed with 

the same (LIBS) and different (beam-laser) techniques. It was verified that the 

measurements did not change and were consistent with previous measurements, 

seen in Figure 4.11. This demonstrated that changing the ion density by 

approximately a factor of 10 did not in any way impact our ability to measure relative 

intensities, which then allowed for measurements to be taken with the 99.9% Nd solid 

target and was advantageous due to its increased emission. 

 

 

 

 

Figure 4.9 A solid 99.9%Nd target (left) and a 10% Nd by weight / hot glue mixture target 

(right). The helical ablation trails are clearly visible in both. 
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Figure 4.10 The relative strength of three branches from a single upper energy level in Nd II 

comparing LIBS measurements made at various pressures (data points) ranging from a few 

mTorr to atmosphere with previous measurements made at only one single pressure 

(measured value is a horizontal line). My measurements are black circles with associated 

error bars (error to be discussed in Chapter 5) compared to two beam laser experiments 

(UWO – blue line [2] and UW-Madison – red line [5]) and one LIBS experiment (WSU Ryder 

[3] – black). The measurements did not change with pressure and agreed with previous 

results. 
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Figure 4.11 Measurements with a 99.9% Nd target and 10% Nd target (thus changing the 

ion density in the plasma) compared with previous measurements. The branching 

fractions did not change with a decrease in ion density and both agreed with previous 

measurements of a beam-laser study (UWO [2]) and previous LIBS measurements (WSU 

Ryder [3]). 

1 2 3 4 5 6 7

0.0

0.2

0.4

0.6

0.8

 

 

 This work 0.999 Nd (LIBS)

 UWO (Beam Laser)

 WSU Ryder 0.999 Nd (LIBS)

 This work 0.10 Nd (LIBS)

B
ra

n
c
h
in

g
 F

ra
c
ti
o
n

Transitions From Upper Energy Level

Nd II: E
Up

 23229.991 cm
-1



 

45 
 

References 

 

[1] Lawler, J. E., Bilty, K. A., & Den Hartog, E. A. (2011). Atomic transition 

probabilities of Gd i. Journal of Physics B: Atomic, Molecular and Optical Physics, 

44(9), 095001.  

[2] Li, R., Rehse, S. J., Scholl, T. J., Sharikova, A., Chatelain, R., Holt, R. A., & Rosner, 

S. D. (2007). Fast-ion-beam laser-induced-fluorescence measurements of 

branching fractions and oscillator strengths in Nd II. Canadian Journal of 

Physics, 85(12), 1343-1379. 

[3] Ryder, C. A. (2012). Oscillator strength measurements in singly-ionized, 

doubly-ionized, and neutral lanthanides and transition elements (Sm, Nd, Pr, 

Gd, Cu, and Fe) using laser-induced breakdown.  

[4] Malcheva, G., Blagoev, K., Mayo, R., Ortiz, M., Xu, H. L., Svanberg, S., ... & Biémont, 

E. (2006). Radiative lifetimes and transition probabilities of astrophysical 

interest in Zr II. Monthly Notices of the Royal Astronomical Society, 367(2), 754-

762. 

[5] Den Hartog, E. A., Lawler, J. E., Sneden, C., & Cowan, J. J. (2003). Improved 

laboratory transition probabilities for Nd II and application to the neodymium 

abundances of the Sun and three metal-poor stars. The Astrophysical Journal 

Supplement Series, 148(2), 543. 

 

 

 

 

 

 

 

 

 

 



 

46 
 

CHAPTER 5: Data and Uncertainty Analysis 

 

 In this chapter I will describe the analysis of the LIBS spectral data that 

allowed for the atomic measurements as well as the uncertainty associated with our 

atomic measurement method. 

5.1 Branching Fractions (Relative Intensities) 

 Our ESA3000 spectrometer mapped the wavelength range of 200 to 800 nm 

onto approximately 64,000 useful pixels. Thus each spectrum obtained had 64,000 

pixel intensity values with a corresponding calibrated wavelength. In order to 

determine accurate branching ratios, the relative intensities for all the transitions 

from the energy level had to be measured simultaneously. The ESA3000 

spectrometer software (ESAWIN) had a built in region of interest (ROI) functionality 

that allowed straightforward calculation of a background subtracted “area under the 

curve” for any specific spectral feature or several features at the same time. This ROI 

feature allowed for selection of multiple regions of interest in a spectrum with each 

region containing only a small sub-set of the full data; approximately 30 intensity 

values (pixels). For example, if an upper energy level had eight known decay 

transitions, then I would create a ROI file which only analyzed eight regions each 

containing 30 total pixels with the center of the pixel range aligned with the known 

center wavelength of the transition (Figure 5.1). Transition line centers were 

obtained from a built-in ESA library containing the NIST (National Institutes for 

Standards and Technology) atomic database [1]. I created ROI files for each upper 

energy level containing all the known allowed transitions exiting the energy level. 

Anticipated transitions were obtained from previous measurements and the Kurucz 

online database [2]. By allowing the ESA software to open the spectrometer raw data 

with the ROI file, ESA performed a peak finding algorithm on each 30 pixel region of 

interest, measured a linear background on either side of the peak, and then 

performed a numerical integration of the background-subtracted peak. A text file was 

then created that contained only the background subtracted integrated area under 

each peak (transition), which is the intensity of the transition. Also reported in the 
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text file was the center wavelength of the peak, the FWHM (in pixels) of the measured 

peak, and the background.   

 Using a MATLAB program [see Appendix A] each measured peak intensity 

(transition intensity) was placed into a Microsoft Excel file with an applied spectral 

correction factor (to be discussed in Section 5.2), which accounted for the 

wavelength-dependent attenuation in our system. Ten repeated measurements, each 

measurement containing the accumulated plasma emission from 100 laser pulses, 

were obtained for each experimental parameter set for Nd I, II, and III as discussed in 

Chapter 4. Intensity values were then averaged in the Excel sheet for each of the ten 

repeated measurements to obtain one intensity value for each transition. Thus each 

intensity value was determined from the emission of 1000 laser-induced plasmas. By 

comparing all emission lines from an upper energy level, branching fractions were 

calculated from the measured intensity of each emission line. 

 

 

Transition Centre Wavelength (nm) 

Relative Intensity 

Intensity (Integrated Area) 

Figure 5.1 An ESAWIN ROI view for one set of branches. Eight regions of interest were 

identified in the Nd II spectrum containing the eight allowed transitions from the 

23,229.991 cm-1 upper energy level. The 30 pixels around the known center wavelength 

of the transition are shown, so the peak is generally in the center of each spectral window. 

Above the window ESAWIN has calculated the background subtracted integrated area 

under the curve (intensity in arbitrary units) and the intensity of each peak relative to a 

user-defined peak (in this case the first peak at 430.357 nm). Below the window is the 

center wavelength in nanometres as listed in the NIST atomic database.  
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5.2 Measurement Uncertainty  

5.2.1 Spectral Correction Factor 

 In making atomic measurements such as branching fractions, it is imperative 

that all wavelength dependence of the optical system is taken into account so that the 

number of photons measured at one wavelength will result in the same measured 

intensity value as the same number of photons emitted and observed at a different 

wavelength. The ESA3000 spectrometer has a built in spectral calibration that takes 

into account the wavelength dependence of the imaging system and optical fibre used 

to collect the light from the plasma. This spectral calibration was obtained using a 

calibrated deuterium-tungsten lamp, this was provided by the manufacturer to take 

into account wavelength-dependent factors. This wavelength calibration is applied to 

all data automatically.  

 Since all measurements were obtained inside a vacuum chamber, all light 

emitted from the plasma first passed through a UV-grade fused silica window that 

had wavelength-dependent absorption characteristics that needed to be taken into 

account. Although UV-grade fused silica has excellent transmission in the UV, and a 

fairly flat absorption curve, these effects were non-negligible. In order to determine 

the absorption characteristics across our wide range of wavelengths required for 

branching fraction measurements (the majority of the transitions were between 350 

and 600 nm) we used a deuterium-tungsten lamp and compared spectra obtained 

with and without the window in place (Figure 5.2).  

 In these experiments, the deuterium-tungsten lamp output fibre was placed 

up against the UV-grade fused silica window with the spectrometer fibre aligned on 

the opposite side of the window. Ten repeated measurements were taken with and 

without the window in place, each with an observation time of 1.5 seconds (250 

observations of 6 ms separated by 100 ms due to the ESA3000 control options). A 

spectral correction factor was calculated by taking the ratio of two averaged spectra. 

Ten spectra with the window in place were averaged and then divided by the average 

of ten spectra without the window in place. A piece-wise analytic function was fit to 

the ratioed data, which resulted in a spectral correction factor which could be 
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multiplied with our data at each wavelength to account for decreases in the observed 

emission due to absorption (Figure 5.3). As one can see from Figure 5.3 the UV 

transmission below 250 nm through our window was very poor, which resulted in a 

large spectral correction factor with a large uncertainty. Luckily, no emission lines 

reported in this study were below 250 nm and thus this area of the spectral correction 

factor could be ignored. The error in the analytic fit to the data was very small but as 

one can see there is some spread to the data around the fit. In order to take into 

account uncertainty in the spectral correction factor, an average deviation of the data 

from the analytic fit was calculated. The average deviation of the spectral ratios from 

the fit was 4.4%. The spectral correction was also conducted numerous times on 

multiple days to take into account day-to-day variations in the measured spectral 

correction factor. This day-to-day scatter (standard deviation) in the measured 

spectral correction factor was 3.0%. 

 

 

Figure 5.2 Deuterium-tungsten spectra obtained by our ESA3000 spectrometer with 

(red) and without (black) transmission through our UV-grade fused silica window. The 

difference between these two spectra can be used to determine a spectral correction factor 

for the wavelength-dependent attenuation of our system. 
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5.2.2 Emission Line Uncertainty 

 There is an intrinsic shot-to-shot scatter in laser-induced plasma 

measurements as the plasma cannot be perfectly reproduced with every laser pulse 

due to a multitude of factors that go into creating a laser-induced plasma [3]. This 

results in a fluctuation in intensity values when repeatedly measuring each transition 

from an energy level. Ten repeated measurements were obtained and a standard 

deviation on the intensity values for each transition was calculated. Averaged 

intensity values were plotted against their fractional standard deviation values 

(Figure 5.4). From this graph it is easily seen that fractional uncertainty decreased as 

Figure 5.3 The ratio between spectra observed without and with transmission through 

our UV-grade fused silica window (blue data points) and the resulting spectral correction 

factor (red line) from an analytic fit to the ratio data. Error bars on the ratio data are the 

standard deviations of the twenty measured ratios.  
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the intensity value increased. This is expected as the number of photons observed 

increases the SNR and SBR, which results in a more reproducible measurement. In 

order to assign appropriate uncertainty to each intensity measurement it was 

decided to break all of our measurements up into three regions and to assign an 

intensity-dependent uncertainty to each group of data. Cut points were chosen to 

separate the intensity values into groups with intensity values below 2,000 a.u. 

(small), between 2,000 a.u. and 11,250 a.u. (medium), and above 11,250 a.u. (large). 

These cut-point values were chosen based on countless hours of reviewing the data, 

our knowledge of the ability to measure peaks with certain intensity values, and with 

the aid of Figure 5.4. Ultimately, the uncertainty chosen for each region was calculated 

with an upper limit approach. The scatter of the uncertainties in each group was 

measured and the uncertainty assigned to the region was picked so that only 1/e2 

(~13.5%) of the fractional uncertainty measurements would lie above the cut-off. 

Thus, 86.5% of the measured fractional uncertainty values were below the 

uncertainty assigned to the region. 201 measurements were used to obtain these 

uncertainty values. Using this method, emission lines with intensity values below 

2,000 a.u. were all assigned an intensity fractional uncertainty of 24.8%, intensity 

values between 2,000 and 11,250 a.u. were all assigned an intensity fractional 

uncertainty of 6.3%, and intensity values above 11,250 a.u. were all assigned an 

intensity fractional uncertainty of 2.8% (Table 5.1). 

 One might be tempted to think that because the fractional standard deviation 

shown in Figure 5.4 is a smoothly-varying function of intensity that it might be best 

to use some functional form for the uncertainty and then calculate an uncertainty for 

each intensity. This was investigated and rejected based on thousands more 

measurements on other elements not shown here. Also, the practical difficulties this 

would entail in applying this to the tens of thousands of measurements (only 

neodymium data is reported in my thesis) made on all elements rendered this 

impractical. Lastly, there is no convincing experimental reason why two intensity 

values quite close to each other should have different uncertainties and also no 

reason to use one function over another. This suggests a single value of uncertainty 

for all measurements, yet a quick analysis of Figure 5.4 shows that clearly large 
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intensities and small intensities must possess different uncertainties. Therefore this 

grouping of intensity values was chosen as a compromise.  

5.2.3 Total Uncertainty Budget 

 The sources of uncertainty described were added in quadrature to produce 

one final total branch uncertainty value shown in the uncertainty budget table (Table 

5.1). Day-to-day scatter of the spectral correction factor was 3.0% and the average 

Figure 5.4 Calculated fractional standard deviation of all measured transitions from Nd I, 

II, and III plotted as a function of intensity. Fractional standard deviation decreased with 

increasing intensity and thus three groups were chosen for uncertainty assignment based 

on the measured intensity value. The three intensity groups are shown separated by thick 

vertical grey lines. The three intensity groups are designated “small intensities” (below 

2,000 a.u.), “medium intensities” (between 2,000 a.u. and 11,250 a.u.), and “large 

intensities” (above 11,250 a.u.). The final fractional uncertainty assigned to each group is 

shown as a black horizontal line.  
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deviation between the analytic fit and the spectral correction was 4.4%. These values 

were added in quadrature to obtain a 5.3% uncertainty based on our applied spectral 

correction factor. The three intensity uncertainty measurements based on the 

fluctuation in measured intensity values in repeated measurements obtained from 

the analysis of Figure 5.4 are listed in Table 5.1 as “Transition Intensity Uncertainty.” 

This “Transition Intensity Uncertainty” was then added in quadrature with the 

systematic spectral correction factor uncertainty to calculate a total uncertainty for 

each of the three intensity groups.  

 Using the measured branching fractions, previously measured lifetimes, and 

multiplicity of each upper energy level, gA values for every observed transition were 

then calculated as described in Chapter 1. The uncertainty assigned to each of our gA 

measurements came from propagating the uncertainty on our measured branching 

fraction as shown in Table 5.1 and the reported uncertainty in the previously 

measured lifetimes. 

 

Source of Uncertainty Uncertainty (%) 

Spectral Correction Factor    

Day-To-Day Scatter 3.0 

Deviation Between Fit and Data 4.4 

Spectral Correction Factor Total  5.3  

  

Transition Intensity Group Small Medium Large 

Transition Intensity Uncertainty 24.8 6.3 2.8 

Total Uncertainty 25.4 8.2 6.0 

 

Table 5.1 Uncertainty budget showing the two uncertainties associated with the spectral 

correction factor added in quadrature for a total uncertainty in the spectral correction 

factor. The uncertainty for each transition intensity group was then added in quadrature 

with the uncertainty from the spectral correction factor to produce a total branch 

uncertainty dependent on each transition’s intensity. 
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CHAPTER 6: Neodymium Transition Probability 

Measurements 

 

 Using our laser-induced breakdown spectroscopy setup for atomic 

measurements, I obtained relative intensity measurements on doubly-ionized, singly-

ionized, and neutral neodymium. In this chapter, I present my measurements and 

results of neodymium transition probabilities. Data was taken on three other 

lanthanides (praseodymium, gadolinium, and samarium) but will not be presented in 

this thesis since the data will be used in future work (see Chapter 8). 

6.1 Neutral Neodymium 

6.1.1 Previous Neutral Neodymium Work 

 Currently, there is limited previous work on transition probability 

measurements in neutral neodymium (Nd I). In 1962, Corliss and Bozman [1] 

determined transition probabilities using arc discharge measurements. In 1973, 

Penkin and Komarovskii [2] determined relative intensities for Nd I. In 1980, Marek 

and Stahnke [3] determined 18 radiative lifetimes using delayed coincidence and 

laser-induced fluorescence. In 1982, Gorshkov et al. [4] determined 38 radiative 

lifetimes using pulsed-electron delayed coincidence. In 2004, Biémont et al. [5] 

determined 15 radiative lifetimes using time-resolved laser-induced fluorescence. 

Most recently, in 2011, Den Hartog et al. [6] determined 100 radiative lifetimes using 

a beam-laser ion source. The previously measured radiative lifetimes we used to 

determine our Nd I transition probabilities were from Den Hartog et al. unless 

otherwise noted. This limited amount of previous work offered very little for 

comparison of our determined transition probabilities. 

6.1.2 Neutral Neodymium Results  

 Experimental parameters were optimized for neutral neodymium emission as 

discussed in Chapter 4. Each spectrum obtained consisted of 100 laser pulses, each 

on a different location on our neodymium target. The observation time of the plasma 

was 3 μs after formation and was 10 μs in length in argon gas at a pressure of 1 Torr. 

The majority of known energy levels in Nd I only have one transition, thus measuring 
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that transition and reporting the results provides no new information since 

previously measured lifetimes were used in our calculations (there are hundreds of 

energy levels with one transition in Nd I). Only energy levels with more than one 

transition are reported on although nearly all of the energy levels with only one 

transition were observed. In comparison with the previous LIBS work of Ryder [7], 

Ryder made transition probability measurements on 8 upper energy levels 

(containing more than one transition). With my new setup I made measurements on 

16 upper energy levels. Not only was I able to measure twice the number of energy 

levels, but emission on all transitions increased substantially in Nd I which greatly 

improved our measurement accuracy on small emission lines. I increased plasma 

emission and light capture efficiency to sufficiently bring many emission lines to 

measurable levels and increased the accuracy of all emission lines. Comparison of our 

transition probabilities with previous works was virtually useless, as my calculations 

used more recent radiative lifetimes. I used the radiative lifetime measurements from 

Biémont et al. in 2011, whereas all previous transition probabilities were calculated 

using values from before 2011. This in turn skews the results for comparison with 

previous works. See Table 6.1 for a full list of Nd I results.  

6.2 Singly-Ionized Neodymium 

6.2.1 Previous Singly-Ionized Neodymium Work 

 In 1977, Maier and Whaling [8] determined 9 transition probabilities in Nd II 

by using determined radiative lifetimes from Andersen et al. [9] (1975). In 1984, 

Ward et al. [10] determined 8 radiative lifetimes. In 2001, Pinciuc et al. [11] 

determined 35 radiative lifetimes using a collinear beam-laser method with laser-

induced fluorescence. In 2002, Scholl et al. [12] determined 13 lifetimes using beam-

laser laser-induced fluorescence. In 2003, Xu at al. [13] determined 107 transition 

probabilities from 24 energy levels using laser-induced fluorescence. Again in 2003, 

Den Hartog et al. [14] determined transition probabilities for more than 700 

transitions in 168 levels using time-resolved laser-induced fluorescence. In 2007, 

Biémont et al. [15] compared previously experimentally determined with calculated 

lifetimes from various theoretical methods. Again in 2007, Li et al. [16] determined 
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430 transition probabilities from 46 energy levels using fast-ion beam laser-induced 

fluorescence. This amount of previous work provides sufficient results for 

comparison with my transition probability measurements.  

6.2.2 Singly-Ionized Neodymium Results 

 Experimental parameters were optimized for singly-ionized neodymium 

emission as discussed in Chapter 4. Each spectrum obtained consisted of 100 laser 

pulses, each on a different location on our neodymium target. The observation time 

of the plasma was 1 μs after formation and was 1 μs in length in argon gas at a 

pressure of 1 Torr. My results for Nd II are very similar to the results of Ryder as the 

Ryder experimental parameters were optimized for Nd II as well. With my 

improvements in the experimental apparatus, measurement of smaller emission lines 

greatly improved. This in turn improved the accuracy of all upper energy levels 

containing smaller emission lines since branching fractions are determined with the 

total sum of all the emission lines. Full results are listed in Table 6.2 along with 

comparison graphs between previous works seen below (Figure 6.1 and Figure 6.2). 

Figure 6.1 shows the agreement between my measured transition probabilities and 

the previous works of Ryder [7] and Li et al. [16]. Figure 6.2 is a histogram showing 

the deviation between Li et al. and this work’s transition probabilities. 

6.3 Doubly-Ionized Neodymium 

6.3.1 Previous Doubly-Ionized Neodymium Work 

 The only experimentally determined data for Nd III was in 2002 with the 

measurement of radiative lifetimes in 5 energy levels by Zhang et al. [17] using laser-

induced fluorescence. There is very little work in Nd III even in terms of known 

energy levels and transitions.  

6.3.2 Doubly-Ionized Neodymium Results 

 In my measurement of Nd III, a tremendous number of new lines were 

observed, but current knowledge on upper energy levels and transitions in Nd III is 

very limited, and thus only known transitions from the DREAM database [18] were 

reported on. Many emission lines are currently unidentified (the unidentified lines 

could be higher ionization states as well, but no Nd IV, V, … lines have been previously 
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documented). Observed emission lines were substantial in size in comparison to the 

previous work by Ryder. This was evident from energy levels with two transitions 

where Ryder only observed the stronger of the two whereas I observed both 

transitions because of my increased light collection and optimized experimental 

conditions. This was observed in Nd I, Nd II, and Nd III comparisons with Ryder. 

Experimental parameters were optimized for doubly-ionized neodymium emission 

as discussed in Chapter 4. Each spectrum obtained consisted of 100 laser pulses, each 

on a different location on our neodymium target. The observation time of the plasma 

was 500 ns after formation and was 500 ns in length in argon gas at a pressure of 1 

Torr. Ryder was only able to make a measurement on one upper energy level with 

more than one transition in Nd III. I was able to increase that number to 4 although 

the main limitation was the amount of known upper energy levels and transitions in 
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Figure 6.1 Comparison between this work’s measured transition probabilities (gA values) 

and previous LIBS work of Ryder [7] and beam-laser work of Li et al. [16].  
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Nd III. No comparison with previous works was possible. Table 6.3 shows full results 

for Nd III measurements and transition probabilities. 
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Figure 6.2 A histogram of transition probability differences between this work and Li et 

al. [16]. Percent gA difference was not used as this results in a skew of the data. 

Specifically, when small gA values are different between the two studies (which we know 

to be common as the accuracy of both studies decreased with small intensities) very large 

percent differences can result that are due to only small absolute gA differences. Percent 

differences also result in a skew of the histogram based on the fact that one cannot obtain 

a negative percent difference larger than 100%, whereas a positive percent difference 

greater than 100% is possible. 
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CHAPTER 7: Laser-Induced Breakdown Spectroscopy – 

Laser-Induced Fluorescence for Atomic Measurements 

 

 Laser-induced breakdown spectroscopy – laser-induced fluorescence (LIBS-

LIF) is a hyphenated technique that uses a high-energy laser as a source for a laser-

induced plasma and a second resonant excitation laser to specifically populate an 

upper energy level of an atom or ion in the plasma. LIBS-LIF is typically used for trace 

element detection in samples such as trace metal in biospecimens [1-4]. The resonant 

excitation laser, in our case an OPO (discussed in Chapter 3), is tuned to a specific 

wavelength of a transition from an upper energy level of interest. At a desired time 

after plasma formation (interpulse delay) the resonant excitation laser is incident on 

the plasma. Assuming there is a non-zero population in the lower energy level of the 

transition (which there is in a thermally populated distribution), the upper energy 

level is resonantly excited (pumped) which then increases the population of atoms in 

the upper energy level. This increases the spontaneous emission on all transitions 

exiting the energy level. Increasing the emission will result in larger observed 

emission lines in our spectra that may be brought above the background and noise 

levels. This is advantageous when the limiting factor in trace elemental detection is a 

small signal that is below the noise and/or background.  

 Fluorescence, emitted light due to absorbed light, is observed in tens of 

nanoseconds after resonant excitation of an upper energy level. This is very different 

from LIBS where emission is observed over microseconds after formation of the 

plasma as discussed in Chapter 2. In order to observe an increase in emission the 

observation time of the plasma needs to be accurate and precise so that it 

immediately follows the resonant excitation pulse. 

 We have proposed LIBS-LIF as a technique to alleviate problem energy levels 

with blended and small emission lines. When emission lines are blended and/or 

small, branching fractions cannot be calculated due to some transitions from the 

upper energy level being unmeasurable. Using LIBS-LIF on problem energy levels, 

emission from one of the blended lines can be increased so that the blending of lines 
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becomes insignificant. This makes the emission line measurable. The increased 

emission from an upper energy level will also result in bringing small emission lines 

above the noise. This technique will be used to make new emission line 

measurements possible and increase the accuracy of the measurements by increasing 

the SNR and SBR on all transitions from an upper energy level of interest. 

 This chapter will discuss the implementation of a LIBS-LIF experiment for use 

in our atomic measurement apparatus.  

7.1 Implementation and Results 

 In our LIBS-LIF experiment we used a tuneable OPO laser for resonant 

excitation of the plasma and the same Nd:YAG laser firing at its fundamental 

frequency that was used for the LIBS measurements for production of the plasma (for 

more information on the experimental apparatus see Section 3.4).  

 The 23229.991 cm-1 upper energy level in singly-ionized neodymium was 

selected for investigation in our LIBS-LIF implementation experiments. This upper 

energy level was chosen since it is a well-characterized level with good-accuracy data 

for comparison [5]. The transitions in this upper energy level were advantageous 

since all were in the tuneable range of our OPO laser allowing us to pump on any of 

the transitions exiting the upper energy level. Any upper energy level could be chosen 

as long as it contained at least one transition in our OPO laser’s wavelength range so 

that it could be resonantly excited. Initial proof-of-concept experiments used the 

transition from the 23229.991 cm-1 upper energy level ending in the ground level for 

singly-ionized neodymium (Figure 7.1) as the pumping transition. This transition 

wavelength was 430.357 nm. Because we do not have a calibrated wavemeter, the 

OPO wavelength was matched to the transition using our Échelle spectrometer by 

overlaying spectra that contained the Nd II 430.357 nm emission line and only the 

OPO pulse. The OPO wavelength was adjusted until the OPO pulse spectrally 

overlapped the Nd II emission line (Figure 7.2). This Nd II upper energy level was a 

good choice due to its strong and weak transitions allowing a wide range of results to 

be observed.  
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0.00 cm-1 
513.32 cm-1 
1650.19 cm-1 

3066.75 cm-1 

4437.55 cm-1 

6005.27 cm-1 

6931.90 cm-1 
7524.74 cm-1 

23229.99 cm-1 

6s 6I7/2 
6s 6I9/2 

6s 4I9/2 

6s 4I11/2 

5d 6L11/2 

5d 6K9/2 
5d 6K11/2 

5d 6I7/2 

6p 6K9/2 

430.357 nm 

Figure 7.1 Singly-ionized neodymium energy level diagram showing the eight lower 

energy levels which have allowed spontaneous emission transitions from the 6p 6K9/2 

upper energy level at 23229.99 cm-1.   The transition from the ground state, 0.00 cm-1, was 

used for initial pumping experiments (430.357 nm). 

Figure 7.2 A LIBS emission spectrum of Nd optimized for singly-ionized species (red) with 

a second overlapped spectrum of the OPO pulse tuned to the 430.357 nm transition in Nd 

II with no LIBS spectrum (blue). The blue spectrum was obtained by positioning the 

spectrometer observation window at the time of the OPO pulse and capturing 

reflected/scattered OPO light off the Nd target in the vacuum chamber. 
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 The timing for the LIBS-LIF experiment was different than the regular LIBS 

spectra. Because LIF only lasts for tens of nanoseconds after the excitation by the 5 

ns OPO pulse, the plasma observation window needed to be extremely short 

(nanoseconds) in order to observe an effective increase in emission above normal.  

The normal longer observation time was microseconds. The increase in emission that 

was observed with LIF when the normal microseconds-long window was used was 

negligible in comparison to the normal observation time LIBS spectrum. As expected 

though, the increase in emission was substantial when the timing window was 

optimized to only observe a range when LIF was occurring, which thus minimized the 

normal LIBS plasma emission. With the extremely short observation time MCP 

amplification was increased drastically over the normal LIBS spectrum due to the 

drastic decrease in total photons captured. Specific results will be shown in following 

sections.  

 Various OPO beam diameters were explored for LIBS-LIF. Resonant excitation, 

and thus fluorescence, was not observed when the OPO excitation laser beam size was 

less than half a millimetre in diameter. At this beam size the energy fluence of the OPO 

beam was sufficient to cause breakdown. Instead of a resonant excitation pulse it was 

a secondary breakdown pulse. The size of the OPO beam needed to be on the order of 

the plasma size (at the current pulse energy), which was a few millimetres in 

diameter in order to not cause a secondary breakdown. It is common for investigators 

to intentionally create a secondary breakdown pulse in the initial plasma in a 

technique known as dual-pulse LIBS [1]. This dual-pulse LIBS was not the intent of 

our current investigation. For optimal coupling of photons from the resonant 

excitation pulse into the plasma the resonant excitation pulse should be 

approximately the size of the plasma, increasing the overlap with the plasma. This 

allows excitation of more atoms in the plasma. With a larger beam size, resonant 

excitation was observed in the plasma as shown by increased emission on transitions 

exiting the upper energy level. The OPO beam size was optimized with the defocusing 

lens as shown in Figure 3.10 to be as close to the size of the plasma as possible, which 

was 1 by 3 mm. All other parameters were preliminary in the aforementioned studies 

for the implementation of the LIBS-LIF setup. 
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(a)  3 µs (b)  4 µs 

(c)  8 µs (d)  12 µs 

Figure 7.3 LIBS-LIF at various interpulse delay times showing an increase in LIF in 

comparison to normal LIBS emission at longer delay times after plasma formation (and 

thus longer interpulse delay times). (a) LIBS (red) and LIBS-LIF (black) spectra showing 

no noticeable increase in emission with LIF at a 3 µs interpulse delay. (b) LIBS (red) and 

LIBS-LIF (black) spectra showing noticeable increase in emission with LIF but still 

substantial normal LIBS emission at a 4 µs interpulse delay. (c) LIBS (red) and LIBS-LIF 

(black) spectra showing great increase in emission with LIF with near no normal LIBS 

emission at an 8 µs interpulse delay. (d) LIBS (red) and LIBS-LIF (black) spectra showing 

tremendous increase in emission with LIF with no normal LIBS emission at a 12 µs 

interpulse delay.  In all spectra, the resonant laser wavelength was 430.357 nm, which is 

not shown in this spectral range. The y-axis is intensity in arbitrary units and the x-axis is 

wavelength in nanometres. 
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 As mentioned in Section 4.1, fluorescence takes place over tens of 

nanoseconds. The ESAWIN spectrometer imaging system had a response of 

approximately 60 ns that made it impossible to separate the LIF observation and OPO 

pulse in time and only capture fluorescence without the pumping pulse. The 

activation and deactivation of the image intensifier was not precise enough for the 

nanosecond timing required and thus less-than-desirable results were achieved due 

to the OPO pulse observation in every LIF spectrum. From this I concluded that the 

LLA ESA spectrometer imaging system did not have the nanosecond response that is 

required for optimal LIBS-LIF measurements, since the plasma has to be observed 

nanoseconds after the resonant excitation pulse. When investigating the timing for 

observation, fluorescence was only ever observed when the OPO was also observed, 

which was a result of the response of the imaging system. Our (new) secondary 

spectrometer, an LTB Aryelle, did have nanosecond response and was able to 

separate the OPO pulse and the LIF in time. This showed great promise for use in our 

LIBS-LIF setup but due to the fact that the new spectrometer was not fully 

implemented in the laboratory it could not be used for the LIBS-LIF preliminary 

studies.  

 Using the delay generator, various interpulse delays were explored to 

determine when the emission from the resonantly excited upper energy level was 

maximized. This was done by pumping the 23229.991 cm-1 level with an OPO 

wavelength of 430.357 nm (Figure 7.1) and then observing LIF on the different decay 

branches ranging from 440 nm (transition from the 23229.991 cm-1 to 513.32 cm-1 

energy level) to 636 nm (transition from the 23229.991 cm-1 to 7524.74 cm-1 energy 

level). In this way, the presence of the OPO pulse in the ESA spectrometer gate 

window did not affect the measurement. With an argon pressure of 1 Torr, 

fluorescence diminished at interpulse times shorter than 4 microseconds in 

comparison to background (normal) LIBS emission over the same observation time. 

Using an interpulse delay of 4 microseconds fluorescence was observed and 

increased at interpulse delay times longer than 4 microseconds (Figure 7.3). With an 

interpulse delay of 12 microseconds nearly all background LIBS emission was gone 

and the only observed peaks were from the resonantly pumped upper energy level. A 
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comparison between nominal LIBS emission for Nd II (delay time and observation 

time of 1 microsecond) and LIBS-LIF with interpulse delay of 12 microseconds is seen 

in Figure 7.4. This technique showed great promise for eliminating 

shouldered/blended peaks as seen in Figure 7.4 where all of the LIBS Nd emission 

has decreased to be unobservable except for transitions originating in the pumped 

upper energy level. The optimal interpulse delay was not completely determined as 

other parameters currently still need to be explored in these preliminary 

implementation studies. 

 

(a) (c) 

(b) (d) 

Figure 7.4 Comparison between a nominal LIBS spectrum optimized for Nd II and a LIBS-

LIF spectrum with a 12 µs interpulse delay pumping the upper energy level 23229.991 

cm-1 in Nd II. (a) and (b)show the fluorescence on the 531.982 nm branch.  (c) and (d) 

show the fluorescence on the much smaller 495.82 nm branch.  (b) and (d) both show a 

noticeable decrease in all other non-pumped Nd emission and thus the only peaks 

observed originate in the energy level of interest. The slight shoulder to the 531.982 nm 

peak in (a) is gone in (b) using LIBS-LIF and the interpulse delay of 12 µs. The y-axis is 

intensity in arbitrary units and the x-axis is wavelength in nanometres. 
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 Various OPO laser energies were explored, from nanojoules to hundreds of 

microjoules. With the current alignment and spectrometer response no increase in 

emission was observed using nanojoules of energy with a beam size of a few 

millimetres. Increase in emission was observed using microjoules and above. 

Emission from the upper energy level increased with up to hundreds of microjoules 

per OPO pulse (Figure 7.5). The energy could not be increased above this due to 

current limitations with the response of the LLA ESA spectrometer, which led to 

saturation of the imaging system. Specifically, this unavoidable saturation occurred 

because of the inability to select a short observation window immediately after the 

OPO pulse. Thus, scattered photons from the incident OPO pulse were also observed 

in the LIF spectrum and were much greater than emission from the plasma. The OPO 

pulse energy could not be increased above a few microjoules without increasing this 

image saturation, which is detrimental to the imaging camera. It is hoped that this will 

be addressed in future work. 

 LIF emission enhancement was compared when different transitions were 

used to pump the upper energy level. The lower the energy level of the transition to 

be pumped the larger the increase in LIF emission observed when all other 

parameters were kept constant (50 μJ/pulse), as expected (Figure 7.6). The largest 

increase in LIF emission was observed when pumping from the lowest energy level, 

the ground state in singly-ionized neodymium. The smallest increase was observed 

when pumping the transitions from the higher energy levels (Figure 7.6). Various 

other resonant excitation laser / ablation laser geometries (e.g. perpendicular beam 

or “side-pumping”) were not explored in this study. 

7.2 Conclusions and Future Work 

 Using both the LLA ESA and LTB Aryelle spectrometers enhancement of signal 

was observed on transitions from a pumped upper energy level, thus proving that I 

was indeed resonantly exciting a specific energy level within the laser-induced 

plasma. Optical pumping of the level was also demonstrated on multiple transitions, 

although most efficient excitation was observed when utilizing the strongest 

transition (which had a ground state as its lower energy level), as expected. The ESA 
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spectrometer possessed a few problematic timing limitations that could be overcome 

with use of the Aryelle spectrometer. The LIBS-LIF experimental apparatus and 

geometry was designed, setup, and preliminary timing/control tests showed great 

promise for future LIBS-LIF experiments such as the enhancement of trace-metal 

signals in biospecimens (which is of particular interest to our group.) Future students 

will be continuing with LIBS-LIF work to optimize the interpulse delay (delay 

between ablation and resonant excitation pulses) as well as optimal laser energy for 

increase in emission from specific transitions in targets of interest since these 

parameters are expected to change for different transitions and for different 

elements.  

 Even given the current limitations with the spectrometer system, 

enhancement of the smaller emission lines brought them sufficiently above noise 

levels to make measurements possible, as well eliminated emission line blends 

(Figure 7.5) by eliminating all other Nd LIBS emission and reducing the background 

Figure 7.5 LIBS-LIF at various OPO laser pulse energies. The 23229.991 cm-1 level was 

resonantly pumped at 430.357 nm while fluorescence was observed on the 531.982 line.  

The smallest peak (red) was excited with 100 nJ/pulse.  An increase in LIF was observed 

with increasing power up to the largest increase in LIF at 0.5 mJ/pulse (black).  The OPO 

pulse was saturating the detector system at 0.5 mJ/pulse and thus I was not able to 

increase the energy further. 
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noise with a longer interpulse delay time. However, the main drawback of the LIBS-

LIF technique as implemented here was the plasma observation time. LIBS-LIF 

observation was nanoseconds in length to observe LIF enhancement, but then the 

total emission (including florescence) was comparable to our normal LIBS spectra 

seen in Chapter 4 and thus small emission lines did not greatly increase in intensity. 

Further studies will be conducted to investigate the technique for measurement of 

blended emission lines as well as the possibility of new measurements of smaller 

emission lines with the LTB Aryelle spectrometer. 
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Figure 7.6 LIF comparison when pumping on various transitions to populate the upper 

energy level of 23229.991 cm-1 in singly-ionized neodymium. The largest increase was 

observed when pumping the transition from the ground state in singly ionized neodymium (0 

cm-1, black spectra). Smaller increases were observed when pumping the transitions from the 

higher energy levels such as the 2007 cm-1 energy level (blue spectra) and 6005 cm-1 energy 

level (red spectra). All pumping was done using the same energy of 50 μJ/pulse. 

Pumping Wavelength 

 

BLACK:  0 cm-1 

BLUE:   2007 cm-1 

RED:   6005 cm-1 
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CHAPTER 8: Conclusion 

 

8.1 Conclusion 

 The goal of this work was to improve the experimental apparatus for atomic 

measurements utilizing laser-induced breakdown spectroscopy, improve the 

accuracy of current measurements in the lanthanide system of elements, and make 

new measurements if the improvements were substantial enough to allow them. The 

new components designed and implemented in the experimental apparatus 

substantially increased light collection from the plasma. This resulted in improved 

accuracy in the atomic measurements from Nd II and observation of previously 

unobservable emission lines in Nd I and Nd III. A careful experimental parameter 

optimization increased the accuracy of our measurements and allowed the 

measurement of more upper energy levels by tailoring the experiment for specific 

ionization states. This resulted in new transition probability measurements in neutral 

and doubly-ionized neodymium (reported in Chapter 6) and reduced the 

uncertainties on all measurements.  

8.2 Future Work 

 During the course of this work, emission spectra were optimized and recorded 

for three other lanthanides: Gd, Sm, and Pr. This data was recorded but has not yet 

been analyzed. Due to the high spectral line density as discussed in Chapter 4 careful 

analysis and examination of the data must be performed. This data will be analyzed 

and examined by a future student to produce newer improved results on these 

lanthanides. It is expected that the overall improvement of these results will be near 

identical to that of the neodymium results reported in this thesis. That is to say, there 

will be new measurements reported for the neutral and doubly-ionized species with 

an overall increase in accuracy of the transition probabilities. 

 As a result of this work, a LIBS radiative lifetime experiment is also ready for 

a future student to begin making lifetime measurements, most likely on gallium, as 

discussed in Chapter 1. This experimental apparatus was implemented, tested, and 

documented for a future student. The experiment is not currently operational, but is 
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ready to be reassembled and for measurements to begin. In obtaining radiative 

lifetime measurements using LIBS, the measurements could be combined with our 

branching fraction measurements so that previously determined radiative lifetimes 

do not need to be used to obtain transition probabilities. 

 LIBS-LIF has been demonstrated using a new pulsed OPO laser system and has 

shown great promise in its ability to improve accuracy and alleviate problems 

associated with our typical LIBS atomic measurements as discussed in Chapter 7. This 

two-laser method will continue to be explored and optimized for making new 

measurements. This was the first implementation of the LIBS-LIF system in our 

laboratory and the experience gained in developing this system will also be applied 

to other LIBS projects that are ongoing in our laboratory. 
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APPENDICES  

 

Appendix A MATLAB Code 

A.1 Dat File Data to Excel File 

 The following code is a MATLAB script that takes the .dat files I saved with 

our ESAWIN software and places the integrated areas under each peak and 

corresponding wavelength into an Excel file in the same folder that contained the 

.dat files. This resulted in an Excel file for each upper energy level under 

investigation containing the pertinent information for my branching fraction 

calculations. 

 

 

 

tic 

format long g; 

  

  

NumDatFiles = input('how many .dat files are stored in each EUp to be 

analyzed into final_data?: ' ); 

  

  

ElementSymbl = input('what element is it? input answer as the element 

symbol (Iron = Fe): ','s'); 

  

  

 [filenameEUps,pathnameEUps]= uigetfile({'*.txt','Text files (*.txt)'; 

'*.dat', 'Data files (*.dat)'; '*.*','All Files (*.*)'},'select the 

file with the list of Upper Energies to input.. Ex: Nd II EUps.txt'); 

fileLocationEUps = strcat(pathnameEUps,filenameEUps); 

fidEUps = fopen(fileLocationEUps); 

EUpsList = textscan(fidEUps,'%s'); fclose(fidEUps); 

EUpsList = EUpsList{:};  

EUpsListNum = str2double(EUpsList); 

 

  

disp('got to 34') 

  

count = 0; 

filenameHeaders = []; 

filenameExcl = []; 

  

clear ii 

for ii = 1:(length(EUpsList)) 

    count = count + 1 
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    if ii==1  

  

        [filenameDat,pathnameDat]= uigetfile({'*.dat','Data files 

(*.dat)'; '*.*','All Files (*.*)'},'select the 1st .dat file from the 

1st EUp Ex: 042711_001.dat'); 

        fileLocationDat = strcat(pathnameDat,filenameDat); 

        pathnameDat2 = pathnameDat; 

  

    else 

         

        AA=length(EUpsList{ii});    

        pathnameDatBegin = pathnameDat2(1:(end-10));  

        EUpIndx = char(EUpsList{ii}); 

        pathnameDat = strcat(pathnameDatBegin, EUpIndx, '\') 

  

    end 

  

  

  

  

clear jj; 

    for jj = 1:NumDatFiles 

         

         

          

  

        if ((jj>0) && (jj <= 9)) 

            filenameDatStart = filenameDat(1:end-5); 

            filenameDatStart = char(filenameDatStart); 

            Ending = int2str(jj); 

            Ending2 = char(Ending); 

            filenameDatStartIter = [filenameDatStart, Ending2]; 

            FileNameEnd = strcat(filenameDatStartIter  ,'.dat'); 

            fileLocationDat = strcat(pathnameDat,FileNameEnd); 

        elseif ((jj>9) && (jj <=99)) 

            filenameDatStart = filenameDat(1:end-6); 

            filenameDatStart = char(filenameDatStart); 

            Ending = int2str(jj); 

            Ending2 = char(Ending); 

            filenameDatStartIter = [filenameDatStart, Ending2]; 

            FileNameEnd = strcat(filenameDatStartIter  ,'.dat'); 

            fileLocationDat = strcat(pathnameDat,FileNameEnd); 

        elseif ((jj>99) && (jj<=999)) 

            filenameDatStart = filenameDat(1:end-7); 

            filenameDatStart = char(filenameDatStart); 

            Ending = int2str(jj); 

            Ending2 = char(Ending); 

            filenameDatStartIter = [filenameDatStart, Ending2]; 

            FileNameEnd = strcat(filenameDatStartIter  ,'.dat'); 

            fileLocationDat = strcat(pathnameDat,FileNameEnd); 

        else 

            disp('counter of jj is too large') 

            error('counter of jj is too large'); 

  

        end 
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disp('got to 119') 

        fidDat = fopen(fileLocationDat);  

        EUpsListDat1 = textscan(fidDat,'%s');  

        fclose(fidDat); 

        EUpsListDat2 = EUpsListDat1{:}; 

        EUpsListDatNum = str2double(EUpsListDat2);  

        disp('got to 125') 

        ElementSymbl = char(ElementSymbl); 

        EUpsListDat2(strcmpi(EUpsListDat2,ElementSymbl)); 

        ElemSymblCellLocatnRow = 

find(strcmpi(EUpsListDat2,ElementSymbl));  

        EUpsListDatCells = EUpsListDatNum(ElemSymblCellLocatnRow + 2);  

        EUpsListDatCells(isnan(EUpsListDatCells)) = 0; 

        disp('got to 131') 

        if jj==1 

            finalDataMatrix = 

zeros(length(EUpsListDatCells),NumDatFiles); 

        end 

                

        finalDataMatrix(:,jj) = EUpsListDatCells;  

  

    end 

disp('got to 139') 

  

    finalDataMatrixT = finalDataMatrix'; 

     

   

    disp('got to 148') 

    SizefinalDataMatrixT= size(finalDataMatrixT); 

    SumfinalDataMatrixT = sum(finalDataMatrixT); 

    for uu=1:SizefinalDataMatrixT(2) 

        if SumfinalDataMatrixT(1,uu) == 0 

             

            finalDataMatrixT(1,uu) = 1; 

            disp('Appended column of zeros in finalDataMatrixT to a 

single cell with a 1 in the empty column ') 

        end 

         

    end 

     

    pathnameExcl = char(pathnameDat); 

    OutPutFileExclName = strcat(pathnameExcl, 'Final_Data.xls') 

    xlswrite(OutPutFileExclName, finalDataMatrixT, 'Sorted Data' , 

'A1');  

disp('got to 165') 

    disp('1 round completed') 

     

    clear finalDataMatrix 

    clear finalDataMatrixT 

    clear EUpsListDat1 

    clear SumfinalDataMatrixT 

end 

toc 
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A.2 Apply Spectral Calibration to Data 

 The following code is a MATLAB script that takes each Excel file produced by 

the script in Appendix A.1 and applies the spectral correction factor, as described in 

Chapter 5, to each intensity (integrated area under the curve) value. A new Excel file 

is saved with the applied spectral correction factor in the same folder location. 

 

 

tic 

format long g; 

  

 

disp('Input spec corr list')  

[filenameFValues,pathnameFValues]= uigetfile('*.xls') 

infile = strcat(pathnameFValues,filenameFValues); 

[FValuesDataIn,FValuesTextIn] = xlsread(infile); 

FValuesDataIn(isnan(FValuesDataIn)) = 0;  

RowsByColsFValue = size(FValuesDataIn); 

  

disp('Get .txt with column of all EUps') 

[filenameEUps,pathnameEUps]= uigetfile({'*.txt','Text files (*.txt)'; 

'*.dat', 'Data files (*.dat)'; '*.*','All Files (*.*)'}); 

fileLocationEUps = strcat(pathnameEUps,filenameEUps); 

fidEUps = fopen(fileLocationEUps); 

EUpsList = textscan(fidEUps,'%s');  

fclose(fidEUps); 

EUpsList = EUpsList{:}; EUpsListNum = str2double(EUpsList); 

 

 

ElementAbbrv = input('What element is it? (Abbreviate it with symbol 

like Sm for Samarium): ', 's'); 

  

count = 0; 

filenameHeaders = []; 

filenameExcl = []; 

  

for i = 1:(length(EUpsList)) 

    count = count + 1 

  

    filenameHeaders = char(filenameHeaders); 

    if isempty(filenameHeaders) 

  

        [filenameHeaders,pathnameHeaders]= uigetfile({'*.roi','Roi 

files (*.roi)'; '*.txt','Text files (*.txt)'; '*.dat', 'Data files 

(*.dat)'; '*.*','All Files (*.*)'},'select the header file to input – 

needs to be a ROI file); 

        fileLocationHeaders = strcat(pathnameHeaders,filenameHeaders); 

  

    elseif isequal(filenameHeaders(end-3:end),'.roi') 

  

        filenameHeaders = strcat(EUpsList(i), '.roi'); 

        ElementAbbrv = char(ElementAbbrv); 



 

89 
 

        ElementAbbrv2 = strcat(ElementAbbrv,'_'); 

        filelocationh = strcat(pathnameHeaders, ElementAbbrv2); 

        fileLocationHeaders = strcat(filelocationh,filenameHeaders); 

  

    else 

  

        [filenameHeaders,pathnameHeaders]= uigetfile({'*.roi','Roi 

files (*.roi)'; '*.txt','Text files (*.txt)'; '*.dat', 'Data files 

(*.dat)'; '*.*','All Files (*.*)'},'select the header file to input – 

needs to be a ROI'); 

        fileLocationHeaders = strcat(pathnameHeaders,filenameHeaders); 

    end 

     

    fileLocationHeaders = char(fileLocationHeaders); 

     

    fid = fopen(fileLocationHeaders); 

     

    allstrings = textscan(fid,'%s');  

    fclose(fid); 

     

    allstrings = allstrings{:};  

    if isempty(filenameExcl) 

        disp('Input excel file "Final Data"') 

        [filenameExcl,pathnameExcl]= uigetfile({'*.xls','Excel files 

(*.xls)'; '*.xlsx', 'Excel_07 files (*.xlsx)'; '*.*','All Files 

(*.*)'}); 

        FileLocationExcl = strcat(pathnameExcl,filenameExcl); 

  

    else 

  

        filenameExcl = char(EUpsList(i)); 

        pathnameExclFirstPart = pathnameExcl(1:(end-15)); 

        pathnameExclFirstPart=char(pathnameExclFirstPart); 

        pathnameExcl = 

strcat(pathnameExclFirstPart,ElementAbbrv2,'Up',EUpsList(i),'\'); 

        FileLocationExcl = strcat(pathnameExcl,'Final_Data.xls'); 

        FileLocationExcl = char(FileLocationExcl); 

  

    end 

     

    FileLocationExcl = char(FileLocationExcl); 

    ExcelInFile = xlsread(FileLocationExcl , 'Sorted Data'); 

 

    ExcelInFile(isnan(ExcelInFile)) = 0; 

  

 

    filenameHeaders = char(filenameHeaders); 

    if isequal((filenameHeaders((end-3):end)),'.dat') 

  

allNum = str2double(allstrings); 

        wavelengths1 = find((0<allNum) & (allNum < 1)); 

Wavelengths = allNum((0<allNum)&(allNum<1)); 

        Wavelengths = 1000*Wavelengths'; 

  

    elseif isequal(filenameHeaders(end-3:end),'.roi') 
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        allNum = str2double(allstrings); 

        wavelengths1 = find((100.000<allNum) & (allNum < 999.999)); 

         

        

        for aa=length(wavelengths1):-1:1 

            if 

~isequal(ElementAbbrv,char(allstrings(wavelengths1(aa,:)-1))) 

                 

                wavelengths1(aa,:)=''; 

            end 

                 

        end 

         

  

        Wavelengths = allNum(wavelengths1); 

        Wavelengths = Wavelengths'; 

         

  

    else 

        disp('first file type isnt consistent with program 

requirements') 

        error('first file type isnt consistent with program 

requirements') 

    end 

  

     

     

    ElemIndex = wavelengths1 - 1; 

    for j = 1:(length(ElemIndex)) 

        ElementSymbols(j) = allstrings(ElemIndex(j)); 

    end 

    ElementSymbols; 

  

  

    RowByCol = size(ExcelInFile); 

    if (RowByCol(2)>length(ElementSymbols)) && 

(RowByCol(2)>length(Wavelengths)) 

        disp('the excel file "Final Data" matrix has more columns than 

the headers') 

        for jj = 1:(RowByCol(2) - length(ElementSymbols)) 

            ElementSymbols = [NaN(1,jj) ElementSymbols]; 

            Wavelengths = [zeros(1,jj), Wavelengths]; 

        end 

    elseif (RowByCol(2)<length(ElementSymbols)) && 

(RowByCol(2)<length(Wavelengths)) 

        disp('the excel file "Final Data" matrix has less columns than 

the     headers') 

        for kk = 1:(length(ElementSymbols) - RowByCol(2)) 

            ExcelInFile = [zeros(RowByCol(1),kk) , ExcelInFile]; 

        end 

    else 

         

    end 

 

     

    RowsByColsData = size(ExcelInFile); 

    RowsByColsWavelengths = size(Wavelengths); 



 

91 
 

    Diff(RowsByColsFValue(1),RowsByColsWavelengths(2)) = 0; 

  

    for mm = 1:RowsByColsWavelengths(2) 

  

        for nn=1:RowsByColsFValue(1) 

Diff(nn,mm) = abs(FValuesDataIn(nn,1) - 

Wavelengths(1,mm)); 

  

        end 

  

    end 

  

    [C,Indices] = min(Diff); 

 

    MultiplyFactor = FValuesDataIn(Indices,2)'; 

    SizeMultiplyFactor = size(MultiplyFactor); 

    EUpDataInFValue(RowsByColsData(1),RowsByColsData(2)) = 0; 

    

  

    if SizeMultiplyFactor(2) == RowsByColsWavelengths(2) 

        for rr = 1:RowsByColsData(1) 

            for cc = 1:RowsByColsData(2) 

                EUpDataInFValue(rr,cc) = 

ExcelInFile(rr,cc)*MultiplyFactor(1,cc); 

            end 

        end 

    else 

        disp('size of MultiplyFactor line 229 and size of Wavelengths 

arent equal') 

        error('size of MultiplyFactor line 229 and size of Wavelengths 

arent equal'); 

    end 

  

    clear rr 

    clear cc 

     

    pathnameExcl = char(pathnameExcl); 

    OutPutFileExclName = strcat(pathnameExcl, pathnameExcl((end - 

14):(end -                                     1)), '.xls') 

    xlswrite(OutPutFileExclName, ElementSymbols, 'sheet1' , 'A1'); 

    xlswrite(OutPutFileExclName, Wavelengths, 'sheet1' , 'A2'); 

    xlswrite(OutPutFileExclName, ExcelInFile, 'sheet1' , 'A3'); 

  

    xlswrite(OutPutFileExclName, MultiplyFactor, 'WithFValue' , 'A1'); 

    xlswrite(OutPutFileExclName, ElementSymbols, 'WithFValue' , 'A2'); 

    xlswrite(OutPutFileExclName, Wavelengths, 'WithFValue' , 'A3'); 

    xlswrite(OutPutFileExclName, EUpDataInFValue, 'WithFValue' , 'A4'); 

  

  

    clear wavelengths1 

    clear Wavelengths 

    clear ElementSymbols 

    clear MultiplyFactor 

    clear EUpTextIn 

    clear EUpDataInFValue 

    clear Diff 

    clear EUpDataInFValueAvg 
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    clear EUpDataInFValueStdV 

    clear EUpDataInFValueFracStdV 

    clear EUpDataInFValueP4 

    clear EUpDataInFValueP6 

    clear EUpDataInFValueP7_85 

    clear EUpDataInFValueP8_3 

    clear EUpDataInFValueP8_83 

  

  

end 

toc 
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