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A B S T R A C T

The use of laser-induced breakdown spectroscopy to determine the elemental composition of bacterial cells has
been described in the peer-reviewed literature since 2003. Fifteen years on, significant accomplishments have
been reported that have served to clarify and underscore the areas of bacteriological investigation that LIBS is
well-suited for as well as the challenges that yet remain to be faced. This review will attempt to summarize the
state of the field by surveying the available body of knowledge. The early days of these experiments, roughly
from 2003 to 2007, in which many of the most fundamental experiments were initially conducted will be de-
scribed. The more in-depth investigations that followed in the subsequent decade will then be detailed. Many
important aspects of performing LIBS on bacterial cells were reported on and are summarized here including: the
use of chemometric algorithms for statistical classification of unknown spectra; the influence of the mounting
substrate on classification; the effect of the testing gas atmosphere and the choice of bacterial cell growth
nutrient medium on the measured LIBS spectrum; the efficacy of a LIBS-based test as a genus-level or strain–level
discrimination test; the ability of LIBS to determine the cell titer or concentration of cells in the initial sample;
the effects that possible contaminations or interferents within the sample would have on the LIBS spectrum; the
influence that environmental stresses the cells may be exposed to during growth and the state of reproductive
health of the cells could have on the LIBS spectrum; the use of standoff or remote apparatus to minimize the risk
to the operators during bacteriological identification of unknown specimens; and the combination of other
optical modalities with LIBS to enhance the sensitivity or specificity of identification. Lastly, tables are provided
which summarize both every species of bacteria ever tested with LIBS as well as the major lessons learned by the
community through 15 years of careful investigation.

1. Introduction

1.1. Overview

The use of laser-induced breakdown spectroscopy (LIBS) as a pow-
erful and flexible analytic tool for the rapid analysis and characteriza-
tion of a specimen's elemental composition has been investigated and
reported on by a growing international community for approximately
the last thirty years. The results of these investigations have been
widely published and disseminated and their broad conclusions have
been summarized in a string of excellent monographs [1–4] and review
articles [5–9] which have endeavored to advance the overall knowledge
of the field.

As described in detail in the above-referenced monographs and ar-
ticles, LIBS is a laser-based spectroscopic technique that is utilized most
frequently to perform rapid elemental analysis on a variety of targets of

interest. Briefly, in a typical LIBS experiment a pulse of laser light
(usually a nanosecond, picosecond, or femtosecond duration pulse) is
focused onto or into a target material which may be a solid, liquid, or
gas. The laser pulse ablates micrograms of mass which serve as a sample
of the analyte material and it also creates a high-temperature micro-
plasma which serves as a thermal excitation source for the ablated
sample. The thermodynamics and physics of the breakdown process are
different for nanosecond and femtosecond pulses, but the end result is a
plasma with an elemental composition that is reflective of the compo-
sition of the target material that can be used as an emission source for
time-resolved optical emission spectroscopy. This plasma emits light in
part due to the spontaneous emission of thermally excited atoms and
ions. When dispersed in a spectrometer and detected by a suitable de-
tector, the light from the plasma may be used to qualitatively identify
the elemental composition of the original target or quantify the mass or
concentration of trace elements in the target.
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As the number of researchers and research areas has grown, review
articles have been published to effectively collate the knowledge gained
from experimentation in specific area of investigations such as the use
of LIBS for explosive detection [10], soil analysis [11], nuclear fusion
technology [12], plant analysis [13], food analysis [14], archaeological
science [15], geochemical and environmental analysis [16], and cul-
tural heritage and space applications [17].

Of particular importance to our group has been the investigation of
the applicability and utility of LIBS in medical science, particularly as a
pathology/histology laboratory tool or as a rapid point-of-contact as-
sessment diagnostic. This topic, which is sometimes broadly classified
into the area of “biomedical applications,” has also received significant
attention and has been summarized and reviewed in numerous outlets
[18–22].

The focus of our group's work has been specifically the use of LIBS
for rapid pathogen identification and classification, and even more
specifically the analysis of bacterial LIBS spectra (as opposed to the
other infectious pathogens such as viruses and fungi) for diagnostic,
biochemical, and bioanalytical applications. The aim of this review is to
summarize the current progress and understanding in this narrow, yet
highly important, sub-field of biomedical applications.

1.2. Scope

The potential impact of a new LIBS-based rapid bacterial pathogen
detection and identification technology is extremely broad, global in
scale, and encompasses several scientific/health communities.
Pathogen detection is of the utmost importance for health and safety
reasons. According to a 2007 study, three areas of application account
for over two thirds of all research in the field of pathogen detection: the
food industry, water and environment quality control, and clinical di-
agnosis [23], while military-biodefense constitutes a small niche
market for this technology.

Because of the global demand for pathogen detection technology
and testing, it was recently reported that the pathogen-specific testing
market was expected to grow at a compounded annual growth rate of
4.5% with a total market value of $563 million [24]. The world bio-
sensor market was evaluated at $7.3 billion in 2003 and was expected
to reach over $10 billion with the medical/health area being the largest
sector [25].

Seventy-six million foodborne illnesses occur each year in the US
and account for 325,000 hospitalizations and 5000 deaths [26]. The
United States Department of Agriculture estimates $2.9–$6.7 billion
will be lost annually due to medical costs and lost productivity caused
by major food pathogens [24]. Although significant progress continues
to be made, the detection and identification of foodborne pathogens in
this sector continue to rely on conventional culturing techniques which
are very elaborate, time-consuming, and expensive. The existing test
methods are completed in a microbiology laboratory and are not sui-
table for on-site monitoring. Pathogen detection using existing
methods, such as enzyme linked immunosorbent assays (ELISA) and
culture techniques for determining and quantifying pathogens in food
have been well established [27]. In terms of speed, these methods
cannot adequately serve the needs of food processors and regulatory
agencies. As a result, the food industry needs real time, portable pa-
thogen detection sensors with higher sensitivity. Rapid detection bio-
sensors will minimize the need for the estimated 60,000 US based food
processors to perform lengthy microbial testing and expensive im-
munoassays on materials suspected of carrying foodborne pathogens
[24].

Hospitals typically use their own laboratory for identifying bacterial
pathogens. A urine, sputum, or blood sample is sent to the laboratory
and tests are performed to determine if a pathogen is present. Testing
requires 24 h (typically) and with laboratory back-ups, results can take
up to days. The addition of the LIBS technology to diagnostic labs could
minimize the suffering of patients, improve outcomes, and reduce

hospital admissions and associated expenses by allowing the initiation
of appropriate therapy based on immediate or “point-of-contact” di-
agnosis. Beyond mere bacterial identification, LIBS-based bacterial di-
agnostic/sensing technology could enable a variety of microbiological
research of interest to both the diagnostician and the research micro-
biologist. Several examples of such applications will be provided here.

1.3. Non-bacterial pathogens

The potential impact of a real-time LIBS diagnostic tool capable of
sensitive and specific pathogen identification is clear. Although this
review will focus exclusively on bacterial pathogens, the use of LIBS for
identifying other microbes or pathogens has also been reported, parti-
cularly when those non-pathogenic microbes could confuse the results
of a test for more harmful microorganisms. Such microbes, or any other
such material, can be classified as “confusants” or “interferents”: small
or microscopic materials that can obscure the pathogen signature in the
LIBS spectrum. Their analysis for this reason, as well as their own in-
trinsic infectious capability, is warranted. And while these organisms
are outside the scope of this review, because they are often reported in
studies with bacterial pathogens a quick summary of the work is pro-
vided here.

Pollen spores occur ubiquitously in nature, particularly in outdoor
environments, where they act as interferents for technologies designed
to detect harmful bioagents such as Bacillus anthracis (B. anthracis)
spores (responsible for anthrax). Their presence in medical specimens is
unexpected. Early studies indicated a clear ability to reliably differ-
entiate the LIBS spectrum of such naturally occurring pollen (e.g. oak
pollen, ragweed pollen) from the more important bacterial spores
[28–32]. Molds are a much more commonly occurring indoor inter-
ferent and may be expected to be encountered more frequently in
clinical testing environments. Studies have shown that the typical LIBS
signature obtained from mold spores can be reliably differentiated from
bacterial LIBS spectra with appropriately trained chemometric algo-
rithms [29,31–34].

Of more concern clinically are infectious fungal spores and yeasts
[30]. The ability to identify single spores of the fungi Aspergillus versi-
color and Penicillium brevicompactum using a novel electro-dynamic
balance-assisted online LIBS apparatus with a dual laser-induced
fluorescence (LIF) capability has been shown [35]. Significant differ-
ences in the concentrations of the very important elements of calcium,
sodium and potassium were inferred from differences in the measured
LIBS spectra with the LIF analysis adding the ability to rapidly differ-
entiate these bioaerosols from other aerosol types. The clinically sig-
nificant infectious yeast Candida albicans (C. albicans) has been in-
vestigated because of its role as a significant source of nosocomial or
hospital-acquired infections, and the ability to easily differentiate its
LIBS spectrum from molds and other bacteria as well as the ability to
differentiate specific strains from seven species of Candida (three strains
per species) have been demonstrated [34,36].

The use of LIBS for viral identification has been little-studied pre-
dominantly because the mass of a virus particle is approximately 109

times less than a bacterial cell due to their vast difference in size and
also due to the lack of any trace inorganic or metal atoms (e.g. Ca, Mg,
Na, or K) in the virus. The presence of these metals and their strength in
the elemental LIBS spectrum is typically what has provided LIBS with
its strong bacterial differentiation capability. Nonetheless, some initial
experiments have been performed. The ability of LIBS to detect the
presences of an MS-2 bacteriophage, which can be used as a simulant of
other select viral agents such as the Variola virus responsible for
smallpox has been reported [37]. Significantly, the differentiation with
LIBS of four strains of live hantavirus responsible for numerous infec-
tions across the American southwest was shown in 2012, the first re-
ported demonstration of this capability [38].
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1.4. Summary

The remainder of this review will concern itself exclusively with
those studies which utilized LIBS in bacterial systems. The review will
broadly be separated into two sections by chronology. A review of the
early years of LIBS-based bacterial identification and classification will
summarize the initial demonstrations of this application as well as the
initial investigations of chemometric algorithms for classification. Early
explorations of the use of femtosecond lasers (“femto-LIBS”) for bac-
terial analysis will be presented in this section as well.

Then the more current work which has aimed to investigate much
more specific and targeted aspects of a LIBS-based bacterial analysis
will be discussed. A list of current topics of great interest to the field
which will be covered includes: a complete analysis of all the chemo-
metric algorithms currently being investigated; the choice of testing
substrate and its effect on the LIBS spectrum; the choice of testing gas
environment; the nutrient medium used to culture the test samples;
detection of bioaerosols as opposed to liquid or solid samples; detection
of food contamination; the ability to differentiate individual strains
within a given species or alternatively to only perform a genus-level
identification; the effect of bacterial concentration, or titer, on the
analysis; the effect of environmental stressors on the bacterial cell as
reflected by changes in the LIBS spectrum and the effect that other
contaminant confusants or interferents have on sensitivity and specifi-
city; the use of standoff or remote LIBS systems for bacterial identifi-
cation; and the combination of LIBS with other optical modalities
(“hyphenated LIBS”). The review will conclude with a summarized list
of the most important results that have been confirmed by multiple
international research groups (Table 1) and a comprehensive table
listing the taxonomic identification of all bacteria that have ever been
tested with LIBS to date (Table 2), which may be of use to clinical re-
searchers who may only be interested in work on a particular organism
as opposed to a review of the broader field.

2. Early days

2.1. Initial studies

The first papers describing the use of laser-induced breakdown
spectroscopy for bacterial identification, detection, or characterization
appeared in 2003 [29,30,39]. These articles describe proof-of-concept
experiments that focused almost exclusively on showing that LIBS could
indeed yield a sufficient analytic signal when performed on bacterial
cells. Morel et al. concluded that compressed bacterial pellets exhibited
a homogenous composition which yielded an acceptable root-mean
square deviation (RSD) of less than 10% when LIBS was used for sorting
and detection [39]. These authors tested six different biotypes of bac-
teria, include three bacilli (spore forming) bacteria, and species of Es-
cherichia, Staphylococcus, and Proteus. This group expanded upon this
work by developing an aerosol delivery system to illustrate the feasi-
bility of using LIBS to detect biological aerosols [40]. The demonstra-
tion of the detection of single cells (1–5 μm) in aerosol form had been
demonstrated for the first time a year earlier by Hybl et al. in dense
clouds and streams [30]. Dixon and Hahn expanded upon this work by
detecting single Bacillus spores with a single particle detection effi-
ciency of 0.28% based on the observation of calcium atomic emission
lines, calcium being present in the amount of 2–3 fg/spore [41]. Bed-
dows and Telle also investigated the potential for LIBS to detect single-
bacterial aerosol cells in real-time by comparing this method with re-
sults from a mobile single-particle aerosol mass spectrometer [28].
They also suggested the use of a dual or hyphenated technique for the
application, specifically making the case for a LIBS-Raman or LIBS-LIF
measurement to improve upon limits of detection.

Samuels et al., also working with three Bacillus species, concluded
that discrimination amongst biotypes such as bacteria, pollen, and
ovalbumin ablated on a solid testing substrate (porous silver substrates)

was possible utilizing a principal component analysis (PCA), as was
discrimination amongst bacteria if better chemometric modeling could
be applied to the spectral analysis [29,42]. Hybl et al. had also reached
this conclusion for aerosol systems in the same year by acquiring LIBS
spectra from Bacillus globigii (B. globigii) and discriminating them from
spectra obtained from other biotypes such as pollen, fungus/mold
spores, growth media (LB broth and brain-heart infusion), and oval-
bumin by also performing a principal component analysis [30]. Shown
in Fig. 1 are the results of these authors' analysis, which shows a clear
differentiation between the B. globigii and the other biotypes using only
the first three principal component scores. The spectra were acquired
from a single laser shot and the data was down-selected to retain only
the intensities of thirty strong lines observed in the spectra. Although
these authors admitted that this study did not push the limits of che-
mometrics, both these 2003 manuscripts provided early indications that
the use of chemometric methods would play a powerful role in the
utility of LIBS for bacterial identification.

Using five strains of bacteria, including one Escherichia coli (E. coli)
strain and four Bacillus strains, Kim et al. demonstrated that the bac-
terial composition as reflected in the LIBS spectrum does not change
after aging and performed bacterial differentiation based on intensity
ratios of calcium and phosphate relative to unidentified “organic spe-
cies” [43]. Such emission features from the remnants of organic mole-
cules and also from calcium and phosphorus are fairly ubiquitous in the
LIBS spectra acquired from biological specimens. To overcome this, Kiel
et al. showed that by restricting analysis only to those metals en-
dogenously present and added by preferentially “tagging” cells using
custom specific binding agents tagged with exotic metals such as
scandium and europium, the identification of Bacillus spores could be
performed with a high degree of confidence [44].

2.2. Early fs-LIBS

The initial experiments to compare the analytical performance of
femtosecond LIBS (“fs-LIBS”) to ns-LIBS when utilized with biological
specimens were performed in 2003. Femtosecond-LIBS on biological
specimens is intrinsically difficult due to the low pulse energy common
to most fs systems and the high water content of living biological cells
both of which contribute to the formation of low signal-to-noise spectra.

Fig. 1. A principal component analysis of LIBS spectra was used to generate a
three-dimensional scatter plot showing a clear differentiation of the spectra
acquired from B. globigii bacterial spores (BG), three types of pollen, three types
of fungal/mold spores, and three types of growth media. Reprinted from re-
ference [30].
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In this study, 180 μJ pulses were used to analyze the epidermal wall of
sunflower seedling stems. Full LIBS spectra could not be obtained, but
the Ca II emission was sufficient to allow precise analysis of the epi-
dermal wall without completely destroying the peripheral cell wall.
Thus, one of the primary advantages of fs-LIBS, high spatial resolution
with extremely non-destructive sampling, was retained [45].

These studies were quickly followed up by Baudelet et al. in a series
of papers which investigated many aspects of fs-LIBS when applied
specifically to bacterial cells [46–50]. The initial results clearly showed
that fs-LIBS could yield high signal-to-noise spectra from solutions of
bacteria deposited on cellulose membrane filters [46]. Shown in Fig. 2
is a typical LIBS spectrum from this group obtained by ablating E. coli
cells with a 4.5 mJ 120 fs 810 nm laser pulse. Significantly, these
spectra obtained by femtosecond excitation evidenced clear emission
from a very weak potassium line not visible in ns-LIBS spectra and also
strong emission from CN molecular bands. The CN (0–0) band in bac-
terial LIBS spectra has been attributed to the direct ablation of native
CN molecular bands and not recombination with ambient nitrogen
within the plume post-ablation [46,49]. These molecular signatures can
be clearly seen in the inset of Fig. 2. The kinetics or time evolution of
that band head intensity thus can be used to provide a signature of the
biological medium and differentiate it from a non-biological carbon-
containing substrate [47]. This intriguing idea was expanded upon and
extended to the nanosecond regime when using UV (266 nm) quad-
rupled YAG pulses for the ablation of organic samples [50]. It was
shown that the time evolution of the line intensities of O and N and the
CN molecular band could be used to identify and discriminate native
atomic or molecular species from organic targets from those generated
through dissociation or recombination with ambient air molecules in
the plasma. To date, this idea has not been widely pursued for back-
ground discrimination in bacterial spectra.

The fs-LIBS spectra possessed adequate signal-to-noise and con-
tained sufficient information to allow a discrimination of five different
species of bacteria based on the relative concentrations of Na, Mg, P, K,
Ca, and Fe. The discrimination was performed on line intensities from
those elements using a method called trace element hyperspace clas-
sification (TEHC) [48]. The projection of the bacterial data into a lower
dimensional space yielded an analysis of similarities in the biologic
properties of the bacteria, showing a general grouping of four Gram-

negative bacteria on the basis of their relative calcium concentration as
compared to a Gram-positive species.

3. Selected topics in the development of LIBS for bacterial
identification and discrimination

In the decade subsequent to the early experiments investigating the
use of LIBS for bacterial identification (2003–2007), the number of
approaches utilized by researchers for bacterial sample preparation,
testing, and data analysis has exploded. The number of different species
of bacteria tested has grown as well to include more medically relevant
species and strains, as opposed to a concentration on Bacillus or other
spore-forming species and strains that function as surrogates for B.
anthracis, the organism responsible for anthrax. This indicates a shift in
the area of emphasis being investigated from bio-terrorism protection
to clinical diagnosis. This section will summarize the progress made in
these various areas, all of which must be more fully developed before
LIBS can be realistically adopted as an accurate and reliable analytic
technique for bacterial identification.

3.1. Chemometrics

While the experimental approaches for preparing, mounting, and
then ablating bacterial specimens has varied widely from group to
group, the choice of how to analyze the spectral data once obtained has
always exhibited the greatest variation of any aspect of these experi-
ments. It is also the area that has evidenced the most dramatic progress
and it continues to be an active area of research. In some of the early
experiments previously described, it was initially believed that a uni-
variate analysis of the intensities or ratios of intensities of certain lines
in the LIBS spectrum (e.g. Ca or Mg) could provide sufficient in-
formation to discriminate the bacteria [28,39,40,43,44]. Other groups
utilized modified linear correlation techniques [42] comparing the re-
lative intensities of one or several elements [48].

3.1.1. PCA
It was widely recognized that the mathematical machinery of mul-

tivariate analysis as utilized in efficient unsupervised or supervised
chemometric algorithms could greatly enhance discrimination sensi-
tivity and specificity. Specifically, a principal component analysis (PCA)
was quickly utilized and it was found that even one principal compo-
nent (PC) could discriminate Bacillus spores from other biological in-
terferents [29] and that the use of three PC's could significantly dis-
criminate Bacillus spores from other very similar biotypes [30] as was
shown in Fig. 1.

The use of these chemometric algorithms provided at least two
other significant benefits that were immediately appreciated. First, the
data reduction was significant, as LIBS spectral data are routinely
composed of 1024 elements at a minimum, and frequently possess
much larger array sizes. A very large fraction of the information in the
spectrum that allows reliable discrimination (the variance in the data)
can be distilled to a small handful of variables, numbering anywhere
from as small as one, two, or three as shown earlier, to a slightly larger
number of variables as the complexity and similarity of the data in-
creases.

Secondly, the construction of a multivariate analysis invariably in-
volves the computation of the ratios of line intensities as opposed to
absolute intensities. That is, it is the relative intensity of every channel
in the spectrum to every other part of the spectrum that is important,
not the absolute intensity of any one channel or emission line. This
greatly reduces and can even eliminate the noise introduced by the
intrinsic LIBS shot-to-shot variation and significantly reduces experi-
mental complexity. As observed by the authors in [30], this allowed
them to completely ignore effects like chromatic focusing aberrations
(of the plasma emission into the spectrometer), wavelength-dependent
CCD response, or wavelength-dependent spectrometer transmission due

Fig. 2. A typical fs-LIBS spectrum obtained by ablating E. coli deposited on a
nitrocellulose filter with a 4.5 mJ 120 fs 810 nm laser pulse. The time-in-
tegrated broadband spectrum from 200 nm to 900 nm was collected by an
Echelle spectrometer equipped with an intensified charge-coupled device
camera. Shown in the inset is the portion of the spectrum indicative of sig-
nificant ablation of native CN and C2 molecular bonds. Reprinted from re-
ference [49] with the permission of AIP Publishing.
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to grating efficiency. Such effects, present in every spectrum, are not
expected to change and should never alter the relative measured in-
tensities.

The issue of how best to utilize chemometric algorithms was ex-
amined by Munson et al. who proposed to specifically investigate a
number of statistical strategies to compare discrimination potential in
chemical and biological warfare simulants [32]. In this manuscript,
they utilized linear correlation, PCA, and soft independent modeling of
class analogy (SIMCA) and compared the performance of each in dis-
criminating the single-shot LIBS spectra from three Bacillus organisms,
B. thuringienesis, B. globigii, and B. cereus, from common interferents like
pollen and mold. To reduce the number of variables (wavelengths) in
the analysis and lessen the computing requirements, the authors se-
lected regions of the spectrum which contained major emission lines
from known constituent elements and excluded other regions of the
spectrum which apparently possessed little or no information relevant
to discrimination. This choice to only use a sub-set of the acquired data
(“variable down-selection”) versus keeping all of the spectral data ac-
quired (“full-spectrum analysis”) is still very much a topic of significant
inquiry.

In an important early work, Merdes et al. analyzed 2048 element
data sets (full-spectrum analysis) with a PCA which reduced the data
size to 11 dimensions or loadings and also with a linear discriminant
analysis (LDA) which was performed on the 11 principal components
obtained from the PCA [31]. They also performed a hierarchical cluster
analysis (HCA) applied against their training set data to develop an
objective classification tool to assist in classifying the members of a test
set. Utilizing these tools applied autonomously in Matlab code, they
demonstrated a 1% false positive rate and a 3% false negative rate for
Bacillus subtillis (B. subtillis) specimens when being discriminated from
molds, pollen, proteins, and starches. The use of more supervised
techniques (such as LDA) upon data that has first been pre-processed by
an unsupervised PCA to reduce the dimensionality of the data is now an
extremely common technique, as is the use of the dendrogram output of
an HCA for data classification. For example, just recently Liao et al.
have utilized a PCA followed by an HCA to discriminate 3D surface-
enhanced Raman spectroscopy (SERS) spectra (taken in conjunction
with LIBS data) of E. coli, Staphylococcus aureus (S. aureus), and Sal-
monella typherium (S. typherium) [51]. An example of such a dendro-
gram resulting from a hierarchal cluster analysis is shown in Fig. 3.

3.1.2. Neural networks/support vector machines
Numerous other chemometric algorithms have been investigated.

Neural network (NN) analysis (sometimes referred to as “artificial

neural networks”) was compared directly with multiple linear regres-
sion models to discriminate B. atrophaeous spores [52]. The NN models
indicated that LIBS could possibly be as sensitive or more sensitive than
other methods available at the time. The study of NN models continues
today [36,53,54] with many variants of the technique possible, in-
cluding the use of a K-means classifier on the full-spectrum LIBS data
for the discrimination of E. coli from S. aureus [55] and the use of a
supervised technique utilizing self-organizing maps (SOM) upon spectra
that were first pre-processed in a PCA [56]. In this last, while the first
five PC's were seen to only retain 23% of the variance in the data, a plot
of the scores of the first two PC's showed a fairly consistent dis-
crimination between Staphylococcus sciuri, S. aureus, and E. coli. Overall
classification success rates varied from as low as 45% up to 100% for a
variety of bacterial species and strains using this technique.

Cisewski et al. investigated a new approach by using a linear model
to pre-process spectra possessing 13,701 channels to first reduce the
dimensionality of their data and then built a classification model using
a support vector machine (SVM) classification whose only goal was to
categorize an unknown spectrum as a Bacillus spore or not [57]. The
method performed well, exhibiting a 3% predication error, and de-
monstrated the impact that careful pre-processing, including outlier
removal and wavelet transformation of the LIBS data, could have.

3.1.3. Discriminant function analysis/partial least squares
Two of the most commonly reported chemometric algorithms have

been discriminant function analysis (DFA) and partial least squares
(PLS). PLS is frequently performed with a subsequent analysis to further
improve classification, such as with a discriminant analysis (PLS-DA) or
a regression analysis (PLS-RA). Our own group has made extensive use
of a discriminant function analysis on down-selected variables (emis-
sion line intensities) from bacterial LIBS data. Initially 19 variables
(intensities) from six elements were utilized in a DFA to completely
discriminate three strains of the bacteria E. coli from each other as well
as the common yeast C. albicans and a wild type mold [34]. This was the
first demonstration of strain-level discrimination in a bacterial system.
Pushing the specificity of this method, 19 independent variables were
again used to produce nearly 100% discrimination between four strains
of E. coli including a pathogenic strain (O157:H7) and to investigate
discrimination based on spectrum alteration when two strains were
cultured in different media [58]. Lastly, this identical technique was
used to discriminate two strains of E. coli from Pseudomonas aeruginosa
(P. aeruginosa), demonstrating no sensitivity to growth medium unless
the membrane was intentionally altered by growth on a MacConkey
agar which contained bile salts known to disrupt membrane integrity
[59].

The number of independent variables used as predictor variables
plays an important role in the ability of any chemometric algorithm to
predict the membership class of an unknown dataset. When possible,
greater numbers of variables should be utilized as was shown when the
number of variables was increased to 26 by ablating targets sequen-
tially in two different gas environments [60] and then 31 by ablating in
an argon environment [61]. Increasing the number of variables in-
creased classification power, resulting in a 91.4% differentiation of P.
aeruginosa specimens from E. coli specimens due almost completely to
the variance in the data used to construct the first discriminant function
(DF1).

The number of independent variables in our data was reduced to 13
because of the decrease in overall emission intensity caused by shooting
the bacteria on a watery agar substrate [62]. This analysis still yielded
100% discrimination between E. coli, Streptococcus viridans (S. viridans),
and Mycobacterium smegmatis (M. smegmatis) (wild-type or WT strain)
when used to investigate the effects of mixtures and concentrations.
Identical data acquisition and analysis were used to investigate the
effects of metabolic stressors on the discrimination ability [63] and to
construct a 669-spectrum library composed of spectra from five dif-
ferent bacterial genera (Escherichia, Streptococcus, Staphylococcus,

Fig. 3. A typical dendrogram plot resulting from a hierarchal cluster analysis of
four bacterial strains. Reprinted from reference [51] with permission from
Elsevier.
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Enterobacter, and Mycobacterium) and 13 distinct taxonomic groups
(species and strains of those genera) [64]. The results of a DFA per-
formed on the 699 spectra when used to construct a library in two
different ways are shown in Fig. 4. In Fig. 4a, the spectra were grouped
in a library by their known genus, and in Fig. 4b the spectra were
grouped in a library according their known unique taxonomic identity.
These DFA libraries were tested using external validation techniques.
External validation means that none of the tested spectra was ever
tested against a library that contained any other spectra of that or-
ganism acquired at the same time or in the same data run. This vali-
dation was compared against a less-reliable “leave-one-out” classifica-
tion (LOO). The effect that using a LOO had on artificially improving
sensitivity and specificity was reported and specifically warned against.

This study also demonstrated the utility of using chemometric al-
gorithms sequentially to assist in classifying highly similar specimens
such as those from the genera Escherichia and Enterobacter, an idea
promulgated earlier by Multari et al. to extract the maximum classifi-
cation ability from a pre-compiled library of known spectra [65,66].
Specifically the five-genus level DFA was applied first to broadly clas-
sify unknown specimens as one of those five genera. Utilizing that DFA
model, 269 (89.97%) of the 299 Escherichia spectra were correctly
classified and 21 spectra (7.02%) were incorrectly classified as En-
terobacter. The rest were incorrectly identified as another genus. How-
ever, when those 299 spectra were analyzed in a two-class DFA using a
library generated only from E. coli and Enterobacter cloacae (E. cloacae)
spectra, 290 (96.99%) were correctly classified and only 9 (3.01%)

Fig. 4. The results of a discriminant function analysis of 699 LIBS spectra when the spectra are classified in two different ways. In 4a, the spectra were classified in
five groups based on their known genus-level identity. In 4b, the spectra were classified into 13 groups based on their known species- or strain-level identity. Data are
plotted as a function of only their first three discriminant function scores for visualization. Reprinted with permission from reference [64], [The Optical Society].
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were incorrectly classified as Enterobacter.
The number of independent variables used to classify our 699-

spectrum library was increased and the effect that this had on classi-
fication ability was investigated by constructing two new models: one
of 24 independent variables from sums and complex ratios formed from
the 13 initial down-selected variables and one of 80 independent
variables formed from simple ratios of the initial 13 variables [67]. This
approach was first demonstrated successfully by Gottfried et al. in the
discrimination of explosive residues [68,69]. Using this expanded “ratio
model” the performance of DFA was compared directly to the perfor-
mance of partial least squares – discriminant analysis (PLS-DA). Both
algorithms behaved adequately in this analysis, returning sensitivities
and specificities greater than 90%. Interestingly, it was observed that
the DFA was a more appropriate algorithm when the identify of a
specimen was completely unknown and a genus-level identification was
directed, while a more precise identification at the species-level or
strain-level could then subsequently be performed using a PLS-DA,
which possessed superior discrimination ability between highly similar
spectra. No one algorithm was found to be preferred or superior in all
circumstances using this 699-spectrum model. Gottfried later provided
an extensive description of a method to construct an optimal dis-
crimination model when using PLS-DA which was found to be highly
effective at discriminating LIBS spectra from residues of interest when
sampled on various substrates and in the presence of similar and dis-
similar interferents [37].

By ablating bacteria on more robust nitrocellulose paper filters, the
number of independent variables used to characterize each spectrum in
our analysis was increased recently to 164, constructed from 19 down-
selected emission intensities and simple ratios constructed from those
19 intensities. 1513 spectra were classified using both DFA and PLS-DA
in an externally validated classification. Both algorithms possessed
sensitivities and specificities greater than 97% in a four-genus library
composed of Escherichia, Staphylococcus, Pseudomonas, and
Mycobacterium [70].

Other investigations of variations of PLS have been conducted.
Lewis et al. compared the use of both PCA and a PLS regression which
required two sets of sample variables (obtained from the data and de-
fined by the user) to describe the model to classify and discriminate
bacteria isolated from reclaimed bauxite soils in Jamaica [71]. Both
algorithms showed discrimination ability, but the authors concluded
that due to its relations to linear discriminant analysis, PLS was the
superior choice for pattern recognition when compared to PCA.

In the work of Multari et al. above [65], the authors utilized a
partial least squares approach known as PLS2, a method in which
several variables may be modeled simultaneously in cases where there
may be correlations between those variables. Once an appropriate
model is constructed, unknown specimens can be tested to produce so
called predictor values or variables which typically run from 0 to 1 and
relate the confidence in the assignment of the unknown test sample to
one of the model sample classes, as is shown in Fig. 5, a PLS-DA test for
Mycobacterium identification. In this analysis, spectra from four “non-
Mycobacterium” genera were classified with a predictor variable scat-
tered around 1, and the Mycobacterium spectra were classified with a
predictor variable scattered around 0. An external validation was per-
formed by classifying spectra of M. smegmatis strain TA. No spectra from
that strain were used in the construction of the PLS library. The pre-
dictor scores of the test spectra are shown at the far right of Fig. 5, with
100% of them classifying as Mycobacterium by falling below the dis-
crimination line.

Multari et al. also utilized a single variable PLS combined with PCA
[38,66,72]. In PLS1 only one variable is modeled. Variations in a single
response variable (defined typically as a Y variable) which again typi-
cally runs from 0 to 1 are correlated to variations in the predictor
variables (defined typically as the X variables). In the analysis of these
bacterial spectra, the X-variable datasets were the full LIBS spectrum
(4096 channels, each channel an independent variable) of the bacteria.

In the work of Putnam et al. [67] the X-variable datasets possessed
either 24 or 80 independent variables, constructed from ratios of
emission line intensities as described above. In Malenfant et al. [70] the
X-variable datasets were 164 independent variables constructed from
ratios of the emission line intensities.

3.2. Testing substrates

The mass of useful analytic material ablated when testing bacterial
samples with LIBS will most likely be low due to the small number of
cells present in realistic medical or food-preparation specimens. No
matter how low the mass, the cells must be prepared (“mounted”) on a
target substrate prior to LIBS testing. The exception to this is the testing
of aerosols, described below. Problematically, when the mass of analyte
mounted on a testing substrate is small, it is expected that the under-
lying substrate will be unavoidably ablated with the desired analyte,
particularly when nanosecond pulsed lasers such as the Nd:YAG laser,
are used. For low cell titers, the ratio of analyte mass to substrate mass
in the resulting LIBS plasma can be small, and if the testing substrate is
composed of many of the same elements as the bacterial cells, a loss of
diagnostic ability is expected. Because this complication is almost cer-
tain to be encountered in any LIBS bacterial testing experiment that
does not utilize culturing or re-growth to increase cell count, it has been
noted that the choice of substrate can be expected to strongly impact
the success of differentiation [38]. These authors noted that a careful
study of how best to mount and then sample the bacterial specimen so
as to produce the most optimal classification or discrimination must be
considered to be an intrinsic part of the creation of any realistic LIBS-
based diagnostic technology. The substrate upon which the bacterial
cells were mounted in every experiment described in this review is
given in the summary Table 2 at the end of this review.

3.2.1. Pressed pellets
Early experiments avoided this problem altogether by utilizing

freeze-dried or lyophilized bacterial cells. An unrealistically large
number of cells could be accumulated in such a way to allow pressing
into a solid “pellet,” which is an approach typically used for the LIBS
testing of unknown powders or residues. Lyophilization is essentially a
lengthy freeze-drying process that involves freezing at low tempera-
tures (−80 °C) for an extended period of time (12–24 h) followed by a
vacuum process for another extended period of time (12–24 h). The

Fig. 5. A five-genus PLS-DA test for Mycobacterium identification. Spectra from
four genera of bacteria were entered as a “non-Mycobacterium” class and spectra
from two strains of Mycobacterium smegmatis (TE and WT) were entered as a
Mycobacterium class. Test spectra from a third Mycobacterium strain were tested
with this PLS-DA (the orange x's at far right) and were correctly classified 100%
of the time. Reprinted from reference [67] with permission from Elsevier.
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result is a light dried powder that when sampled directly with LIBS,
tends to be highly disturbed by the impact of the laser pulse [52,65]
reducing the amount of analyte sample actually analyzed unless se-
cured by some means, double-sided sticky tape being a common one
[33]. While the lyophilization process provides an unrealistically large
amount of bacteria and requires entirely too much time to make it a
realistically competitive diagnostic technology, the powder derived can
then be compressed mechanically to form solid pellets that withstand
pulsed-laser interrogation, possess a highly-uniform smooth testing
surface, and produce higher intensity LIBS sparks due to the absence of
water [39,40,48,57]. Such pellets can be repeatedly tested and may
even be mixed with a chemically inert binder to provide greater sta-
bility [73]. The elemental composition of the pelletized samples, as
determined by LIBS should be the same as in samples not prepared in
such a way.

3.2.2. Aerosols
To avoid the sampling of a mounting substrate completely, several

authors have tested bacterial cells or spores in aerosol form, where the
only LIBS background expected will be from the atmospheric testing
environment or background interferents such as dust, pollens, etc.
Much of this work occurred early on in the investigation of the LIBS
diagnostic ability and has been discussed earlier. Dixon and Hahn
carefully investigated single-shot LIBS detection of B. atrophaeous in a
stream of pure dry air with the carbon dioxide removed [41]. Light
scattering allowed a total particle count within the aerosol stream. By
monitoring the calcium emission at 393.4 and 393.6 nm, 12,000 laser
shots produced 35 confirmed spore hits when operating at a 5 Hz re-
petition rate in an aerosol concentration of 5 cm−3.

Hybl et al. investigated aerosol detection in both dense clouds
formed from laser-induced shock-wave disruption of piles of powder
and also single particle detection in a dilute air stream [30]. Using an
Nd:YAG laser operating with a variable repetition rate between 1 and
10 Hz they were able to achieve aerosol hit rates between a maximum
of one hit per 10 shots and a minimum of 1 hit per 50 shots. In the dense
clouds, reliable LIBS spectra were acquired on every laser pulse. The
authors determined that most likely air concentrators and/or separate
pre-LIBS “cueing” or pre-triggering detection would be necessary to
increase sensitivity.

In a more recent study, Saari et al. were able to trap and levitate
single fungal spores and bacteria particles in an electro-dynamic bal-
ance (EDB) trap [35]. The use of EDB allows accurate and repeatable
trapping position, which is required for optical interrogation of the
particle when using a LIBS laser beam with a beam waist diameter of
19 μm. Such particles can be measured with both laser-induced fluor-
escence (LIF) and LIBS without the need for the pre-triggering required
in an online flow aerosol system. LIF and LIBS spectra were obtained
with a Czerny-Turner spectrometer equipped with an intensified CCD
camera. Single-particle single-shot LIBS spectra acquired from such
particles possessed adequate single to noise for such elements as cal-
cium, sodium, and potassium. The authors observed that when per-
forming such single spore/particle detection, a major limitation may be
impurities in the deionized water used to prepare the specimens prior to
testing.

Many authors have attempted to ablate live bacterial cells from
culture directly on the surface of the growth medium (some form of
culturing agar) used to grow them [43,53,54,56,66]. The approach is
complicated as the colony produced during culturing is not controlled
for size or cell number, is not “washed” clean of growth medium con-
taminants prior to ablation, and lacks the mechanical stability or ri-
gidity required for high shot-to-shot repeatability. Indeed it was ob-
served by one group explicitly that especially when performing
nanosecond laser ablation (i.e. with an Nd:YAG laser) an observed
“splashing” of the bacterial cells greatly complicated the analysis as the
experimental conditions were not at all well-controlled [74]. They
noted that living cells presented a higher splashing compared to that of

sonicated or autoclaved bacteria, due to morphological changes that
occur to the cell during these procedures. As noted earlier, ablation of a
small number of bacterial cells invariably involves ablating some
amount of the underlying substrate. Growth media frequently possess
many of the elements observed in bacterial LIBS spectra, albeit in dif-
ferent proportions. Multari et al. observed that every time the culturing
medium was changed the development of an entirely new algorithm
incorporating LIBS spectra data from that medium was required to
allow efficient discrimination [66]. These complications suggests that
this method is sub-optimal, as the growth medium chemical composi-
tion can change depending upon the manufacturer of the medium
material, the water used to make it, and the skill of the technician
making the growth plates. Building these variations into a discrimina-
tion algorithm, while necessary, is moving away from a true chemical
identification of the microorganism.

To avoid this complication our group advocated depositing the cells
after culture as a thin film on a nutrient-free 0.7% agar medium
[34,58,59,61]. This medium provided an essentially background-free
LIBS spectrum, allowing a very sensitive biochemical discrimination
down to the strain-level. More recently, we have utilized a highly
convenient microbiological filter medium, which provides a highly
stable, reproducible, but non-background-free (especially from carbon)
mounting substrate [70]. Such filters, fabricated from nitrocellulose
paper, nylon, or other material, have been used extensively by other
groups due to their ubiquity and availability [44,47,49,75].

3.2.3. Food contamination
The detection and identification of bacteria responsible for food-

borne illness presents its own unique challenges to this field. The testing
substrates that may be encountered can be expected to vary widely and
may include actual food surfaces. Several groups have investigated
organisms responsible for foodborne illness on their own and on sur-
faces that may be encountered in food-handling or food-preparation
environments. Yuan et al. acquired spectra from E. coli aspirated onto a
filter medium and on a sausage, and also from the sausage itself [76].
Based on the measured Na, K, and Mg emission lines, a subtle difference
between the blank sausage and the sausage charged with bacteria was
observed.

Barnett et al. studied the very important organisms Salmonella en-
terica (S. enterica) serovar Typhimurium, which is a Gram-negative
foodborne pathogen responsible for salmonella [77]. Because this in-
fection is most commonly caused by ingestion of raw meat or dairy
products, the bacteria were inoculated into liquid samples of milk,
chicken broth, and brain heart infusion. LIBS was performed with a
266 nm laser after 1 μL of cells harvested from those three food media
was deposited on a silicon wafer. A DFA was used to investigate the
ability to discriminate different species of bacteria as well as to differ-
entiate milk spiked with varying concentrations. The DFA analysis
worked well, but could not perform as well as polymerase chain reac-
tion (PCR) or quantitative real-time PCR (qPCR), which the authors also
performed.

Multari et al. studied the important foodborne pathogens E. coli
O157:H7 and S. enterica. They performed a PLS1 analysis of LIBS
spectra acquired from live bacteria that had been deposited on various
foodstuffs such as eggshell, milk, bologna, ground beef, chicken, and
lettuce and also on various food–preparation surfaces such as a metal
drain strainer and a cutting board [72]. The authors also collected LIBS
data by ablating directly on swabs that are commonly used to wipe
surfaces for hygiene surveillance and compliance. In all cases a differ-
entiation of the organisms was demonstrated once a suitable PLS1
model was constructed which incorporated the various background
materials.

Finally Gamble et al. investigated the water and wash-waters
commonly used in food-processing plants [73]. They studied the pa-
thogens Pseudomonas putida, Listeria innocua, S. aureus, and S. enterica
serovar Typhimurium (which is commonly referred to by its serovar
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identification only as S. typhimurium or by its more proper taxonomic
identification, S. Typhimurium). Six different types of buffer solutions
and wash waters with different cation concentrations and pH's were
used to rinse the bacteria prior to autoclaving and overnight lyophili-
zation. Lyophilized bacteria were pelletized in a 15-ton press and sta-
bilized with microcrystalline cellulose. A PCA was used to generate five
principal component scores reflective of the main variance in the da-
taset and then a Mahalanobis discriminant analysis (MDA) was used for
classification. Using the five PC scores, the four genera were dis-
criminated from each other with 100% classification accuracy. Also,
within each genus the bacteria isolated using different water types were
differentiable. From this fact the authors concluded that the water
source used in purification or isolation of the cultures must be precisely
controlled for both pH and the presence of mineral cations. The use of
deionized water was recommended over other sources such as reverse
osmosis, distilled, and especially tap water due the presence of trace
minerals in those types of water.

3.3. Nutrient media/culturing environment

The choice of nutritional media upon which or within which to
culture bacterial specimens prior to testing with LIBS has been an im-
portant experimental parameter that has been investigated by many
authors. The intent of the experiments has been to determine the extent
to which the local chemical environment present during cell re-
production can ultimately influence the cell's elemental composition
and thus the measured LIBS signature.

In an early experiment, Morel et al. utilized two different growth
media, an organic compound-based medium and a mineral compound-
based medium and showed that the measured phosphorus to carbon
ratio was reproducible, so no noticeable effect was observed in the LIBS
analysis [39]. While Kim et al. did not utilize different nutrient media,
they initially recognized that the length of time in the culture medium
could impact a LIBS spectrum, observing that as Bacillus species grew
they could selectively take up certain elements out of the culture
medium [43]. This effect was especially evident during Bacillus spor-
ulation, a process which does not occur for many medically significant
bacteria.

In 2007, Diedrich et al. showed that a discrimination based on a
multivariate analysis (DFA) could be independent of the growth
medium by culturing a non-pathogenic strain of E. coli in both a liquid
TSB broth and on a solid TSA plate [58]. Expanding on this earlier
work, Rehse et al. carefully investigated the effect that culturing on
three different solid agar media had on a pathogenic strain of P. aeru-
ginosa [59]. The LIBS spectra from the media themselves (a trypticase
soy agar (TSA) plate, a blood-agar plate, and a MacConkey agar plate)
were also obtained and investigated. Importantly, the MacConkey agar
contained bile salts, a medium deliberately chosen to induce bacterial
membrane changes. The results of this experiment showed that by in-
tentionally altering the membrane biochemistry, a significant and re-
producible alteration of the LIBS spectrum could be induced, but that
all three classes of Pseudomonas grown in such a way could still be
reliably discriminated from two strains of E. coli.

To further investigate this effect, Rehse et al. added a fourth nu-
trient medium, a TSA plate containing intentionally doped deox-
ycholate at a 0.4% concentration, to alter both P. aeruginosa and E. coli
to a maximum extent [61]. Spectra from the media were also compared.
Two important conclusions resulted from this; first that the source of Ca
and Mg observed in the LIBS plasma could be located at least in part to
the Gram-negative outer membrane and second that the accuracy of
discrimination between two genera of bacteria remained greater than
90% regardless of the nutrient medium upon with the bacteria were
cultured. Changes in the environment of the reproducing cell could
indeed be measured by LIBS, but such changes did not inhibit the ac-
curate identification of the bacteria.

This result was confirmed by Marcos-Martinez et al. who

investigated P. aeruginosa, E. coli and S. Typhimurium cultured on three
different media: an LB agar; a MacConkey agar, and a Brucella anae-
robic agar [53]. In these experiments, only differences measured be-
tween the three bacterial groups resulted in classification using a neural
network analysis, with no apparent dependence on the growth medium,
and the authors thus concluded that the identification did not depend
on the culture medium. In addition, the identification analysis was
stable over a long period of time and it was observed that minor
changes in the experimental conditions did not alter sample identifi-
cation. Subsequent groups have also investigated the LIBS spectra ob-
tained directly from the media, but could only conclude that sometimes
bacterial specimens could be classified as a nutrient broth in a PLS-DA
classification but that different nutrient media could be accurately
classified, if desired [37,75].

In a demonstration of the utility of environmentally-induced ele-
mental cellular changes, Lewis et al. demonstrated the successful use of
fs-LIBS for discriminating amongst various soil bacteria recovered from
a variety of soil/growth environments which presumably could exert
significant chemical stress on the bacterial cells [71]. They concluded
that it was the chemical composition of the bacteria (as influenced by
the local soil chemistry) measured by the LIBS fingerprint which served
as the basis for successful sample classification.

Malenfant intentionally altered the metal content of E. coli by cul-
turing specimens on a typical TSA medium plate that was doped with
zinc sulfate solutions at concentrations of 0, 100, 200, and 300 ppm
[78]. While zinc was not readily distinguishable from noise in the ty-
pical E. coli LIBS spectrum, cells grown in the presence of such en-
vironmental zinc showed substantial uptake of the element, even after
triple washing to insure the removal of contaminating residual growth
medium on the outside of the cells. This uptake in cellular zinc as
measured by the LIBS spectrum showed a linear relationship with en-
vironmental zinc. This is shown in Fig. 6, where the phosphorus
emission at 213.62 nm and the zinc emission at 213.86 nm are shown
for E. coli cells grown in varying concentrations of zinc. The intensity of
that zinc line normalized by the carbon 247 nm emission intensity
shows a highly linear dependence on the zinc concentration present in
the culture medium. Conversely, cells grown in an excess of magne-
sium, readily observed in typical E. coli LIBS spectra, showed no such
uptake.

It has been mentioned that the water utilized in the preparation of
the nutrient media (and in subsequent washing or preparation steps)
can play a significant role in changing the measured LIBS spectrum. The
water can alter the observed metal content for elements such as Mg, Ca,
Na, and K [73]. The use of DI water when possible is suggested, al-
though of course, bacterial isolates obtained from medical specimens
without subsequent culturing will not have such tight controls [35].

3.4. Strain discrimination

For bacteria prepared in a nominally identical manner, the most
sensitive identification/classification possible would be between strains
of a single species. The difference between strains is expected to be
small, due to the lack of large cellular changes from strain to strain. It is
important to clarify that it is not the genetic difference between strains
that a LIBS-based measurement is able to differentiate, but rather the
resulting cellular biochemistry changes that are expressed by the dif-
ferent genetic variants.

The first demonstration of a discrimination between strains of a
single organism with near 100% accuracy was performed by Diedrich
et al. in 2007 when three strains of E. coli were discriminated utilizing a
DFA [34]. All strains were easily differentiated from a C. albicans yeast
and the medium on which they were grown. Intriguingly, the two K-12
strains in this work (one a laboratory K-12 strain and one a derivative of
that strain) were clearly similar in composition compared to the third
environmental strain, Nino C. This provided more evidence that it was a
true chemical classification being produced, not merely an algorithmic
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differentiation. A pathogenic strain of bacteria (E. coli O157:H7, also
known as enterohemorrhagic E. coli or EHEC) was differentiated from
two non-pathogenic strains and an environmental strain of the same
organism for the first time by Diedrich et al. who showed a classifica-
tion accuracy of the four organisms of 97.8%, 84%, 73.1%, and 88%. In
this analysis, the environmental strain Nino C possessed the most sig-
nificantly different LIBS spectrum compared to the other microorgan-
isms. This was the first demonstration of the use of LIBS on a common
medical pathogen, and the ability to discriminate the pathogen from the
non-pathogenic strain of E. coli was confirmed in subsequent studies
[62,64]. This E. coli strain discrimination was enhanced in a dual-gas
experiment which utilized both argon and helium sequentially when
acquiring LIBS spectra [60]. To confirm the stability of strain dis-
crimination, samples of E. coli strain Nino C were tested after being
autoclaved, exposed to ultraviolet light and left untreated and these
spectra were easily discriminated from the closely related E. coli ATCC
25922. The three Nino C strains produced identical spectra and were
not differentiable from each other but were differentiated 100% from
the ATCC 25922 strain [63]. In this article, the Nino C strain was also
cultured in two different media, including the MacConkey medium
mentioned earlier. The two specimens of Nino C were classified as in-
distinguishable from each other, while being discriminated with 100%
accuracy from the HF4714 and ATCC 25922 strains. This is shown very
clearly in Fig. 7, which shows the first two discriminant function scores
of two DFA tests run on the various specimens. In a much more recent

study investigating the dual use of 3D SERS and LIBS, specimens of E.
coli K12 and ATCC 25922 were reliably differentiated by a principal
component analysis on the basis of their 3D SERS spectra, but LIBS
differentiation was not attempted on the specimens.

The rise of antibiotic resistant strains of bacteria (sometimes re-
ferred to as multiply drug-resistant or MDR strains) has been an omi-
nous development in modern medical microbiology. Previously easily
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Fig. 6. LIBS spectrum from E. coli cells cultured in an over-abundance of ele-
mental zinc. As the concentration of zinc in the culture medium was varied
from 0 ppm to 300 ppm, a corresponding increase in the LIBS zinc emission was
observed (a). No corresponding change in the phosphorus emission was ob-
served, indicating there was no change in the number of cells being tested. A
plot of the measured zinc LIBS emission intensity normalized by the carbon
emission intensity at 247 nm resulted in a highly linear dependence of the
observed cellular LIBS emission on environmental zinc concentration (b).

(a) 

(b) 

Fig. 7. Examples of robust E. coli strain differentiation. (a) The first two dis-
criminant function scores of a DFA performed on five specimens: three samples
of E. coli strain C (live, autoclaved, and exposed to UV radiation), one sample of
E. coli strain ATCC25922, and one sample of M. smegmatis. (b) The first two
discriminant function scores of a DFA performed on four specimens: two sam-
ples of E. coli strain C (cultured on TSA and MacConkey agar), one sample of E.
coli strain HF4714 (cultured on TSA), and one sample of E. coli strain
ATCC25922 (cultured on TSA). In all cases, the E. coli strains are easily dif-
ferentiated from each other, but an individual strain, when prepared, grown, or
treated in a different manner, is classified 100% correctly as itself.
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treated microorganisms have achieved high levels of resistance to the
most common antibiotic therapies, leaving physicians with very few,
and sometimes with no remaining options for treatment. Some of the
most ubiquitous of these are the methicillin-resistant strains of
Staphylococcus aureus (MRSA). The first discrimination of these mi-
crobes was shown in 2010 by Multari et al. who showed that it was
possible to differentiate lyophilized samples of E. coli, three clonal
MRSA strains, and one unrelated MRSA strain using a PLS2 analysis for
discrimination [65]. Spectra from ten unknown samples were 100%
correctly matched to the five reference spectra in a blind study. This
investigation was significantly expanded when Multari et al. added
multiple strains to their analysis, showing discrimination and identifi-
cation of eight S. aureus strains including four MRSA strains, three of
them clinical strains and one a laboratory derived mutant of one of
those clinical strains [66]. A correct identification was obtained from
thirteen distinct specimens including Acinobacter baumannii, B. subtilis,
E. coli K12, Klebsiella pneumonia, P. aeruginosa, and the eight Staphylo-
coccus strains. One hundred spectra were acquired from each specimen,
50 were used to build identification models and 50 were used to test the
models. Using a specifically constructed sequential algorithm, all spe-
cimens were identified in under 2 min.

A combined Raman spectroscopy and LIBS approach was used to
investigate MRSA strain differentiation by testing E. coli CCM 3954, S.
aureus CCM 4223, S. aureus CCM 47540 (MRSA), S. aureus CCM 3953
(methicillin sensitive or MSSA), Staphylococcus sciuri, and
Staphylococcus pseudointermedius directly on an agar growth plate [56].
A PCA was performed on the spectral data, which were then classified
using a supervised version of Kohonen's self-organizing maps, which is
a form of neural networks analysis. Using this method, the LIBS-only
classification accuracy of the strains ranged from 45% to 100%.

A total of 40 strains from a variety of different bacterial species,
including E. coli, P. aeruginosa, Klebsiella pneumoniae, S. Typhimurium,
Salmonella pullorum, and Salmonella salamae were tested by Manzoor
et al. [54]. As performed in [56], specimens were tested directly on the
agar medium upon which they were grown and a neural networks (NN)
analysis was performed. Eighty spectra from a single growth plate were
used to construct the NN model for each strain, and 20 spectra from
three different plates were used to test the model (external validation).
Successful classification with accuracies better than 95% showed that
an NN model constructed from different strains allowed highly accurate
discrimination of strains from the same species, implying that multi-
drug-resistance and other genetic variations impart significant changes
to the elemental composition of the cells that can be detected efficiently
by LIBS.

3.5. Genus and species discrimination

In many situations a strain-level identification may not be necessary
to inform the timely initiation of appropriate pharmacological therapy.
It is often necessary only to have a genus-level identification of the
infectious pathogen (i.e. Pseudomonas, Streptococcus, or Staphylococcus).
Alternately, some genera have so many species and sub-species that an
exact knowledge of the particular strain is not ever achieved or ne-
cessary. Therefore in many cases the ability of LIBS to rapidly identify
the species, or even just the genus, of the organism could be extremely
useful. Mohaidat et al. demonstrated this in 2012 with a five-genus DFA
that yielded sensitivities of approximately 85% and specificities above
95% when tested with an external validation [64]. This result was
improved upon by Putnam et al. who obtained a sensitivity in excess of
91% and a specificity greater than 95% in an externally validated DFA
[67]. In the 2014 study by Manzoor et al. referenced above, the authors
performed a species-level test on genera and species most commonly
responsible for hospital-acquired infections, including Escherichia,
Pseudomonas, and three strains of Salmonella [54]. Based on their NN
analysis, these authors concluded that classification of the organisms
was based on the major differences in the bacterial LIBS spectral

fingerprint at the species level. Gamble et al. utilized a PCA on LIBS
spectra after preprocessing and demonstrated complete classification of
replicates prepared in an identical fashion of specimens of Listeria,
Pseudomonas, Staphylococcus, and Salmonella [73]. Prochazka et al.
were able to reliable classify three species of Staphylococcus with 100%
accuracy, even when spectra from E. coli and three different strains of S.
aureus were included in the test, but only when LIBS spectral data was
fused with Raman data [56].

3.6. Concentration/titer

The dependence of the accuracy of a LIBS-based classification on the
number of cells present in the specimen (or ablated into the LIBS
plasma) is a critically important question. In a clinical specimen, the
number of cells should vary widely, from a low titer in a specimen from
a pre-symptomatic patient, to a high titer in a specimen obtained from a
diagnosed infection. Obviously, in cases of food contamination or hy-
giene surveillance, the cell counts may be even lower, ranging all the
way down to zero in a properly sterilized environment. Thus it is not
merely the limit of detection (LOD - the number of cells required to
reliably provide an adequate LIBS signature to guarantee detection) or
the limit of identification (LOI – the number of cells required to reliably
provide a LIBS signature with enough spectral information to guarantee
classification at some desired sensitivity/specificity) that are of con-
cern, but also the impact on the sensitivity and specificity that the cell
count or titer has. Ideally the spectrum obtained from a single cell
should be classified exactly the same as the spectrum from a sample
with, i.e., 109 cells, the relative ratio of elements being identical in
those two cases. However, due to changes in the LIBS plasma, these two
spectra may not classify identically. In some cases, the operator may not
desire the classification to be the same, allowing a quantification of the
titer in the sample due to its classification against a pre-compiled li-
brary.

These effects were investigated by Rehse et al. who performed
several experiments to elucidate these effects in 2010 [62]. Samples of
M. smegmatis were prepared with a standard concentration of ap-
proximately 5 × 108 colony forming units (CFU)/mL and several serial
dilutions. The total measured LIBS emission intensity (the integrated
area under the curve of all measured LIBS emission lines) was found to
depend linearly with concentration. In addition all the reduced con-
centration specimens were classified with 100% accuracy using a pre-
compiled library constructed only from the most concentrated “control”
specimens, even when a closely related mutant strain of the same
species was included in the DFA as an interferent. Lastly, replacement
of a fraction of the M. smegmatis cells (10%, 20%, 30%, 40%) with cells
from a different species did not negatively impact classification accu-
racy until over 30% of the original cell count had been replaced by a
substitute “contaminant” type of cell in a two-class DFA. This experi-
ment was conducted to simulate unintentional contamination of a
clinical specimen subsequent to its removal from the patient.

The linear dependence of the total LIBS emission intensity with
concentration was confirmed in 2018 by Liao et al. who demonstrated
this for both E. coli and S. aureus concentrations spanning four decades,
from 104 CFU/mL up to 108 CFU/mL with R2 values greater than 0.97
[51]. Malenfant et al. also reported a linear dependence of the total
LIBS emission intensity on the cell concentration when a large number
of cells were deposited on a nitrocellulose filter testing medium [70]. In
this study, approximately 105 cells were ablated per laser shot. This
study showed a saturation or flattening out of the response curve at
concentrations above 1011 CFU/mL.

Barnett et al. tested concentrations of S. enterica that spanned eight
decades (101 to 108 CFU/mL) as measured by DNA concentrations in
the specimens prior to LIBS testing [77]. In blood-heart infusion,
chicken broth, and milk, LIBS detection limits were 105 CFU/mL. Using
a DFA, these concentrations were reliably discriminated from E. coli and
the blood-heart infusion, but it was not clear whether the DFA could
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provide any reliable quantitative information about the concentration.
The spectra from the various concentrations did not reliably classify as
separate distinct classes.

Multari et al. tested concentrations of E. coli and S. enterica that
spanned five decades from approximately 10 CFU/mL up to 106 CFU/
mL [72]. They showed that S. enterica in milk could easily be differ-
entiated from uncontaminated milk, regardless of the concentration of
the pathogen. E. coli on eggshells could be differentiated with 100%
accuracy from uncontaminated esggshells (spiked with TSB as an in-
terferent) regardless of the concentration of E. coli used. In addition, E.
coli and S. enterica at various concentrations could be discriminated
from each other with 100% accuracy when tested on eggshells. This is
shown in Fig. 8.

Lastly, as discussed earlier in the section on aerosols, spectra from
single spores can be detected, demonstrating an LOD of one cell (e.g.
[35]). To date, no attempt has been made to investigate the LOI of such
systems and classify an organism based on its single-cell LIBS spectrum,
mostly due to the poor signal-to-noise in such spectra.

3.7. Environmental stressors

Because the identification and classification of bacterial cells is
performed in part on the basis of their elemental cellular chemistry, of
great concern is the potential change in the measured LIBS spectrum
due to real elemental changes in the bacterial cell. Such changes could
be caused by environmental factors which induce a biochemical re-
sponse in the cell. These environmental stressors include influences
which can result in complete cell lysis (such as autoclaving or vortex/
ultrasonic agitation), loss of reproductive ability (exposure to ultra-
violet light), and more subtle changes in cellular chemistry.

Mohaidat et al. investigated this in 2011 by attempting to observe a
change in LIBS signature as a function of the metabolic state of the cell
by exposing specimens to bactericidal ultraviolet radiation and auto-
claving samples prior to LIBS testing [63]. These tests were performed
on representative Gram-negative samples, E. coli, and representative
Gram-positive samples, S. viridans. Utilizing a DFA, the samples of E.
coli C were all classified identically as E. coli C, whether reproducing in
the log-phase, killed via autoclaving, or rendered inactive by exposure
to ultraviolet light. In addition, these specimens were readily dis-
criminated from specimens of M. smegmatis and another strain of E. coli
(ATCC25922). The S. viridans samples behaved identically, indicating
that LIBS spectra were not sensitive to the metabolic state of the cell in
this regards, which suggests that for practical biosafety reasons,

biospecimens could very well be autoclaved first prior to LIBS testing,
removing any hazard to operators. Both specimens possessed LIBS
spectra of identical absolute intensity (within uncertainty), indicating
no inherent loss of signal from inactivated or heal-killed cell.

As well, they tested cells that had lapsed into a dormant state by
sitting at room temperature on nutrition free (abiotic) surfaces for
periods of time ranging up to nine days. Again, all dormant cells clas-
sified identically with the cells actively reproducing in the log-phase
and those exposed to ultraviolet light and autoclaved. Lastly, they in-
vestigated intentional cell membrane alteration by exposing E. coli cells
to substrates which could be expected to exert a detergent-like action
on the cell membrane, particularly a MacConkey agar growth medium
containing 0.1% deoxycholate. Spectra from these cells were altered
from those grown on standard growth media but exhibited no changes
in classification accuracy compared to E. coli grown on standard growth
media and were easily differentiated from two other strains of E. coli. As
mentioned earlier, this result was also confirmed by Marcos-Martinez
[53] using a similar MacConkey agar medium.

Understanding the effect of the metabolic state of the cells on a
LIBS-based classification is of the utmost importance and has been
studied recently. Multari et al. tested E. coli and S. enterica cells that
were both viable and heat-killed utilizing a PLS1 algorithm [72]. Dif-
ferences in the measured LIBS spectra could be used to construct ap-
propriate algorithms to differentiate the killed class from the viable
cells. However, when killed and viable cells were grouped together in a
test performed on ground beef, these spectra were still readily differ-
entiable from a control spectrum of ground beef uncontaminated by any
E. coli. This confirms the results observed earlier that cellular differ-
ences may be observed and utilized for a LIBS-based classification of the
metabolic state of the cells, but the differences are quite subtle and do
not intrinsically alter the spectra so significantly that an incorrect
identification would result when trying to discriminate against other
bacterial types.

Sivakumar et al. investigated the use of both fs-LIBS and ns-LIBS to
investigate the effect that two types of inactivation, autoclaving and
sonication, had on the acquired LIBS spectra [74]. Using E. coli K12 as a
model system, fs-LIBS proved to be effective for monitoring the meta-
bolic state of the cells when spectra were analyzed with a PCA and
unknown spectra were tested using a SIMCA. Key differences in the
measured relative intensities of Mg, P, K, Na and Ca lines enabled this
differentiation. Nanosecond-LIBS did not perform as well as fs-LIBS in
this regards, but the authors concluded that the sonicated and auto-
claved bacteria were still differentiable from live bacteria, as Multari

CFU in 100 µL
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Fig. 8. Differentiation of E. coli from S. enterica when tested on a common food surface (eggshells) is independent of cell concentration. Reprinted with permission
from reference [72]. Copyright (2013) American Chemical Society.
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et al. observed above. Malenfant et al. confirmed this observation [70]
by showing that spectra from autoclaved E. coli possessed detectable
and reproducible alterations compared to spectra from viable E. coli.
These autoclaved specimens were still classified with 100% accuracy
with live E.coli specimens in a four genus DFA which discriminated E.
coli from S. epidermidis, M. smegmatis, and P. aeuruginosa.

Farid et al. have explored this idea further by utilizing LIBS to show
the difference between viable and non-viable cells due to graphene-
oxide exposure [79]. E. coli and S. aureus specimens were ablated with

Fig. 9. (a) Single shot spectra acquired from (top to bottom) B. globigii, ova, B.
thuringiensis, and mold acquired using the double pulse standoff LIBS system
shown in (b) at a 20 m standoff distance. Samples were prepared by spreading
several milligrams of powders on double-sided tape. (c) The predictions scores
for (top to bottom) B. globigii and Arizona road dust based on a PLS-DA model
showing 100% classification of the B. globigii spectra and almost similar per-
formance for the road dust. In this figure, known spectra used to build the
model are identified above the prediction line and to the left of the figure
(model sample index) while the unknown spectra are to the right of the figure
(test sample index) and are identified by virtue of being above the prediction
line. Adapted from references [33 and 68].

Fig. 10. (a) A typical LIBS spectrum of S. aureus (methicillin resistant strain)
acquired from the surface of a growth medium plate. (b) A typical Raman
spectrum acquired from the same specimen (in red). (c) The loading of PC1
(top) and PC2 (bottom) for the fused LIBS/Raman data. The LIBS data com-
prises the loadings up to 900 nm, demonstrating that the Raman data accounts
for the largest contribution to the variance of the data. However several
emission lines in the LIBS data show loading contributions of equal intensity in
PC1. Reprinted from reference [56] with permission from Elsevier. (For inter-
pretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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nanosecond laser pulses after exposure to graphene-oxide at various
concentrations and decreases in the measured elemental intensities
were observed in both genera of bacteria. Importantly, these authors
point demonstrate the use of LIBS as a tool not merely for bacterial
identification or classification, but as a rapid and relatively inexpensive
all-optical spectroscopic technique for probing membrane composition
to ultimately determine the anti-bacterial mechanism of the graphene-
oxide material. This is one of the many examples of experiments which
could be performed with this “atomic microbiology” technique, which
are generally complementary to the more developed suite of “molecular
microbiology” tools and tests.

3.7.1. Environmental testing gas
The effect of the bath gas environment on LIBS-based bacterial

classification has not been extensively studied. The vast majority of
LIBS researchers continue to perform experiments in either an air at-
mosphere, for convenience, or in a noble-gas environment to enhance
plasma emissions. Rehse et al. examined this by ablating P. aeruginosa
in both air and argon and observed that the increase in LIBS emission
allowed a reduction in the number of laser pulses required, advanta-
geous for most bacterial experiments where the amount of sample can
be almost vanishingly small [61]. In addition, the enhancement in
phosphorus emission, particularly from lines in the wavelength range of
203 to 256 nm was seen to significantly enhance discrimination ability,
as phosphorus is a key element in the phospholipid bilayer membranes
present in many bacteria. The use of sequential argon and helium
testing on the same specimen was investigated by Rehse et al. who
observed a reduction in scatter and an enhancement in discrimination
between two strains of E. coli and a single strain of S. mutans when the
spectra from specimens ablated in both environment were combined to
create a pseudo-spectrum as opposed to the discrimination obtained in
either gas independently [60].

Farooq et al. compared and contrasted bacterial LIBS performance
in air, argon, and helium environments [80]. Specimens of E. coli and
Micrococcus luteus mounted on a glass slide were ablated by a 1064 nm
laser. The authors noted differences in the emission intensities from the
important lines of carbon at 193 nm and 247 nm and the hydrogen
alpha line at 656 nm. Intriguingly, emission lines from nickel were
observed in one of their test specimens, but only when measured in the
argon environment, indicating that small but significant elemental

differences may not be observed when ablated in an ambient air en-
vironment.

3.8. Interferents

Due to the low analyte mass or volume inherent in the ablation of a
small number of bacterial cells, it is probable that many LIBS spectra
may be “contaminated” by emission from other elements which may or
may not be present in the bacteria. Such elements may be introduced to
the plasma from the ablation substrate, from contamination of the
substrate, or from contamination of the sample before it is mounted
upon the substrate. Such contaminants may be organic or inorganic and
are referred to as interferents. When present in large numbers or in high
concentrations, the LIBS emission from interferents can mask the de-
sired bacterial LIBS emission, precluding detection or identification.

In 2007, Xu et al. performed initial experiments to investigate
whether fs-LIBS could be used to detect and differentiate some very
similar agricultural-activity related bioaerosols, including barley, corn,
and wheat grain dust when ablated at standoff distances up to 4 m [81].
No bacteria were tested. Ratios of measured LIBS intensities of Mg, Si,
Al, and Mn allowed an efficient discrimination of these bioaerosol
types. Since Si, Al, and Mn are not traditionally observed in bacterial
LIBS plasmas, these bioaerosol interferents should be differentiable
from bacterial spectra. No chemometric analysis was attempted on
these data. In addition, nonlinear fluorescence of fragments induced by
the femtosecond filaments was observed and could be used to dis-
criminate organic interferents from other carbon-containing inorganic
interferents.

Gottfried investigated an extensive list of interferents and their in-
fluence on the detection of B. antrharis spores and E. coli [37]. Inter-
fering lines in the plasma emission were created by ablation on alu-
minum, steel, and polycarbonate substrates. As well, potential
environmental interferents included dolomitic limestone and oval-
bumin. Other interferents which would possess spectra similar to bac-
teria which were included in the test included Luria broth, phosphate-
buffered saline with 1% bovine serum albumin, and 1 M chloroform
amongst others. All spectra were obtained in isolation and a list of
observed emission lines was created. Using ratios of observed emission
lines, PLS-DA models were constructed. Full spectrum models were also
created, but the author observed that such spectra also contained
emission from the substrate and the atmosphere which allowed an in-
accurate classification based on matrix effects, rather than real ele-
mental differences. While these full-spectrum models gave the best
overall performance (with the caveat just noted,) the intensity/ratio
models were very useful for differentiating samples with fewer spectral
features, specifically the E. coli bacteria.

Cisewski et al. utilized an SVM classification to discriminate pow-
ders of Bacillus spores from a large variety of interferents (referred to by
the authors as confusants) [57]. Interferents used were too numerous to
list here but included items such as flour, backing soda, chalk, laundry
detergent, ibuprofen, baby powder, and other similar powders all
pressed into pellets by a 20 ton press. The SVM classification utilizing
several other standard statistical technique to improve performance
including outlier rejection provided quite good classification accuracy
with prediction errors between 0.0% and 3.4%. Unfortunately only
pure substances were tested in this study, and no bacterial spore spe-
cimens were ever mixed with any of the interferents to provide a true
simulation of sample contamination, limiting the relevance of these
conclusions.

Mohaidat et al. performed the first simulation of a clinical diag-
nostic test by demonstrating that biomolecule and elemental inter-
ferents present in a urine specimen did not in any way negatively effect
the classification of S. epidermidis cells harvested from a nominally
sterile urine environment [64]. Classification was performed using a
DFA library constructed from spectra obtained from three species of
Staphylococcus, none of which had ever been exposed to the sterile urine

Table 1
A summary of the most significant conclusions described in this work.

A LIBS spectrum bacterial classification utilizing an appropriately constructed library
can provide a sensitive and specific test (high rates of true positives, low rates of
false positives) to rapidly identify an unknown bacterial specimen or to
differentiate between possible identifications.

This LIBS spectral fingerprint:

• Is robust, reliable, and persistent through time (multiple tests spanning years on
the same strains of bacteria). Minor changes in experimental conditions do not
alter sample identifications.

• Is capable of strain-level discrimination.

• Is relatively growth-medium independent.

• Is easily differentiable from other types of bio-organisms (molds, fungi, yeast).

• Is independent of the state of growth of the cells (how “old” the bacteria are).

• Is relatively independent of whether the bacteria are live or dead (or inactivated
by UV light). Some differences are observed in killed bacterial cells, particularly
when fs-LIBS is used.

• Can be used for discrimination even when other types of bacteria or interferents
are present (mixed samples, residual growth media, ablated substrates, other
biotypes).

• Can be obtained from urine specimens.

• Can be obtained from even a single bacterial cell.

• Can be obtained at standoff distances up to 20 m.

• Can be fused with data from other optical modalities for enhanced discrimination.

• Can be differentiated using a large variety of chemometric techniques (no single
technique demonstrates greatly improved performance.)

• Can be acquired with nanosecond pulses of any wavelength as well as
femtosecond pulses.
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Table 2
A summary of all the bacterial species/strains tested with LIBS.

Micro-organism Reference Form Chemometric utilized Laser wavelengtha

Acinetobacter baumannii ATCC BAA-1789 [66] Colony on blood agar PCA/PLS1 1064
Acinetobacter baylyi [48] Pellet, freeze-dried powder Hyperspace projection of

trace elements
810 (fs)

Acinetobacter calcoaceticus [FJ816073]b [71] Colony on glass slide PCA/PLS-RA 800 (fs)
Arhodomonas sp. [EU308280] [71] Colony on glass slide PCA/PLS-RA 800 (fs)
Bacillus anthracis var. Sterne [44] Thin lawnc on nylon filter None 1064
Bacillus anthracis var. Sterne [38] Thin lawn on agar, glass slide PCA/PLS1 1064
Bacillus atrophaeous [41] Spore, aerosol stream None 1064
Bacillus atrophaeous [52,37] Dried film on Al disk, steel disk,

polycarbonate disk
NN, MLSRA,PLS-DA 1064

Bacillus atrophaeous [57] Pellet, freeze-dried powder SVM 1064
Bacillus aureus [35] Spore, EDB trap None 355
Bacillus cereus 6E1 [29,32] Thin lawn on silver membrane filter PCA, linear correlation, and

SIMCA
1064

Bacillus cereus ATCC 14603 [57] Pellet, freeze-dried powder SVM 1064
Bacillus globigiid BG-1 [39,40] Pellet, freeze-dried powder None 1064
Bacillus globigii BG-1 [40] Spore, aerosol stream None 1064
Bacillus globigii BG-2 [39,40] Pellet, freeze-dried powder None 1064
Bacillus globigii BG-2 [40] Spore, aerosol stream None 1064
Bacillus globigii var. niger [29,42,32] Thin lawn on silver membrane filter PCA, linear correlation, and

SIMCA
1064

Bacillus globigii var. niger [30] Continually refreshed dense aerosol cloud
(from powder) and aerosol stream

PCA 1064

Bacillus globigii var. niger [35,68] Powder on double-sided sticky tape No, linear correlation, PCA,
PLS-DA

1064 × 2 (DP)

Bacillus globigii 168 [43] Colony (wet) on LB medium None 532
Bacillus globigii [47] Thin film lawn on cellulose nitrate

membrane filter
None 810 (fs), 1064

Bacillus globigii [48] Pellet, freeze-dried powder Hyperspace projection of
trace elements

810 (fs)

Bacillus globigii [31] Dried powder on solid substrate PCA, HCA, PCA + LDA 1064
Bacillus globigii ATCC 23857 [66] Colony on blood agar PCA/PLS1 1064
Bacillus megaterium QM B1551 [43] Colony (wet) on LB medium None 532
Bacillus megaterium PV361 [43] Colony (wet) on LB medium None 532
Bacillus stearothermophilus ATCC 12979 [57] Pellet, freeze-dried powder SVM 1064
Bacillus thurengensis [39,40] Pellet, freeze-dried powder None 1064
Bacillus thurengensis var. kurstaki [29,32] Thin lawn on silver membrane filter PCA, linear correlation, and

SIMCA
1064

Bacillus thurengensis var. kurstaki [44] Thin lawn on nylon filter None 1064
Bacillus thurengensis T34 [43] Colony (wet) on LB medium None 532
Bacillus thuringiensis ATCC 51912 [57] Pellet, freeze-dried powder SVM 1064
Bacillus sp. [GQ392044] [71] Colony on glass slide PCA/PLS-RA 800 (fs)
Bacillus sp. [GQ226038] [71] Colony on glass slide PCA/PLS-RA 800 (fs)
Bacillus sp. [HM026606] [71] Colony on glass slide PCA/PLS-RA 800 (fs)
Enterobacter cloacae [FJ194527] [71] Colony on glass slide PCA/PLS-RA 800 (fs)
Enterobacter cloacae ATCC 13047 [64,67] Thin lawn on nutrient-free agar DFA, PLS-DA 1064
Enterobacter sp. [CP000653] [71] Colony on glass slide PCA/PLS-RA 800 (fs)
Enterobacter sp. [GU586319] [71] Colony on glass slide PCA/PLS-RA 800 (fs)
Enterobacter sp.[FJ194525] [71] Colony on glass slide PCA/PLS-RA 800 (fs)
Erwinia chrysanthemi [48] Pellet, freeze-dried powder Hyperspace projection of

trace elements
810 (fs)

Escherichia coli [39,40] Pellet, freeze-dried powder None 1064
Escherichia coli [47,49] Thin lawn on cellulose nitrate membrane

filter
None 810 (fs), 1064

Escherichia coli [48] Pellet, freeze-dried powder Hyperspace projection of
trace elements

810 (fs)

Escherichia coli IHII/pHT315 [43] Colony (wet) on LB medium None 532
Escherichia coli K-12 (AB), Hfr-K12, HF4714, C (Nino

C), O157:H7, ATCC 25922
[34,58,60,62–64,67] Thin lawn on nutrient-free agar DFA, PLS-DA 1064

Escherichia coli [70] Thin lawn on cellulose nitrate membrane
filter

DFA, PLS-DA 1064

Escherichia coli O157:H7 ATCC 4389 [72] Thin lawn on ground beef, bologna, chicken,
milk, eggshell, lettuce, drain, cutting board,
swab

PCA/PLS1 1064

Escherichia coli [75] Thin lawn on filter paper None 1064
Escherichia coli [76] Thin lawn on filter paper and sausage None 1064
Escherichia coli DH5α [65] Freeze-dried powder PCA,PLS2 1064
Escherichia coli [77] Thin lawn on silicon wafer DFA 266
Escherichia coli OV2 [53] Colony on LB, MacConkey, Brucella agar

medium
NN 1064

Escherichia coli ATCC 15597 [37] Dried film on Al disk, steel disk,
polycarbonate disk

PLS-DA 1064

Escherichia coli K12 ATCC 10798 [66] Colony on blood agar PCA/PLS1 1064
Escherichia coli [80] Thin lawn on glass slide None 1064

(continued on next page)
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Table 2 (continued)

Micro-organism Reference Form Chemometric utilized Laser wavelengtha

Escherichia coli MC6-RP11, QCB1 [54] Colony on LB agar NN 1064
Escherichia coli K12 [74] Thin lawn on plexiglass PCA/SIMCA 1064, 775 (fs)
Escherichia coli [55] Unknown K-means classifier and NN 1064
Escherichia coli CCM 3954 [56] Colony on MH agar PCA, Self-Organizing Maps

(NN)
532

Escherichia coli K12, ATCC 25922 [51] Thin lawn on silicon wafer PCA, HCA 1064
Escherichia coli ATCC 25254 [79] Thin lawn on plexiglass substrate None 1064
Francisella tularensis vaccine strain [38] Thin lawn on agar, glass slide PCA/PLS1 1064
Klebsiella pneumoniae ATCC 13882 [66] Colony on blood agar PCA/PLS1 1064
Klebsiella pneumonia K21P, K18P, K17P, K16R, K11CM,

K11P, K7P,K6P, K3C, K2P
[54] Colony on LB agar NN 1064

Listeria innocua [73] Pellet, freeze-dried powder PCA, Mahalanobis
discriminant analysis (MDA)

266

Methylophilus methylotrophus [AB193724] [71] Colony on glass slide PCA/PLS-RA 800 (fs)
Methylophilus sp. [AY436800] [71] Colony on glass slide PCA/PLS-RA 800 (fs)
Methylophilus sp. [EU375653] [71] Colony on glass slide PCA/PLS-RA 800 (fs)
Methylophilus sp. [GQ175365] [71] Colony on glass slide PCA/PLS-RA 800 (fs)
Micrococcus luteus [80] Thin lawn on glass slide None 1064
Mycobacterium smegmatis wild-type, TE, TA [62,63,64,67] Thin lawn on nutrient-free agar DFA, PLS-DA 1064
Mycobacterium smegmatis [70] Thin lawn on cellulose nitrate membrane

filter
DFA, PLS-DA 1064

Paenibacillus sp. [AY728023] [71] Colony on glass slide PCA/PLS-RA 800 (fs)
Pantoea agglomerans [FJ611822] [71] Colony on glass slide PCA/PLS-RA 800 (fs)
Proteus mirabilis [39,40] Pellet, freeze-dried powder None 1064
Pseudomonas aeruginosa M841 [53] Colony on LB, MacConkey, Brucella agar

medium
NN 1064

Pseudomonas aeruginosa [59] Thin lawn on nutrient-free agar DFA 1064
Pseudomonas aeruginosa [70] Thin lawn on cellulose nitrate membrane

filter
DFA, PLS-DA 1064

Pseudomonas aeruginosa [HM036358] [71] Colony on glass slide PCA/PLS-RA 800 (fs)
Pseudomonas aeruginosa ATCC 33580 [66] Colony on blood agar PCA/PLS1 1064
Pseudomonas aeruginosa PA1-PA19 [54] Colony on LB agar NN 1064
Pseudomonas putida [73] Pellet, freeze-dried powder PCA, Mahalanobis

discriminant analysis (MDA)
266

Salmonella enterica serovar Typhimuriume [77] Thin lawn on silicon wafer DFA 266
Salmonella enterica ATCC 8324 [72] Thin lawn on ground beef, bologna, chicken,

milk, eggshell, lettuce, drain, cutting board,
swab

PCA/PLS1 1064

Salmonella pollorum 1JVC, 1/1Km, 2/1Km [54] Colony on LB agar NN 1064
Salmonella salamae 2JVC, 1/2Km, 2/2Km [54] Colony on LB agar NN 1064
Salmonella typhymurium LB5010 [53] Colony on LB, MacConkey, Bucella agar

medium
Neural networks 1064

Salmonella typhimurium SL-1344, 1/22Km, 2/22Km [54] Colony on LB agar NN 1064
Salmonella typhymurium [73] Pellet, freeze-dried powder PCA, Mahalanobis

discriminant analysis (MDA)
266

Salmonella typhymurium [51] Thin lawn on silicon wafer PCA, HCA 1064
Shewanella oneidensis [48] Pellet, freeze-dried powder Hyperspace projection of

trace elements
810 (fs)

Staphylococcus aureus [39,40] Pellet, freeze-dried powder None 1064
Staphylococcus aureus MRSA: LP9, MM61, MM66,

MM66–4
[65] Freeze-dried powder PCA,PLS2 1064

Staphylococcus aureus [62,64,67] Thin lawn on nutrient-free agar DFA,PLS-DA 1064
Staphylococcus aureus [77] Thin lawn on silicon wafer DFA 266
Staphylococcus aureus SH1000, SH1000–1, RN4220,

RN4220-fail, MRSA: LP9, MM61, MM66, MM66–4
[66] Colony on blood agar PCA/PLS1 1064

Staphylococcus aureus [73] Pellet, freeze-dried powder PCA, Mahalanobis
discriminant analysis (MDA)

266

Staphylococcus aureus [55] Unknown K-means classifier and NN 1064
Staphylococcus aureus [51] Thin lawn on silicon wafer PCA, HCA 1064
Staphylococcus aureus CCM 4223, CCM 4750 (MRSA),

CCM 3953 (MSSA)
[56] Colony on MH agar PCA, Self-Organizing Maps

(NN)
532

Staphylococcus aureus ATCC 25923 [79] Thin lawn on plexiglass substrate None 1064
Staphylococcus epidermidis [64] Thin lawn on nutrient-free agar DFA,PLS-DA 1064
Staphylococcus epidermidis [70] Thin lawn on cellulose nitrate membrane

filter
DFA, PLS-DA 1064

Staphylococcus pseudointermedius [56] Colony on MH agar PCA, Self-Organizing Maps
(NN)

532

Staphylococcus saprophyticus [62,64,67] Thin lawn on nutrient-free agar DFA, PLS-DA 1064
Staphylococcus sciuri [56] Colony on MH agar PCA, Self-Organizing Maps

(NN)
532

(continued on next page)
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environment. No attempt was made to identify the type of interferents
present in such a clinical biofluid.

By ablating bacterial samples directly on various agar media such as
blood agar, cysteine heart agar and an unknown agar, Multari et al.
have shown that given the careful construction of medium-specific PLS
algorithms, the interferents present in the plasma due to the inevitable
ablation of some of the agar medium upon which the bacterial cells are
mounted do not restrict the overall classification ability [38]. Such a
result had been shown earlier by Diedrich et al. who discriminated
strains of E. coli from each other regardless of the growth medium used
(a TSA plate or a TSB liquid nutrient medium) [58] and by Rehse et al.
who demonstrated 100% discrimination of E. coli from P. aeruginosa
when specimens were cultured on TSA, blood agar, and MacConkey
agar nutrient plates [59]. None of these specimens was ablated directly
on those various growth media, but the samples were not washed ex-
tensively prior to LIBS testing.

3.9. Stand-off/remote testing

In one of the earliest demonstrations of what the authors referred to
as remote detection and differentiation, Xu et al. showed that fs-LIBS
(800 nm Ti-sapphire system, 45 fs pulse duration operating at 10 Hz)
could be used to detect and differentiate similar agricultural activity
related bioaerosols, at standoff distances up to 4 m [81]. The beam was
focused in air using a 1 m lens onto compressed dust samples and
emission was collected by a 30 cm diameter aluminum mirror located
4.7 m away from the LIBS spark. High signal-to-noise spectra were
collected from the fs-LIBS plasma in this configuration, and as men-
tioned earlier fluorescence from CN and C2 molecular bands generated
in this process were used to discriminate organic interferents. No bac-
teria were tested in this paper.

In a subsequent expansion of this idea, Chin et al. explored the use
of “filament-induced” fluorescence and filament-induced breakdown
spectroscopy (FIBS) to identify remote targets [82]. The authors refer to
this as remote-FIBS or R-FIBS. In this study, filament-induced spectra
were acquired from aluminum samples located 50 m and 32 m away
from the detection system in a remote LIDAR configuration and also
from simulated biological agents such as egg white, yeast, and grain.
Again no bacteria were tested.

Using an alternate approach, Gottfried et al. developed a double-
pulse standoff LIBS (ST-LIBS) system which could detect a variety of
hazardous target materials at tens of meters distance [33]. In this
configuration, two nanosecond 1064 nm laser pulses were delivered by
a commercial 35.56 cm (14 in.) Schmidt-Cassegrain telescope to targets
at 20 m. LIBS emission was collected by the same telescope. Specimens
of the anthrax surrogate B. subtilis var. niger (also referred to as B.
globigii) and the mold Alternia alternata were applied directly to a
double-sided sticky tape mounting medium. No evidence of the
mounting tape was observed in the collected spectra. Single-shot
spectra obtained in this way possessed good signal-to-noise and in-
cluded strong elemental and molecular lines, but many elemental lines

expected by the authors, such as Ba, Fe, Li, Mn, Sc, Si, and Sr, were not
observed. It is worth noting that these lines are not observed in a ma-
jority of the bacterial studies referenced in this review. A significant
conclusion of this work was that the use of two optimally timed pulses
provided dramatically enhanced performance over single pulse LIBS at
these distances.

In a subsequent study, Gottfried et al. demonstrated the dis-
crimination of this B. subtilis from the biological interferents ovalbumin,
A. alternata, and B. thuringiensis with only 2% false negatives and 0%
false positives [68]. Spectra were collected with the same apparatus at
20 m and analyzed utilizing both a PLS-DA and a linear correlation.
Typical results for this analysis are shown in Fig. 9, which shows re-
presentative single-shot spectra acquired with this apparatus, as well as
showing the results of a PLS-DA performed on one of the micro-or-
ganisms and one of the interferents. The authors noted that for ex-
plosive detection, standoff distances up to 100 m may be possible, but
for biologicals and pathogens, the relative weakness of the essential
phosphorus emission may limit the utility of this approach to 20 m or
less.

3.10. LIBS combined with alternate optical modalities for bacteriological
discrimination

As evidenced clearly in the remote experiments described earlier,
the all-optical nature of the LIBS measurement suggests that the com-
bination of LIBS with another laser-based optical spectroscopic tech-
nique is expected to enhance the discrimination ability of the technique
and lower the limits of detection. This idea was clearly considered by
Beddows and Telle who envisioned the combination of LIBS with either
Raman spectroscopy, laser-induced fluorescence, or both for bioaerosol
identification [28]. They proposed utilizing an initial low intensity laser
for bioaerosol particle sizing and triggering, where the particle size
could also add diagnostic information. In their conception, a second
laser pulse of suitable wavelength chosen to limit the intrinsic fluor-
escence would illuminate the sample to generate Raman emission.
Additionally, a third ultraviolet pulse could be used subsequently to
obtain a UV-fluorescence spectrum. Finally, a fourth nanosecond laser
pulse would be used to destructively interrogate the sample by gen-
erating a LIBS spectrum. No such experiments were conducted, but a
proposed prototype was discussed.

As already mentioned, the complementary information provided by
analysis of the filament-induced fluorescence, particular molecular
emission from CN and C2 provided valuable diagnostic information
when fs-LIBS or R-FIBS is conducted [81,82]. By measuring the decay
profiles of this fluorescence, differences in native CN and C2 bonds
present in biological specimens from those due to recombination with
atmospheric constituents can be observed, which was first noted by
Baudelet et al. [47,49].

Rather than study the time dependence of fluorescence, Saari et al.
collected the full fluorescence spectrum from 320 nm to 820 nm after
excitation with a 355 nm tripled Nd:YAG pulse [35]. A 355-nm filter

Table 2 (continued)

Micro-organism Reference Form Chemometric utilized Laser wavelengtha

Streptococcus mutans [60,62,64,67] Thin lawn on nutrient-free agar DFA, PLS-DA 1064
Streptococcus viridans [62,63,64,67] Thin lawn on nutrient-free agar DFA,PLS-DA 1064

a All lasers have ns pulse duration unless otherwise noted.
b Genbank accession number.
c Lawn usually denotes a liquid suspension deposited on a substrate then allowed to dry for a variable amount of time to form a thin, dry or semi-dry film. A colony

means a growth accumulation region not in suspension or dispersed in a liquid.
d Bacillus globigii is also known as Bacillus subtilis.
e S. enterica serovar Typhimurium is commonly referred to by its serovar identification only as S. typhimurium or by its more proper taxonomic identification, S.

Typhimurium.
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was used to block out the excitation wavelength and significant and
repeated differences were observed in the spectra collected from the
fungal spores Aspergillus versicolor and Penicillium brevicompactum and
the bacterial spore B. aureus. By using an electro-dynamic balance, es-
sentially background-free data were obtained from bioaerosols gener-
ated from water suspensions and the combined LIBS/LIF measurements
enabled a high-sensitivity repeatable classification of the bioaerosols.

It is perhaps most obvious that the combination of elemental LIBS
information with molecular Raman information affords the greatest
possibility for increasing classification performance when classifying
bacteria. Non-enhanced Raman spectroscopy has also demonstrated
bacterial classification and discrimination at the strain level, even be-
fore techniques such as surface-enhancement or tip-enhancement are
introduced (see, for example, Hamasha et al. [83].) It is hardly sur-
prising that the addition of this modality should enhance LIBS-based
discrimination, yet no consensus on how such “data fusion” is to be
performed exists. Prochazka et al. merged their data by simply ap-
pending the LIBS spectrum from 200 nm to 900 nm with the Raman
spectrum obtained from 632.551 cm−1–1723.820 cm−1 to generate a
pseudo-spectrum from 200 nm to 1407.02 nm [56]. A PCA was used to
discriminate these spectra, and the Raman part of the spectrum was
found to contain more variance than the LIBS part, as can be seen in
Fig. 10. Representative spectra from both modalities is also provided for
reference. The LIBS portion of the spectrum however played a critical
role for PC1, which always contains the most significant variance.

Liao et al. introduced silver nanoparticles into a suspension of S.
aureus to take advantage of the well-known surface-enhancement af-
forded by the nanoparticles [51]. The authors utilized a custom-built
LIBS/Raman apparatus utilizing 1064 nm ns LIBS pulses and a 532 nm
cw laser for Raman excitation. The silver content of the nanoparticles
was readily apparent in the LIBS spectra acquired with this apparatus.
Interestingly, while the authors demonstrated a PCA-derived classifi-
cation of E. coli and S. aureus and utilized the LIBS spectra to calculate a
limit of quantification, they do not appear to have fused the data, or
used the two modalities together in any way to improve overall clas-
sification. Thus the utility of coming the two modalities was not made
evident. As noted, more studies need to be conducted to determine how
best to fuse the data acquired with the two techniques.

4. Summary and outlook

4.1. Summary

Over the course of approximately 15 years, the use of LIBS for rapid
bacterial classification or detection has been improved from initial
proof-of-concept experiments to sophisticated experiments that clearly
demonstrate clinical utility. A summary of the most significant con-
clusions described in this review are provided in Table 1.

The wide variety of bacteria which have been tested with LIBS offers
evidence of the utility of the approach. Because the technique is not
biochemically based, a single apparatus can identify any and all of the
bacteria that are ablated in the LIBS plasma. A summary of all the
bacteria that have ever been tested in a LIBS apparatus, as well as an
identification of the substrate upon which this analysis was performed,
the state of the bacteria, the specific chemometric routine used in
identification, and the type of laser utilized in the test are presented in
Table 2.

4.2. Outlook

The body of literature summarized here makes clear that the use of a
LIBS-based diagnostic to identify unknown bacteria in a specimen, and
to differentiate those bacteria from the normal non-pathogenic flora
that are to be found ubiquitously in nature is eminently feasible. While
the fundamentals have been well-established there are several im-
portant questions that yet remain to be answered which should provide

research impetus for years to come.
The single most important advance that could be initiated is the use

of a LIBS-diagnostic in a clinical environment such as a clinic or hos-
pital microbiology laboratory. The majority, if not all, of the experi-
ments performed here were done in a research setting within either a
university, institute, or company. And while clinical microbiologists
and pathologists have been involved, the extent of these collaborations
has usually been to provide LIBS practitioners, who are usually not
microbiologists, with credible and realistic samples to test. This is not
the same as performing experiments on actual samples obtained in a
clinical environment, either human or otherwise (perhaps the use in a
veterinary environment may occur first due to the lowered regulatory
thresholds.) In any case, tests should be performed on actual clinical
specimens that have been obtained in duplicate by medical personnel
using the standard collection protocols and these specimens should be
then tested with both LIBS and via whatever modality is in use at that
institution so that a true comparison of the accuracy of the LIBS test
against other gold-standard methods can be performed. In addition to
the accuracy of the results, this would also allow for the first time an
analysis of the workflow burden that the introduction of a new test
would introduce to a clinical setting as well as illuminate any savings in
time that would be gained. Of course, it is obvious that the results of
any such tests could in no way be used to direct patient treatment, as
this is a completely unregulated and unapproved (as of yet) testing
modality. But it would be a crucial first step toward initiating trials that
could lead to regulatory approval.

The lowest number of cells that can be detected with the LIBS di-
agnostic has been measured in a variety of experiments (as detailed in
Section 3.6) in a research setting, and has been shown to be quite low.
What remains to be demonstrated is whether the number of cells ob-
tained in a clinical specimen is adequate for sensitive and specific
identification and whether it is consistently distinguishable from “ne-
gatives,” or specimens containing no bacteria. As negative samples are
routinely acquired in clinical environments which now require an ever-
increasing number of tests to err on the side of caution, the rate of false-
positives on negative samples will need to be exceedingly low for the
test to be accepted by clinical microbiologists.

Another important area of concern is the testing of “mixed samples.”
A mixed sample is one in which it would be typical to find numerous
types of different bacteria, most of which are non-pathogenic and do
not need to be treated. One example of this would be a swab of the
inside of the mouth, another is the gastrointestinal tract. The only in-
vestigations of this were discussed in Section 3.6. Because the LIBS
spectra of bacteria do not possess great diversity and almost all spectra
contain the same atomic and ionic emission lines, the extent to which a
pathogenic microorganism could be identified in the presence of a
background of non-pathogenic flora is unknown. The utility of a LIBS
test on specimens derived from such a mixture of bacteria utilizing the
techniques currently available cannot at this time be evaluated.

A final area of interest showing significant promise is the use of a
LIBS test not as a tool for microbiological identification in a clinical
setting, but rather as a rapid and convenient assay of cellular elemental
composition. It is this use of the technique, referred to here as atomic
microbiology, which could provide research microbiologists with a new
laboratory tool. The alteration of cellular chemistry due to environ-
mental or pharmacological influences is an area of microbiological
study, and it has been shown that the LIBS assay is an effective tech-
nique for monitoring changes in this biochemistry as discussed in
Section 3.3. The development of a convenient benchtop instrument
easily usable by non-experts and a suitable mounting protocol for
specimens to be tested with such an instrument would allow the in-
troduction of the LIBS technique into such studies. The presence of such
a tool in a microbiology laboratory might then initiate new research
areas which could make use of the ready availability of the high-
throughput, fairly straightforward and inexpensive assay.

So it should be clear that the next step in the introduction of a LIBS-
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based diagnostic into clinical medicine or microbiology research is the
continuing inclusion of experts in these areas of science into teams
containing LIBS experts and the increasing exportation of LIBS tech-
nology from the LIBS laboratories into those other settings. Continued
cooperation between LIBS practitioners and the ultimate end-users of
the technology is the most certain way to insure the early adoption of
the technology into those fields.
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