The potential of LIBS to Diagnose Pathogens, Infectious Diseases, and Toxins

NASLIBS2009

Steven J. Rehse Department of Physics and Astronomy

Staph. epidermidis

Staph. aureus

bacteria are ubiquitous 10x more prokaryotic cells in your body than eukaryotic cells

V. cholerae

E. coli

So why?

It is well-accepted that the microbiological expertise and cost required to perform these identifications preclude their common use as a screening mechanism to prevent human infection.¹

¹Tarr, P.I. 1995. *Escherichia coli* O157:H7: clinical, diagnostic, and epidemiological aspects of human infection. Clin. Infect. Dis. 20, 1-8.

How do we identify bacteria?

4 ways

- genetic
- serological (antigenic)
- microbiological
- compositional (LIBS)

<u>genetic</u>

- PCR (polymerase chain reaction)
- (random primed) RAPID-PCR
- FISH (fluorescence *in situ* hybridization)

requires

• *a priori* knowledge of genetic sequence (16s RNA gene is conserved in most)

- amplification time (multiple generations needed)
- nonspecific reactivity
- still need to do gel electrophoresis
- very contamination sensitive

<u>serological</u>

- immunoassays
- microwell devices
- ELISA (enzyme-linked immunosorbent assay)
- fluorescently labeled antibody techniques
- MEMS

requires

a priori knowledge of serology (surface antigens)

- any mutation (common) undetectable
- antibodies are not stable (shelf-life)
- consumables
- binding affinities may be low

microbiological

- culturing and colony counting
- phenotyping
- sensitivity to immunochemicals
- Gram staining

requires

- time
- expertise
- LOTS of supplies
- *a priori* clinical knowledge (case-history)

- slow/labor intensive
- requires experts

<u>compositional</u>

- Raman
- Mass-spectrometry
- LIBS

requires

- no *a priori* knowledge of serology (surface antigens)
- no *a priori* knowledge of genetic sequence
- no consumables (hopefully)
- no expertise

- sensitivity (no amplification)
- hardware probably expensive (relative)
- specificity?

bacterial composition

LIBS-based pathogen identification is inorganic element based (at this point)

from "The Bacteria: A Treatise on Structure and Function" I.C. Gunsalus and R.Y. Stanier, eds

Element	% of fixed salt fraction
Sodium	2.6
Potassium	12.9
Calcium	9.1
Magnesium	5.9
Phosphorus	45.8
Sulfur	1.8
Iron	3.4

chemometrics used

- Intensity of lines, ratios of intensities used in a statistical multi-variate analysis
- Discriminant function analysis (DFA)
- Principal component analysis (PCA)
- Partial least squares – discriminant analysis (PLS-DA)

- 1. Increase sensitivity
 - currently ID'ing 7,500 2,500 bacteria
 - Need to do 100

<u>solutions</u>

1. Dual-pulse

2. Better emission collection optics

- 2. ID bacteria in "mixed" or "dirty" samples
 - other bacteria may not be a problem
 - other biological objects (cells, etc.)
 - all genetic techniques face same problem

<u>solutions</u>

- 1. better chemometrics
- 2. better sample preparation (see next point)

- 3. Develop protocols for clinical sample preparation (blood, urine, sputum)
 - isolation
 - concentration under the laser focus

<u>solutions</u>

- 1. differential centrifugation
- 2. filtration
- 3. optical trapping / separation
- 4. microfluidic separation
- 5. antibody isolation/phage display technology (consumables!)

- 4. Construct a reference library
 - maybe 30 most important species
 - can add as many strains/species as desired
 - in some cases, <u>a single bacterium would justify</u> the technology

<u>solutions</u>

1. hard work

2. WSU has access to a large clinical repository of stored clinically identified organisms (specimens must be confirmed via other method first)

things that make LIBS-based technology unique

Why do I think this is relevant for clinical, military, first responder, and screening applications?

- speed / portability / durability (ruggedness)
 - "rapid point-of-care diagnostic..."
- lack of complicated sample preparation
- no expertise required
- no genetic or antigenic precursors (consumables) necessary
- same technology / hardware useful for explosives, chemical, other threats (CBRNE capable)
- capability of sensor fusion

<u>please come see our poster!</u> P_65

LIBS for Rapid Discrimination / Identification of Gram-negative and Gram-positive Bacteria

Thank you for your attention!

Graduate Students

- Jon Diedrich, M.S.
- Narmatha Jeyasingham, M.S.
- Arathi Padhmanabhan
- Caleb Ryder
- Qassem Mohaidat
- Khozima Hamasha

Undergraduate Students

- Marian Adamson
- Emmett Brown
- Garrett Godfrey
- Heather Ziola

