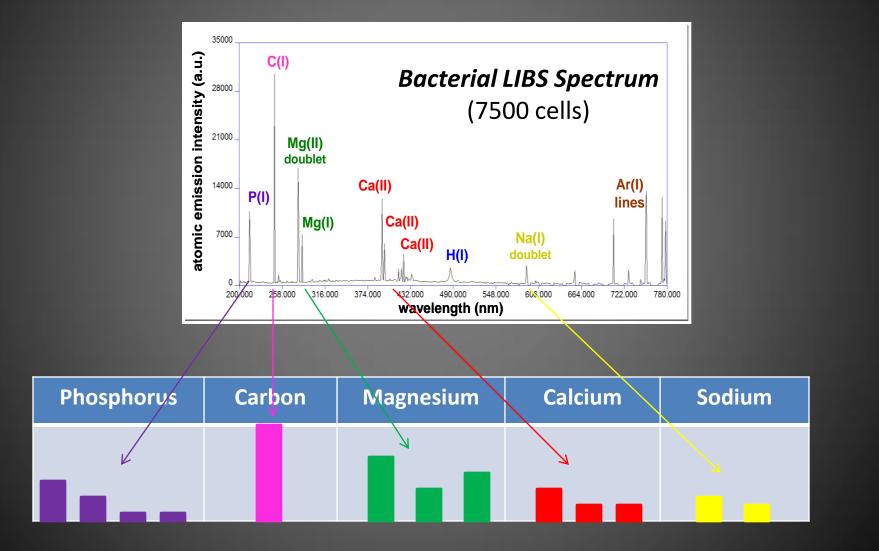

Spectral Analysis for Discrimination of Bacterial Fingerprints

Russell A. Putnam Rehse Group Department of Physics, University of Windsor

Laser-based identification of bacteria

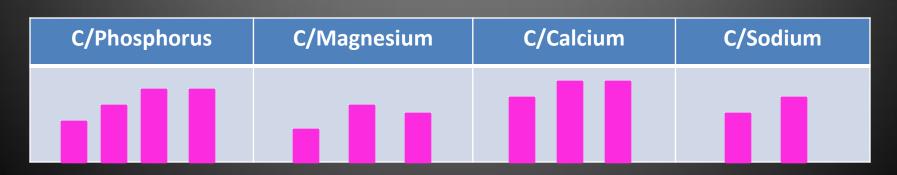

Similar Light Fingerprints


• Fingerprints consist of the SAME lines but in varying ratios

i.e. # 2 has slightly more
Mg in comparison to C
than # 1

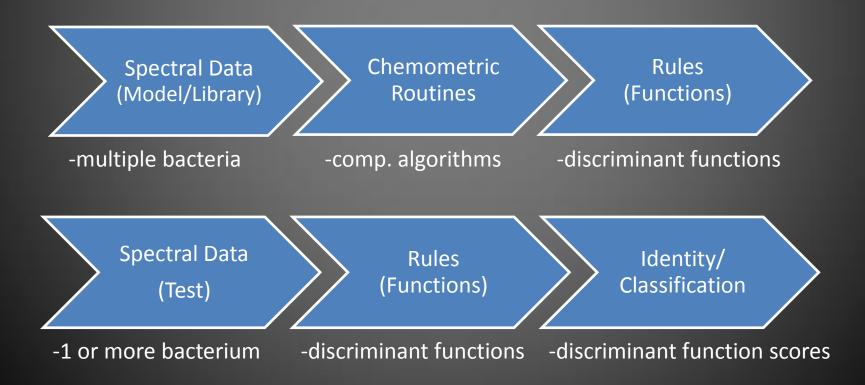
• What is the important information?

Down-selection of variables

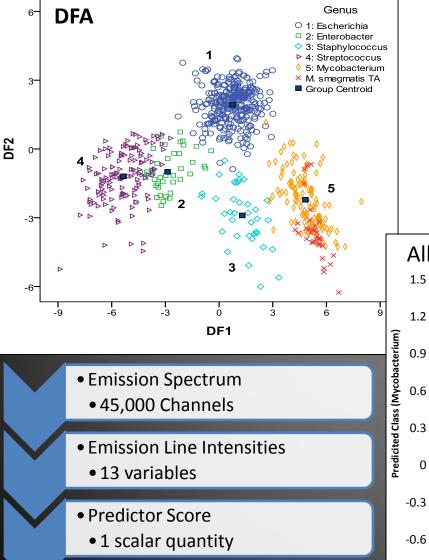


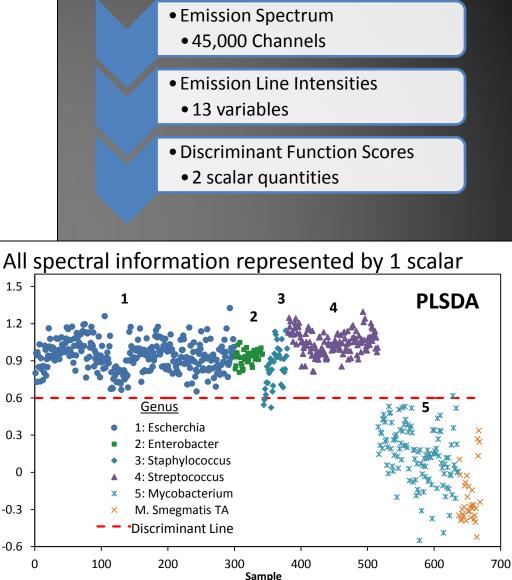
Down-selection of variables

More in-depth explanation of the specific ratios used can be read in:


"A comparison of Multivariate Analysis Techniques and Variable Selection Strategies in a Laser-Induced Breakdown Spectroscopy Classification", R. A. Putnam, A. Daabous, and S. J. Rehse.

lines... Use the ratios as the variables!




Multivariate Chemometric analysis

 Extract information by analyzing small differences in bacterial fingerprints – small differences in downselected variables

Discriminant Function Analysis and Principle Least-Squares Discriminant Analysis All spectral information represented by 2 scalars

Testing: External vs. Internal

- Internal validation the model and test group contain spectra from the same day and same cultures OR even contains the test spectra
- External validation: model and test groups are exclusive.
- The model fingerprints are taken on different days and from different cultures of bacteria than the test fingerprints

 External validation is a rigorous test to see if the model is isolating true differences in bacterial fingerprints

Conveying Results: Truth Tables

WAS IT CORRECT?

$\left \right $	-Bacteria # 1	TRUE	FALSE
	POSITIVE	Identified as Bact. #1 when the specimen <u>was</u> Bact. #1	Identified as Bact. #1 when the specimen <u>was not</u> Bact. #1
		(good – correct)	(bad – incorrect)
	NEGATIVE	<u>Not</u> identified as Bact. #1 when the specimen <u>was not</u> Bact. #1	<u>Not</u> identified as Bact. #1 when the specimen <u>was</u> Bact. #1
		(good – correct)	(bad – incorrect)

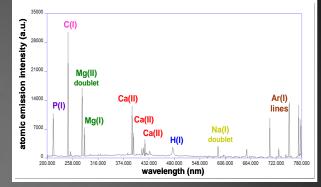
Sensitivity	True Positives	Specificity	100% – False Positives
-------------	----------------	-------------	------------------------

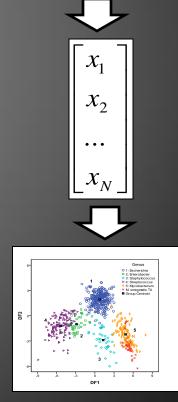
COMPUTER I.D.

Results

•Ratio Model 2: 80 down-selected variables consisting of the 13 elemental lines with various ratios of emission lines to sums of lines

PLSDA


DFA


E. COLI	True	False	E. COLI	True	False	
Positive	95.65%	9.17%	Positive	89.63%	15.95%	
Negative	90.83%	4.35%	Negative	84.05%	10.37%	
STAPHYLOCOCCUS	True	False	STAPHYLOCOCCUS	True	False	
Positive	54.05%	0.51%	Positive	86.49%	5.85%	
Negative	99.49%	45.95%	Negative	94.15%	13.51%	
			—			
STREPTOCOCCUS	True	False	STREPTOCOCCUS	True	False	
STREPTOCOCCUS Positive	True 95.59%	False 1.02%	STREPTOCOCCUS Positive	True 99.26%	False 13.32%	
Positive	95.59%	1.02%	Positive	99.26%	13.32%	
Positive Negative	95.59% 98.98%	1.02% 4.41%	Positive Negative	99.26% 88.68%	13.32% 0.74%	
Positive Negative MYCOBACTERIUM	95.59% 98.98% True	1.02% 4.41% False	Positive Negative MYCOBACTERIUM	99.26% 88.68% True	13.32% 0.74% False	

DFA: Sensitivity: 91.37 ± 16.39 % PLSDA: Sensitivity: 93.13 ± 10.25 % Specificity: 97.46 ± 9.35 % Specificity: 90.60 ± 21.33 %

In Summary

- Bacterial spectra are downselected to useful information
- The useful information is placed into a chemometric analysis to produce a set of rules
- The rules are then used to compute the useful information into few scalars to discriminate between bacteria

Thank you for your attention!

Questions?

Thank you to Andrew Daabous and my supervisor Dr. Steven J. Rehse