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Standardized samples of known 
concentrations of aluminum 
were made and tested to create 
concentration curves.  These 
displayed a linear concentration-
to-line-intensity relationship for 
concentrations from 10 to 1000 
ppm.  No saturation of the 
aluminum lines at high 
concentrations was observed.  
Datum from a 2 ppm sample is 
shown as an open green circle.

Above: Calibration curve using 
an aluminum line intensity 
normalized by the intensity of a 
calcium reference line.  This 
normalization is useful for 
eliminating noise in 
measurements of the line 
intensity.  

Left: A non-normalized aluminum 
intensity calibration curve.  A 
similar relationship between 
concentration and aluminum line 
intensity was observed.  

A limit of detection (LOD) was determined from the 
calibration curves using:

The LOD’s were reduced by minimizing the background 
noise.  This was achieved by studying the background 
noise as a function of delay time and laser energy 
(shown left).  Times later than 6 μs and energies 
smaller than 80 mJ created Al signals too small to be 
useful.  
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Measurements to create the concentration 
curves presented above required ~1 in2 of 
sample surface.  Therefore, the usefulness 
of using only a few accumulations requiring 
only a micron-sized area was also 
investigated.  

Left: Percentage of true 
positives (yes, Al is seen) to 
false negatives (no, Al is not 
seen) for only one accumulation.  
The 0 ppm sample shows the 
number of false positives (Al 
seen when not really there).  
The three criteria describe the 
strictness of the test.
Right: A similar test was done 
using 1 to 4 accumulations 
which showed that using just 2 
accumulations increased the 
sensitivity by 25% and did not 
increase the number of false 
positives. 

Left: For clinical applications, the 
effectiveness of a method is often 
characterized by a Receiver 
Operating Characteristic (ROC) 
curve.  ROC curves plot the 
sensitivity of the testing method as a 
function of specificity.  A perfect test 
(shown as a solid line) remains 
sensitive at all specificities, 
especially when there are no false 
positives.  The area under the ROC 
curve, compared to the areas under 
the perfect and worthless curves, is a 
useful figure of merit of the method.  
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Introduction

Research at Wayne State University’s Smart Sensors and Integrated 
Microsystems (SSIM) program studies how to restore vision by 
implanting a micro-fabricated chip into the retina to generate electrical 
impulses that send a sight pattern to the brain.[i],[ii],[iii],[iv] One 
concern is that aluminum in these retinal implants is diffusing into the 
surrounding tissue.  Such a deposition of aluminum into retinal tissue 
could cause adverse performance of the implant and would also 
deposit harmful metals into the tissue.[v]

In the present work, laser-induced breakdown spectroscopy (LIBS) 
was studied as a diagnostic technique to assess trace aluminum 
concentrations in simulated soft biological tissues.  The inherent 
advantages of LIBS such as 

• speed 
• accuracy 
• minimal sample destructiveness 
• high spatial resolution on the target surface 

all lend themselves to an analysis which could be utilized (potentially
in vivo) to assess metal concentrations in tissues in which implants 
have been placed. 
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Spectra-Physics LAB 150-10 Series  
• 650 mJ/pulse max 
• 1064 nm 
• pulse repetition freq =10 Hz
• pulse duration = 10 ns

• fiber-coupled input
• detection with a 1024 x 1024

pixel Intensified CCD-array  
(24 μm2 pixel size).  

• spectral range = 200 - 834 nm
• 0.005 nm resolution (in the UV)  

λ/2 plate
Glan-Laser 

polarizer

Model Tissue

600 μm optical fiber

computer

periscope 
mirror

Nd:YAG laser

• 2% electrophoresis grade agarose 
(Fisher Chemical, BP161-100)

• doped with 20% aluminum-oxide 50 nm
nanoparticle / water colloidal dispersion 
(Alfa Aesar, #12733)

• Al concentrations of 10 ppm to 1000 ppm

8 cm

LLA ESA3000 Echelle 
spectrometer

Left: This spectrum from a 2 
ppm Al sample clearly displays 
Al peaks and proves that a LOD 
of 1 ppm is reasonable.  
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