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Abstract
Although gases, and more recently solids, have been used to create few-cycle pulses, we
explore using liquid alcohols for spectral broadening and femtosecond pulse compression. By
using a series of 1 cm cuvettes filled with 1-decanol, we have compressed a pulse from 83.6 fs
down to 31.3 fs with a spectrum capable of supporting 25 fs pulses without filamentation. We
measure the nonlinear index of refraction for various liquids, measuring
n2 = (6.8 ± 0.5) × 10−20 m2 W−1 for 1-decanol. We demonstrate liquids to be a compact,
simple, versatile, and cost-effective material to obtain broad spectra.
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1. Introduction

Ultrafast photonics is a branch of optics that deals with
ultrashort laser pulses on the order of femtoseconds
(1 fs = 10−15 s); prominent experiments within this field
explore ultrashort laser pulses to observe light–matter
interactions and phenomena on time scales of picoseconds
(1 ps = 10−12 s) or shorter. Ultrashort laser pulses also
play a large role in measuring the nonlinear response of
materials to high intensity pulses. Ultrafast technologies have
been used in a wide variety of applications, including pulse
compression techniques for few-cycles pulses via self-phase
modulation (SPM) [1–3], Kerr instability amplification [4, 5],
and generation of ultrashort pulses in the infrared (IR) and
terahertz (THz) regimes [6–8]. Femtosecond pulse durations
also allow for the investigation of processes that occur on
femtosecond to attosecond (1 as = 10−18 s) time scales,
such as high harmonic generation [9, 10] and femtosecond
[11, 12] and attosecond pump–probe experiments [13].
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Laser amplifiers and oscillators can support broad spec-
tra that create ultrashort pulses, however, even gain media
that can support the broadest bandwidths, such as Ti:sapphire
and ytterbium-doped lasers, suffer from gain-narrowing that
limits the spectral bandwidth. The impetus for shorter pulses
will always lead to bandwidths that cannot be supported by
the gain medium [14, 15]. Ultrashort pulses can be created
by increasing the spectral bandwidth of a pulse through SPM
and subsequently compensating the phase induced in SPM by
group-delay dispersion (GDD).

Pulse compression experiments can be performed using a
variety of methods to achieve spectral broadening such as all-
solid state relays [16–20], gas-filled hollow-core fibres (HCF)
[21–25], solid-core fibres [26, 27], multi-pass cells [28, 29],
and single-pass bulk materials [30]. Solid-state pulse compres-
sion schemes boast higher transmission rates than gas and HCF
setups but output lower energy pulses, typically from 1–100μJ
[17]. Solid-state setups are more susceptible to self-focusing
than gases, which can cause damage to the material. The crit-
ical power for self-focusing in a solid is on the order of a few
MW, whereas in a gas, it is ∼10 GW [16]. Single-pass solid-
state setups typically provide lower compression factors than
single-pass gas-filled HCF setups, however those compression
factors can be increased with multi-pass configurations.
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Multi-pass configurations allow for higher compression
factors at the cost of higher loss by lowering transmission [21],
while broadening the spectrum more than a single pass would
[31]. Gas-filled HCFs require a large amount of space to set up,
typically using fibres of a few metres in length, and require vac-
uum chambers to isolate the gas [21, 22], whereas a solid-state
setup requires much less space and can be easier to construct
and maintain [17]. In this work, we investigate using liquids
for spectral broadening in pulse compression experiments, in
order to bypass the disadvantages of using solids or gases.

Supercontinuum generation has been observed in water
[32], indicating that liquids can provide a suitable alternative
to solids and gases in pulse compression experiments. We pro-
pose the use of liquid alcohols, namely 1-decanol, for spectral
broadening and pulse compression. Liquids are much easier to
set up and manage, and do not run the risk of permanently dam-
aging under high intensities as a liquid remains functionally
stable once damaged. Liquids can also be cheaper and easier
to obtain; if a material needs to be exchanged for another, one
can simply empty and refill the container holding the liquid and
continue the experiment. We organize this paper in the follow-
ing manner: we characterize the nonlinear index of refraction
(n2) of several liquids using a 100 fs laser in a Z-scan mea-
surement, we determine the spectral broadening due to SPM
in 1-decanol, and we measure the resulting compressed pulse
using frequency resolved optical gating (FROG).

2. Measuring the nonlinear index of refraction
of decanol using the Z-scan method

In order to measure the n2 of 1-decanol, we perform a closed-
aperture Z-scan [33]. We perform the experiments using a
780 nm Ti:sapphire laser with a beam waist (1/e2 radius) of
2.5 mm. Our laser operates with a repetition rate of 1 kHz
and produces 83.6 fs pulses with an energy of 1 mJ. We
place a 1 cm quartz cuvette (the dimensions of the cuvette are
1.2 × 1.1 cm; each quartz wall is 0.1 cm thick, providing
1.0 cm of liquid for the beam to travel through) filled with
decanol on a motorized translation stage and pass the sample
through the focus generated by a lens with a focal length of
200 mm. Figure 1 shows the Z-scan setup.

The stage travels 25 mm, measuring the power transmitted
through the aperture every 0.25 mm. A half-wave plate is used
in conjunction with a wire-grid polarizer to control the power
entering the apparatus. A 50/50 beam splitter is placed before
the lens to pick off half of the beam in order to measure any
potential fluctuations in the output power.

The data is fitted to the function [34]

T = 1 +ΔΦF(ζ, l) (1)

using a least squares fit, where ΔΦ = (2π/λ)n2z0I0 is the
phase shift induced by self-focusing; λ and I0 are the wave-
length and intensity of the pulse respectively and z0 is
the Rayleigh range. The distinctive Z-scan curve comes
from F(ζ, l), a function of normalized lengths, ζ = z/z0 and
l = L/z0, where z is the direction in which the beam is propa-
gating and L is the thickness of the sample that is being probed.

Figure 1. Diagram of Z-scan setup used to determine n2 of decanol.
In this diagram, the beam is travelling left to right. DN, I1, f1, P1,
H1, MTS, and BS are the power detectors, clipping iris, 200 mm
focal length lens, wire-grid polarizer, half-wave plate, motorized
translation stage, and 50/50 beam splitter, respectively.

We define F(ζ, l) as [34]
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1
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By extracting ΔΦ from the least-squares fit, we can deter-
mine the n2 of the material. We perform ten scans on each
material, averaging the n2 values extracted from each scan.
The uncertainty associated with n2 comes from the standard
deviation of the ten runs taken. A sample scan performed on
decanol can be seen in figure 2. In addition to measuring the
n2 of decanol, we also measure the n2 of several other mate-
rials for which the n2 may or may not have been previously
reported, namely 1-pentanol, water, and sapphire. The results
of our Z-scan measurements can be seen in table 1.

3. Spectral broadening using decanol

In order to compress the pulse, we first seek to broaden the
spectrum using 1-decanol. To achieve this spectral broadening,
we exploit SPM to induce a phase shift:

ΔφSPM = −n2ω0L
c

I0, (3)

where c is the speed of light in vacuum andω0 is the frequency
of the pulse. We can roughly define a compression factor, Kc, as
the ratio of the spectral bandwidths before and after the SPM:

Kc =
Δωout

Δωin
. (4)

By broadening the spectrum, we can increase this compression
factor.

To broaden the spectrum, we begin with methanol, due to
its relatively large n2 (6.7 × 10−20 W m−2) [35]. We find that
the beam shape becomes highly distorted upon propagation
through methanol due to the type of filament that is being gen-
erated. The filament that we observe in liquid differs from that
generated in air, where the generated plasma has an index of
refraction less than unity [38]. This type of filament in a liquid
can be created by thermal lensing [39] or boiling the liquid.
Higher intensities will cause a liquid to increase in tempera-
ture, leading to a change in the index of refraction. This change
in the index of refraction (n) with temperature (T), dn/dT, can
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Figure 2. Data obtained from a single Z-scan of 1 cm of 1-decanol. The data is plotted as the transmittance (T) against ζ. The blue dots
show the raw data while the red curve is the nonlinear least squares fit of the function from equation (1). We report the average of ten scans.

Table 1. Nonlinear indices of refraction measured using the Z-scan technique. All values of n2 are measured with a pulse duration of 83.6
fs at a wavelength of 780 nm. The values we measure are compared to n2 values found in other literature sources. To the best of our
knowledge, there are no recorded values for n2 of 1-pentanol. ∗No value for uncertainty reported in literature.

n2 measured n2 from literature Method used Wavelength used Pulse duration used
Material (×10−20 m2 W−1) (×10−20 m2 W−1) in literature in literature in literature

Water 5.5 ± 0.3 5.7 ± 0.5 [35] ENSTA-method 804 nm 150 fs
Sapphire 2.0 ± 0.1 2.8 ± 0.8 [36] Z-scan 1550 nm 1 ps
Pentanol 7.0 ± 0.4 NR NR NR NR
Decanol 6.8 ± 0.5 11∗ [37] Optical Kerr gate 1.06 μm 10 ps

generate a thermal lens which can cause filamentation [40].
Studies have shown that the index of refraction of all alco-
hol chains from n-methanol to n-decanol change as a function
of temperature at the same rate, dn/dT = 4 × 10−4 ◦C−1 [41].
For materials in which dn/dT is the same, the materials in
question should create a thermal lens at the same rate, if they
are not damaged or boiled.

The low boiling point of methanol (64.7 ◦C [42]) will cause
the liquid to boil at low intensities, leading to thermal effects
[43, 44] that change the density of the liquid, creating this
filament. Decanol has a higher boiling point than methanol
(229 ◦C [45]), though we do not observe any filamentation
within decanol given our conditions presented here. Since we
do not see decanol filament at the same intensity that we see
methanol filament, we infer that the boiling of the liquid is
generating a filament, not a thermal lens.

To test this hypothesis we investigate alcohols of higher
boiling points, such as pentanol and decanol. In those cases,

we find that the boiling points of alcohols increase with num-
ber of carbon constituents in the carbon chain, whereas the
ionization potential decreases with each added carbon atom
(figure 3). Plasma filamentation is dependent on ionization
energy, whereas thermal lensing is dependent on the temper-
ature of the material. The trends in these chemical properties
indicate that larger alcohols are easier to ionize, but will not
create a thermal lens at as low an intensity as a smaller alcohol.

We opt to use 1-pentanol (pentanol) and 1-decanol
(decanol), due to their high boiling points, to avoid thermal
effects that may distort the beam profile while looking to main-
tain similar optical properties (similar n2) to that of methanol.
We find that decanol has greater spectral broadening potential
than pentanol and preserves a Gaussian beam shape better than
pentanol. We measure the M2 value of our laser to be 1.38.
After propagating through 1 cm of decanol, we measure an
M2 value of 1.51. The profiles of the beam with no decanol
and after 1 cm of decanol can be seen in figures 4(a) and (b)
respectively.
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Figure 3. Boiling points and ionization potentials of alcohol chains as a function of the number of carbon atoms in the chain, e.g. 1.0 is
methanol, 5.0 is pentanol, 10.0 is decanol. As the number of carbon atom in the alcohol chain increases, the boiling point increases linearly,
while the ionization potential decreases as ∼1/x. These two trends are indicative of the distortion of the beam shape being a product of
thermal lensing, rather than plasma filamentation.

Figure 4. Gaussian beam profiles with (a) no decanol (M2 = 1.38) and (b) 1 cm of decanol (M2 = 1.51). The beam size was reduced by a
factor of 2 to accommodate the dimensions of our camera (Thorlabs #CS165MU).

4. Pulse compression experiment

Using the previously mentioned Ti:sapphire laser, we are
able to create a broad spectrum capable of supporting
42 fs pulses by passing the pulse through a 1 cm thick
quartz cuvette filled with decanol. By passing the pulse
through another 1 cm of decanol, we are able to gen-
erate a spectrum capable of supporting 25 fs pulses.
We separate the cuvettes to reduce self-focusing, ensur-
ing that we avoid damage to the material that would lead
beam distortion. Figure 5(a) shows the spectrum of 1 cm
of decanol (blue) and 2 cm of decanol (green) compared to the
spectrum of our laser. The predicted bandwidth-limited pulses

can be seen in figure 5(b); the colours of the pulse envelopes
to the spectra of the same colour in figure 5(a).

After broadening the spectrum using 1 cm of decanol, we
compress the pulse from 83.6 fs to 47.0 fs with a chirped mirror
providing−1300 fs2 of GDD (800 nm highly-dispersive ultra-
fast mirror from Edmund Optics #12–331). GDD is defined as
d2φ/dω2, the second derivative of the phase, φ, with respect
to frequency, ω. GDD will cause the pulse to disperse as the
group velocity is dependent on the frequency of the pulse; dif-
ferent frequency components will travel at different velocities.
We pass the 47.0 fs pulse through another 1 cm of decanol,
broadening the spectrum, followed by further compressing

4
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Figure 5. Shown in (a) are the spectra of the Ti:sapphire laser (dark
red), 1 cm of decanol (dark blue), 2 cm of decanol (dark green).
Shown in (b) are the bandwidth-limited pulses calculated from the
spectra in (a). The spectra produced by the Ti:sapphire laser, 1 cm of
decanol, and 2 cm of decanol support bandwidth-limited pulses of
83 fs (light red), 42 fs (light blue), and 25 fs (light green)
respectively.

Figure 7. The pulses measured by FROG (τF) and their transform limit (τ S). (a) 83.6 fs pulse produced by our Ti:sapphire laser (solid red)
compared to the bandwidth-limited 83.6 fs pulse calculated from the spectrum of the Ti:sapphire laser (dashed maroon). (b) 31.3 fs pulse
created via pulse compression using 2 cm of decanol (solid red) compared to the bandwidth-limited 25 fs pulse calculated from the spectrum
of the 2 cm of decanol (dashed maroon). Using 2 cm of decanol, we were able to compress our pulse by a factor of 2.65.

the pulse from 47.0 fs to 31.3 fs using a LaKL21 prism
pair (LaKL21 25.4 × 25.4 mm Ultrafast Prism from Edmund
Optics #89–843) to provide tunable GDD. The prisms are
placed 51.7 cm apart to achieve the ideal GDD needed to
compress the pulse down to its bandwidth limit.

We pass the beam at its full size through the two cuvettes
filled with decanol. Both cuvettes are placed at 31◦, as close
to Brewster’s angle as possible given the dimensions of the

Figure 6. Sketch (top view) of the experimental setup used to
compress the pulse twice using decanol. The pulse passes through a
1 cm cuvette filled with decanol and compresses after reflecting off a
−1300 fs2 chirped mirror. The pulse then passes through a second
1 cm cuvette filled with decanol and compresses a second time by
passing through a LaKL21 prism pair. The pulse is then measured
using a home-built pulse characterization apparatus. The pulse
durations at each point in the experiment are shown in the shaded
boxes. We measured a loss of 7.4% from the first cuvette of decanol
and 7.1% from the second cuvette of decanol and a total loss of
36.4% including all other optics.

cuvette and the beam diameter, to reduce the amount of back
reflection off the surface of the cuvette. Reducing the back
reflection allows for a more intense pulse to interact with the
decanol, increasing the spectral bandwidth. A sketch of the
experimental setup can be seen in figure 6. We measure a total
power loss of 36.4%. We attribute 14.5% loss to the cuvettes
of decanol (7.4% loss from the first cuvette, 7.1% loss from
the second).
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The pulses shown in figure 7 are characterized using a home
built FROG. The pulse duration of our Ti:sapphire laser is mea-
sured to be 83.6 fs. After compressing the pulse, the pulse
duration is reduced to 31.3 fs. We utilize an alternate com-
pression factor: the ratio of the compressed pulse duration to
the initial pulse duration. Our experiments yielded a total com-
pression factor of 2.67 from 83.6 fs to 31.3 fs. After compress-
ing the pulse twice, the beam shape retains a Gaussian intensity
profile (M2 = 1.68).

5. Conclusion

The goal of this work was to investigate the spectral broad-
ening properties of alcohols as it pertains to pulse compres-
sion. In this study we investigate liquids as an alternative to
solids and gases for pulse compression. We report the n2 of
1-decanol to be (6.8 ± 0.5) × 10−20 m2 W−1. We determined
that decanol is capable of creating a broad spectrum capable
of supporting sub-30 fs pulses. Using decanol, we generated
a 31.3 fs pulse and measured it using FROG. We have shown
decanol to be a good material to achieve 30 fs pulses as it is
cheap, easy to use, and not susceptible to permanent damage.
Decanol has proven to be a good complimentary material to
hollow core gas-filled fibres and solid crystals. Using decanol,
a laser with a longer pulse duration (80–100 fs) can be com-
pressed down to 30–50 fs with ease, making any laser capable
of performing experiments that require shorter pulse durations,
such as IR or THz pulse generation [46, 47] and few-cycle
pulse generation [48, 49]. Future studies will involve further
compressing the pulse using additional passes through liquids,
including alcohols.
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