Percy Brill CV

Percy H. Brill, Ph.D.
Professor Emeritus, Management Science
brill@uwindsor.ca

Dr. Percy H. Brill is a Professor Emeritus in the Odette School of Business and Adjunct Professor in the Department of Mathematics and Statistics, University of Windsor.

Education 

  • Ph.D.  University of Toronto, Industrial Engineering: Operations Research/Mathematics, 1975.
  • M.A.  Columbia University, New York, USA, Mathematical Statistics.
  • B.Sc. Bachelor of Science, Carleton University, Ottawa, Canada, Mathematics / Physics.

Selected Publications  

Monographs

  • Brill, P. H. (2017). Level crossing methods in stochastic models, Second Edition. International Series in Operations Research and Management Science ISOR 250. Springer New York. ISBN: 978-3-319-50332-5, 559 pages, 124 figures.

Refereed Journal Articles 

  • Brill, P. H. & Huang, M. L. (2022). On approximation of the analytic fixed finite time large t probability distributions in an extreme renewal process with no-means inter-renewals.  Probability in the Engineering and Informational Sciences, http://doi.org/10.1017/s0269964822000122. [May]
  • Brill, P. H.; Huang, M. L. & Hlynka, M. (2020).  On the service time in a workload-barrier M/G/1 queue with accepted and blocked customers.   European Journal of Operational Research, 283 (1), 235-243, http://doi.org/10.1016/j.ejor.2019.10.028.  [May]
  • Zhang, Y.; Hlynka, M. & Brill, P. H. (2019).  First passage and collective marks.   International Journal of Statistics and Probability, 8 (6), 47-50, http://doi.org/10.5539/ijsp.v8n6p47.  [November]. Published by the Canadian Center of Science and Education.
  • Brill, P. H.,;Cheung, C. H., Hlynka, M. & Jiang, Q. (2018).  Reversibility checking for Markov chains.   Communications on Stochastic Analysis, 12 (2), 129-135.
  • Brill, P. H. (2015).  Note on the service time in M/G/1 queues with bounded workload.   Statistics & Probability Letters, 96 (2015), 162-169, http://doi.org/10.1016/j.spl.2014.09.019.  [January]
  • Brill, P. H. (2014).  Alternative analysis of finite-time probability distributions of renewal theory.   Probability in the Engineering and Informational Sciences, 28 (2), 183-201, http://doi.org.1017/S0269964813000417, [April]
  • Huang, M. L.; Coia, V. & Brill, P. H. (2013).  A cluster truncated pareto distribution and its applications.   ISRN Probability and Statistics (Ceased in 2014), 2013, http://doi.org/10.1155/2013/265373, Article ID: 265373.
  • Brill, P. H. & Hlynka, M. (2012).  Server workload in an M/M/1 queue with bulk arrivals and special delays.   Applied Mathematics, 3 (12A), 2174-2177, http://doi.org/10.4236/am.2012.312A298, [December], Invited.
  • Yu, K.; Huang, M. L. & Brill, P. H. (2012).  An algorithm for fitting heavy-tailed distributions via generalized hyper-exponentials.   INFORMS Journal on Computing, 24 (1), 42-52, http:// doi.org//10.1287/ijoc.1100.0443 ,
  • Brill, P. H. & Yu, K. (2011).  Analysis of risk models using a level crossing technique.   Insurance: Mathematics and Economics, 49 (3), 298-309, http://doi.org/10.1016/j.insmatheco.2011.05.005 , [November]