MSc Thesis Defense Announcement of Aman Kumar:"Replay Attack Detection in VANETs using Machine Learning Algorithm"

Monday, August 22, 2022 - 09:30 to 11:00


The School of Computer Science is pleased to present…  

MSc Thesis Defense by: Aman Kumar 

Date: Monday August, 22nd 2022 
Time:  9:30am-11:00am 
Passcode: If interested in attending this event, contact the Graduate Secretary at with sufficient notice before the event to obtain the passcode.


Vehicular ad-hoc network (VANET) is an emerging technology for vehicle-to-vehicle communication vital for reducing road accidents and traffic congestion in an Intelligent Transportation System (ITS). VANET communication is vulnerable to various security attacks and cryptographic techniques are used for message integrity and authentication of vehicles in order to ensure security and privacy for vehicular communications. However, if there is an inside attacker additional measures are necessary to ensure the correctness of the transmitted data. A basic safety message (BSM) is broadcasted by each vehicle in the network periodically to report its status to other vehicles and RSU. Replay Attack is an attack in which valid data transmission is maliciously or fraudulently repeated or delayed by an attacker, leading to traffic congestion and road accidents and can misguide other legitimate Vehicles. It becomes imperative to detect and identify the attacker to ensure safety in the network. Although many trust-based models are researched in the past, this research proposes a feasible and efficient data-centric approach to detect malicious vehicles, using machine learning (ML) algorithms. 
The proposed Machine Learning based misbehavior detection system utilizes a dataset called Vehicular Reference Misbehavior (VeReMi) Extension Dataset, which is generated using simulation tools VEINS, SUMO and OMNET++. VeReMi Extension dataset offers three different vehicle densities. This ML-based model uses BSM approach to detect Replay attack. The proposed detection framework is installed at the OBUs and RSUs, which retrieve recent BSMs of a vehicle and then quickly classifies the BSM into legitimate or attacker. 

MSc Thesis Committee:  

Internal Reader: Dr. Mahdi Firoozjaei            
External Reader: Dr. Ning Zhang      
Advisor: Dr. Arunita Jaekel 
Chair: Dr. Sherif Saad 

 MSc Thesis Defense Announcement 

Vector Institute in Artificial Intelligence, artificial intelligence approved topic logo

5113 Lambton Tower 401 Sunset Ave. Windsor ON, N9B 3P4 (519) 253-3000 Ext. 3716