Technical Workshop "Machine Learning with Python" By: Dr. Akram Vasighizaker

Thursday, February 29, 2024 - 15:00 to 16:00

The School of Computer Science at the University of Windsor Presents...

Machine Learning with Python
Presenter: Dr. Akram Vasighizaker

Date: Thursday, February 29, 2024
Time: 3:00 pm – 4:00 pm
Location: 4th Floor (Workshop space) at 300 Ouellette Avenue (School of Computer Science Advanced Computing Hub)

This series of workshops focuses on Python programming specifically for machine learning tasks. We will start with an introduction to machine learning and Python commands, which are designed to implement machine learning algorithms such as classification tasks, in Jupyter Notebook on Google Colab. Finally, we will take a look at two other platforms, Microsoft Azure Machine Learning Studio and Weka, by performing a whole pipeline of a machine learning task. The code and data are available at Github: and participants can follow activities during the workshop.

Workshop Outline:
  • Introduction to Different Platforms for Machine Learning Tasks
  • Getting Started with Python for Machine Learning
  • Data Cleaning and Exploring in Python – Pandas
  • Machine Learning with Scikit-Learn
  • Two-class Classification in Scikit-Learn (Case study: k-NN)
  • Split data into features and label
  • Normalizing and Feature scaling
  • Split data to train set and validation set
  • Learn the model and fit on data
  • Calculate and Visualize the Confusion Matrix
  • Predictions and Evaluations
  • Find the optimum value of parameters (hyperparameter tuning)
  • Evaluation using cross-validation
  • Precision-Recall curve
  • Multiclass classification in Scikit-learn (Case study: Decision Tree)

Prerequisites: Familiar with programming

Dr. Akram Vasighizaker is a recent Ph.D graduate in the School of Computer Science and has been with the School of Computer Science since Jan 2020. She is an experienced data scientist with a passion for machine learning and data science pipelines in interdisciplinary fields. Her expertise is specifically in representation learning and Bioinformatics.